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Abstract

The histological and molecular subtypes of breast cancer demand distinct therapeutic approaches. 

Invasive ductal carcinoma (IDC) is subtyped according to estrogen-receptor (ER), progesterone-

receptor (PR), and HER2 status, among other markers. Desorption-electrospray-ionization-mass-

spectrometry imaging (DESI-MSI) is an ambient-ionization MS technique that has been 

previously used to diagnose IDC. Aiming to investigate the robustness of ambient-ionization MS 

for IDC diagnosis and subtyping over diverse patient populations and interlaboratory use, we 

report a multicenter study using DESI-MSI to analyze samples from 103 patients independently 

analyzed in the United States and Brazil. The lipid profiles of IDC and normal breast tissues were 

consistent across different patient races and were unrelated to country of sample collection. 

Similar experimental parameters used in both laboratories yielded consistent mass-spectral data in 
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mass-to-charge ratios (m/z) above 700, where complex lipids are observed. Statistical classifiers 

built using data acquired in the United States yielded 97.6% sensitivity, 96.7% specificity, and 

97.6% accuracy for cancer diagnosis. Equivalent performance was observed for the intralaboratory 

validation set (99.2% accuracy) and, most remarkably, for the interlaboratory validation set 

independently acquired in Brazil (95.3% accuracy). Separate classification models built for ER 

and PR statuses as well as the status of their combined hormone receptor (HR) provided predictive 

accuracies (>89.0%), although low classification accuracies were achieved for HER2 status. 

Altogether, our multicenter study demonstrates that DESI-MSI is a robust and reproducible 

technology for rapid breast-cancer-tissue diagnosis and therefore is of value for clinical use.

Graphical Abstract

Breast cancer is a complex and heterogeneous disease, and the leading cause of cancer 

deaths among females worldwide.1,2 Breast cancer exhibits distinct gene-expression patterns 

depending on the molecular subtype, which is defined mostly by the estrogen-receptor (ER), 

progesterone-receptor (PR), and human-epidermal-growth-factor-receptor-2 (HER2) 

statuses. Precise diagnosis and subtyping of breast cancer at the molecular level is pivotal for 

managing cancer patients because each subtype presents distinct clinical outcomes and 

therefore requires targeted treatment regimens.3 Diagnosis and molecular subtyping of 

breast cancer is routinely performed in the clinic on the basis of histopathologic 

interpretation of hematoxylin and eosin (H&E) staining of tissue sections, 

immunohistochemistry (IHC) assays that are specific for ER and PR determination, and 

fluorescence in situ hybridization (FISH) for the evaluation of the amplification of the HER2 
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gene.4-7 Although they are relatively simple techniques, H&E and IHC are time-consuming 

assays that may present bias as a result of reaction conditions and subjectivity in data 

interpretation.8 FISH assays are time-consuming and require experienced personnel to 

perform and interpret results.9,10 Implementation of new clinical technologies that provide 

precise and rapid diagnosis and characterization of breast cancer are therefore desirable to 

guide treatment and improve patient care. Molecular technologies offer the opportunity to 

incorporate cancer-specific biomarkers into clinical decision making. Genetic mutational 

signatures associated with the molecular and clinical differences of breast cancers, for 

example, have been incorporated into clinical workflows.11,12 New technologies that allow 

rapid assessment of metabolic and protein alterations in breast cancer have also been 

increasingly explored and have shown great potential for clinical use to expedite diagnosis 

and treatment decisions.13

Mass-spectrometry-imaging (MSI) technologies offer a powerful tool for chemical and 

spatial characterization of biological tissues with high specificity and sensitivity and have 

been widely explored for human-cancer-tissue analysis,14-19 including that of breast cancer.
20-26 Ambient-ionization MSI techniques, such as desorption electrospray ionization (DESI), 

allow analysis of tissue sections with high-throughput and minimal sample preprocessing,27 

features that are attractive for clinical use in preoperative cancer diagnosis and intraoperative 

surgical-margin evaluation.28 A few studies have employed DESI-MSI to investigate 

metabolic information on human breast cancer in an effort to improve diagnosis and 

surgical-margin evaluation.21,29,30 Dill et al. used DESI to image altered 

glycerophospholipids in a small set of breast-cancer-tissue samples.29 Calligaris et al. used 

DESI-MSI to analyze 61 breast-tissue samples from 14 patients who had undergone 

mastectomies.30 Guenther et al. used DESI-MSI to characterize surgical biopsies from 

lesions (28 patients, 28 samples) and tumor beds (22 patients, 98 samples) and achieved an 

overall accuracy of 98.2% for breast-cancer diagnosis.21 The latter two studies also showed 

correlations with hormone-receptor (HR) status, which combines PR and ER statuses into a 

single HR category, although no correlations with lipid information and HER2 status were 

found. More recently, we have used DESI-MSI to detect and characterize metastatic breast 

cancer in lymph nodes.31 Whereas these studies strongly showcase the potential of MSI 

techniques to complement histological and histochemical characterization and diagnosis of 

breast cancer, these isolated investigations have not evaluated the validity of determining 

biomarker status for breast cancer or the analytical performance of the methods for breast-

cancer diagnosis across different patient populations and laboratories. Racial, dietary, and 

environmental traits have been associated with molecular and prognostic differences within 

breast-cancer patients, which may result in molecular variability and thus failure to properly 

categorize tissue samples.32,33 Analytically, tissue preparation, tissue storage conditions, 

choice of instrumentation and experimental parameters have been associated with 

variabilities in imaging and mass-spectra quality by MSI,34 which could affect the method’s 

performance. Larger studies using diverse cohorts of samples are therefore needed to 

properly evaluate the robustness of molecular markers and workflows of DESI-MSI for 

clinical use in breast-cancer diagnosis and characterization. Herein, we report a multicenter 

study using DESI-MSI to investigate the lipid signatures of a diverse set of breast tissues and 

to validate the predictive performance of the method for breast-cancer diagnosis. Samples 
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from 103 patients of various races were independently investigated in the United States and 

Brazil to validate predictive molecular signatures and evaluate the sensitivity, specificity, and 

accuracy of the method for breast-cancer diagnosis.

MATERIALS AND METHODS

Human Breast-Cancer Tissues.

For our study, 131 frozen human-breast-tissue samples were obtained. Demographic and 

clinicopathologic characteristics of the samples are provided in Table S1. Tissue 

procurement, handling, and shipment were performed under approved IRB protocols at the 

respective institutions. After DESI-MSI, the same tissue sections analyzed by DESI-MSI 

were subjected to standard H&E-staining protocol. For more information on tissue samples, 

histopathology, and light microscopy, please see the Supporting Information.

DESI-MSI.

A 2D Omni Spray DESI imaging platform (Prosolia Inc., Indianapolis, IN) coupled to a Q-

Exactive (Thermo Fisher Scientific, San Jose, CA) in Brazil and an LTQ-Orbitrap Elite 

(Thermo Fisher Scientific, San Jose, CA) in the United States were used for tissue imaging. 

Lab-built sprayers were adapted to the commercial Omni Spray DESI imaging stages. DESI-

MSI was performed using the histologically compatible solvent system dimethylformamide/

acetonitrile (DMF/ACN) 1:1 (v/v) in negative-ion mode.35 Other experimental parameters 

for each center are described in Table 1. Ion images were assembled using Biomap and 

MSiReader software.36 For ion identification, high-mass-resolution and -accuracy 

measurements were conducted using CID and HCD methods, using the Orbitrap for 

analysis.

Statistical Analysis.

MS data corresponding to the areas of interest were extracted from the ion images using 

MSiReader software.36 After data preprocessing, logistic regression was performed with 

Lasso regularization using the glmnet package in the R language. Regularization parameters 

were determined by 5-fold cross-validation (CV) analysis. PCA was performed by centering 

the preprocessed data to mean zero and computing principal components using the prcomp 

function in R. To quantify tissue similarity, the cosine similarity method was used from the 

lsa package in CRAN. For more information, please see the Supporting Information.

RESULTS

Molecular Imaging of Breast Tissues by DESI-MSI.

DESI-MSI in negative-ion mode was performed on a total of 131 human-breast-tissue 

samples including 86 invasive ductal carcinomas (IDC) and 45 normal-breast-tissue samples 

obtained from 103 breast-cancer patients. IDC is the most common histologic subtype of 

breast cancer, accounting for approximately 80% of all invasive breast tumors. Because of 

its high incidence and relevance, only IDC tumors were used for our study. IDC tissue 

sections typically present regions of predominantly tumor cells neighboring adjacent stroma 

and adipose tissues. Figure 1A,C show a representative mass spectrum extracted from the 
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tumor region of an IDC sample, selected ion images, and optical images of the H&E-stained 

tissue section. The spatial resolution used for DESI-MSI (250 μm) enabled visualization of 

histologic features within the IDC tissues, allowing correlation between histology and 

molecular information. For example, the distribution of the ions corresponding to 

deprotonated PI(34:1), PI(36:1), and FA(20:4) spatially correlate with regions of IDC 

(outlined in red), whereas PI(38:4) was detected throughout the entire tissue section, 

including regions of adjacent normal stroma tissue (outlined in blue). A magnification of the 

optical image obtained from the H&E-stained tissue section shows an overlap between the 

spatial distribution of PI(36:1) and regions of IDC as well as a decrease in abundance of this 

ion within the surrounding normal stroma cells.

Normal breast tissues typically present stroma or adipose tissue surrounding focal regions of 

normal epithelial glands. Note that tissues classified as “normal” correspond to specimens 

deemed grossly normal at the time of specimen allocation and further confirmed by 

histopathologic evaluation. Normal samples were acquired from different breast regions 

depending on the patient, including contralateral breasts from bilateral mastectomies, tissues 

from breast-reduction surgeries for non-neoplastic purposes and from prophylactic 

mastectomies, and noncancerous regions adjacent to the tumor (for more information, please 

see the Supporting Information). Figure 1B,D shows a representative mass spectrum 

extracted from normal epithelial cells of a normal-tissue sample, selected ion images, and 

optical images of the H&E-stained tissue section. DESI-MSI allowed visualization of focal 

epithelial glands (outlined in green) within adjacent stroma, which spatially overlapped with 

regions of high relative abundances of PS(36:1) and PI(38:4), for example. Qualitatively, the 

mass spectra from normal epithelial glands and IDC tissues presented distinct molecular 

profiles. For example, lower relative abundances of the ion of m/z 863.563, attributed to 

PI(36:1), were observed in the mass spectra of normal epithelial glands when compared with 

those of IDC, whereas the relative abundances of the ion of m/z 771.516, PG(36:3), were 

higher in the mass spectra of normal epithelial glands. These results showcase the usefulness 

of DESI-MSI in spatially investigating the lipid profiles of IDC and normal-breast-cancer 

tissue sections, even within fine histological features.

DESI-MSI of Breast-Tissue Samples from Patients of Different Races.

Next, we evaluated whether the metabolite and lipid profiles obtained from breast tissues by 

DESI-MSI were consistent across patients of different races or ethnicities. Normal- and 

cancerous-tissue samples from a diverse patient population were obtained from collection 

sites in different countries, including 81 tissue samples from 53 patients from Brazil, 17 

tissue samples from 17 patients from the United States, 18 tissue samples from 18 patients 

from Europe, 7 tissue samples from 7 patients from Vietnam, as well as 8 tissue samples 

from Asia (specific country of origin unavailable, Figure 2A and Table S1). For racial 

classification, we grouped white Americans and white Hispanics into a single “White” 

group, and afro-Americans and afro-Hispanics into a single “Afro” group, resulting in three 

possible racial groups: White (99 tissue samples from 76 patients), Afro (16 tissue samples 

from 11 patients), and Asian (15 tissue samples from 15 patients).37 In the United States, all 

tissue samples were analyzed using standardized DESI-MSI experimental parameters. 

Figure 2B shows representative DESI mass spectra obtained from IDC-tissue samples from 
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an Afro patient from Brazil, a white patient from the United States, a white patient from 

Ukraine, and an Asian patient from Vietnam. Overall, consistent trends in the relative 

abundances of the molecular species (deprotonated molecules) were observed across the 

mass spectra. For example, the ion of m/z 281.249, attributed to FA(18:1), was detected at 

the highest relative abundance in comparison with other FA species. In the higher m/z range 

where complex lipids are detected, high relative abundances of the ions of m/z 835.533, 

PI(34:1); m/z 861.550, PI(36:2); m/z 863.563, PI(36:1); m/z 885.548, PI(38:4); and m/z 
887.564, PI(38:3), were seen across all mass spectra, although with some variations in their 

relative abundances. To evaluate the level of variance in the mass spectra from all the 

patients, we employed unsupervised PCA. No significant separation was observed in the 

score plots due to patient race based on the DESI mass spectra for cancerous (Figure 2C) 

and normal tissues (Figure S1A). Further, no significant separation was seen in the score 

plots due to country of collection based on the DESI mass spectra for cancerous (Figure 2D) 

and normal tissues (Figure S1B). These results suggest that the metabolite and lipid profiles 

obtained by DESI-MSI are characteristic of IDC and normal breast tissues across different 

patient races and are unrelated to sample-collection site.

Interlaboratory Assessment of the Reproducibility of DESI-MSI.

Assessment of interlaboratory reproducibility is essential to demonstrate the robustness of an 

analytical technology for a targeted application. We evaluated the interlaboratory 

reproducibility of DESI-MS for breast-cancer-tissue imaging by independently analyzing 

serial tissue sections of the same tissue sample in the United States and in Brazil, using 

similar experimental parameters (Table 1 and Figure S2). The mass spectra obtained in the 

United States and Brazil from the same region of the tissue sections showed similar patterns, 

with variations in the low-mass range from m/z 100–700 observed more clearly for the 

normal-tissue samples. Cosine similarity analyses were conducted to quantitatively evaluate 

similarity between the mass spectra obtained in Brazil and in the United States. As Table S2 

summarizes, a low cosine value of 0.51 was obtained when comparing the full mass spectra 

of the normal samples analyzed in Brazil with the normal samples analyzed in the United 

States. When the m/z range was restricted to m/z 700–1200, the cosine value increased to 

0.85, reflecting higher similarity at the higher m/z range. Further evaluation of the 

interlaboratory data revealed inconsistencies in the relative and total abundances of 

metabolites, FA, and background ions detected at the low m/z range. As the DESI ion 

images and mass spectra of Figure S2A show, higher relative abundances of ions attributed 

to ascorbic acid and FA(20:4) were detected in the tissue sections analyzed in the United 

States compared with in the adjacent tissue sections analyzed in Brazil. An unidentified 

background ion of m/z 415.140 was only observed in the data acquired in Brazil. Higher 

consistency in the relative and total ion abundances and spatial distribution was observed for 

the complex lipid region of the mass spectra (m/z > 700), where glycerophospholipids are 

commonly seen. The inconsistency in the ions detected at the low m/z range was not as 

pronounced for the data obtained from cancer regions of IDC samples (Figure S2B), which 

was also reflected in the similar cosine values obtained for the full m/z range (0.91) and the 

restricted m/z range (0.92).

Porcari et al. Page 6

Anal Chem. Author manuscript; available in PMC 2020 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Predictive Models of IDC Based on Lipid DESI-MSI Data.

To evaluate if the metabolite and lipid information obtained by DESI-MSI are predictive of 

breast cancer, we used the Lasso method to build a classification model for IDC.38,39 DESI-

mass-spectra data were extracted from areas within the ion images that presented 

predominantly IDC tumor or normal epithelial glands, yielding a total of 36 426 individual 

pixels per mass spectrum for all data acquired (United States and Brazil). The data was 

restricted to the high range of m/z 700–1200, which provided reproducible results as 

previously described. Next, 44 samples from 27 of the 53 Brazilian patients were randomly 

selected and excluded from the sample set with the goal of being used as an independent 

interlaboratory validation set in our study. The remaining 87 tissue samples were randomly 

divided into a training set and a validation set using a 75–25% split, respectively. The 

training set (45 IDC and 21 normal) yielded a total of 18 691 pixels (17 606 IDC and 1085 

normal, all acquired in the United States), which were used to build the classification model. 

Note that many of the normal-breast-tissue samples analyzed were predominantly composed 

of fat; therefore, the total number of pixels extracted from focal regions presenting epithelial 

cells were limited. The remaining set of samples (15 IDC and 6 normal) were later used as 

an independent intralaboratory validation set. Prediction results are presented as sensitivity, 

specificity, and overall agreement on a per-pixel and per-patient basis (Figure 3 and Table 

S3). For the training set, 97.6% sensitivity, 96.7% specificity, and 97.6% accuracy were 

achieved on a per-pixel basis for IDC diagnosis using 5-fold cross-validation (Figure 3A). 

For the per-patient analysis, just a single cancer-tissue sample was misclassified as normal 

tissue. A total of 44 predictive m/z values were selected for the classification model with 

assigned mathematical weights related to their importance in distinguishing between IDC 

and normal tissues (Table 2). For an extended discussion on the features selected, please see 

the Supporting Information.

Intra- and Interlaboratory Validation of the Predictive Power of the Lasso Classification 
Model.

We have also evaluated the robustness and performance of our classification model in 

predicting breast-cancer diagnosis from the DESI data (m/z 700–1200) acquired from 

independent sample sets analyzed in the United States (intralaboratory) and in Brazil 

(interlaboratory). Our model was first tested using the excluded test set analyzed in the 

United States (15 IDC and 6 normal), which yielded a total of 6385 pixels (6173 IDC and 

185 normal). Excellent performance was achieved: 99.1% sensitivity, 99.5% specificity, and 

99.2% accuracy per-pixel, as well as 100.0% sensitivity, specificity, and accuracy per-patient 

(Figure 3B). The classification model was then used to predict data acquired in Brazil for the 

excluded validation set of 44 tissue samples from 27 Brazilian patients, which yielded a total 

of 11 377 pixels (9290 IDC and 2087 normal). Remarkably, excellent performance was seen 

on a per-pixel basis for IDC diagnosis (Figure 3C): 94.7% sensitivity, 97.8% specificity, and 

95.3% accuracy. In the per-patient analysis, only a single cancer sample was misclassified as 

normal. These results suggest that a single Lasso model built from DESI-MSI data (m/z 
700–1200) can be used to classify intra- and interlaboratory data acquired under optimized 

conditions from independent sample sets. Further, the predictive complex lipids selected by 

the Lasso model are robust for breast-cancer diagnosis.
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Prediction of Breast-Cancer-Hormone-Receptor and HER2 Status.

Next, we investigated if the molecular information obtained by DESI-MSI enabled 

prediction of positive or negative status for ER, PR, combined hormone receptor (HR), and 

HER2 by building classification models for each class using IHC or FISH results as the gold 

standard. For the 77 IDC samples with ER status, 46 samples were ER+ (16 163 pixels), and 

31 samples were ER− (14 315 pixels). The classification model built to predict ER status 

achieved 86.1% sensitivity, 91.6% specificity, and 88.7% accuracy on a per-pixel basis 

(Figure 4). In the per-patient analysis, five ER+ tissue samples were misclassified as ER− 

tissues, and two ER− tissue samples were misclassified as ER+ tissues, resulting in 89.1% 

sensitivity, 93.5% specificity, and 90.9% accuracy. For PR status, the classification model 

built using 36 PR+ samples (12 700 pixels) and 41 PR− samples (17 720 pixels) yielded 

95.5% sensitivity, 84.3% specificity, and 89.0% accuracy on a per-pixel basis. In the per-

patient analysis, eight PR− tissue samples were misclassified as PR+ tissues. Samples were 

further combined into hormone-receptor (HR) positive (ER+ and PR+) and HR negative (ER

− and PR−) groups on the basis of the combined ER and PR status. The classification model 

built using 36 HR− samples (14 315 pixels) and 31 HR+ samples (12 700 pixels) yielded 

96.2% sensitivity, 95.2% specificity, and 95.7% accuracy on a per-pixel basis and 100.0% 

sensitivity, specificity, and accuracy on a per-patient basis. These accuracies are similar to 

the overall 96.0% accuracy achieved in the per-patient analysis (n = 27) for HR positive and 

negative statuses described by Guenther et al.21 and corroborate the PCA clustering 

observed for HR+ versus HR− samples (n = 14) by Calligaris et al.30 Next, we built a HER2 

classification model using 19 HER2+ samples (8536 pixels) and 48 HER2− samples (16 892 

pixels), but poor classification results were achieved (30.3% sensitivity, 37.2% specificity, 

and 34.9% accuracy on a per-pixel basis). Interestingly, no separation or discrimination 

achieved on the basis of the HER2 status was previously reported by Guenther et al. (n = 27) 

and Calligaris et al. (n = 14), which again corroborated our results.

DISCUSSION

We have performed a multicenter study using DESI-MSI to investigate the metabolic 

signatures of a diverse set of 131 breast-tissue samples from 103 breast-cancer patients from 

various countries, including the United States, Brazil, Ukraine, Vietnam, and others. DESI-

MSI enabled clear visualization of fine histologic features in breast tissues and thus a 

detailed investigation of metabolic profiles characteristic of breast cancer, normal breast 

glands, and adjacent stroma. Using tissue samples obtained from patients from various 

countries, we showed that DESI-MSI allows for the detection of lipid profiles that are 

characteristic of cancer tissue independent of patient race or ethnicity. These molecular 

profiles, when used to build classification models for cancer diagnosis, provided high 

sensitivity, specificity, and accuracy for both training and test sample sets using data 

acquired in the United States and revealed predictive lipid markers. Most notably, the 

molecular classifiers showed high performance for cancer diagnosis of an independent data 

set acquired in a laboratory in Brazil using standardized experimental conditions. Classifiers 

built to characterize PR and ER statuses in breast-cancer samples also showed high accuracy 

in determining hormone-receptor status. Altogether, our study provide strong evidence that 

DESI-MSI is a robust molecular technology able to provide rapid diagnosis and 
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characterization of breast tissues, with potential use in the clinical setting across different 

institutions.

Alterations in the abundances of FA and glycerophospholipids were detected in our study, 

which reflect known abnormalities in cancer-cell metabolism40 and breast-cancer tissue.
13,41,42 Fatty acid synthesis, for example, is highly relevant in breast-cancer-tumor biology 

because of the ability of these molecules to modulate the fluidity of lipid membranes and to 

affect cellular machinery.43 Several, single-center studies suggest that lipid MSI signatures 

are diagnostic of breast cancer.22,24,30 A MALDI-MSI study has reported higher relative 

abundances of monounsaturated FA, in comparison with those of polyunsaturated FA, in 

breast cancer than in adjacent normal tissues.22 Mao et al. also found FA(18:2) and FA(18:1) 

to be more abundant in cancer tissue when compared with in normal tissue analyzed by air-

flow-assisted ionization MSI,24 whereas Calligaris et al. also reported FA(18:1) as a DESI-

MSI discriminator for cancer detection and margin analysis.30 Similarly, we consistently 

noted high relative abundances of FA(18:1), at m/z 281.249, in breast-cancer tissues in our 

study and identified several glycerophospholipid ions as predictive markers of breast cancer, 

with increased relative abundance in malignant histologic regions of tissue sections. Also 

using MALDI-MSI, Toi et al. have previously reported altered relative abundances of PIs in 

malignant epithelial regions of breast-cancer tissues.23 In their study, PI(36:1), for example, 

was observed in high relative abundances in cancer tissues when compared with those in 

benign epithelial regions, whereas PI(38:3) was putatively associated with cancer-cell 

invasion. Similarly, high relative abundances of the PI(36:1) ion of m/z 863.563 as well as 

the PI(36:2) ion of m/z 861.549 were consistently observed in breast-cancer tissues in 

comparison with normal-tissue samples (Figure 1C); hence, PI(36:2) was selected and 

shown to be highly predictive of breast IDC tissue by the Lasso classification model. Lipid 

information acquired by DESI-MSI was also used by Guenther et al. to build classification 

models for breast-cancer diagnosis based on a subset of 19 predictive features, including 

various FA and glycerophospholipids, such as PE, PC, and PI.44 Within these, three 

glycerophospholipid species, PC(34:2), PC(34:1), and PI(38:3), were also selected as 

predictive markers by our classifier. Our study now confirms with comprehensive data that 

lipid profiles are robust diagnostic markers of breast cancer and that such markers are valid 

across different patient populations. Our PCA results also showed great similarity for the 

breast-IDC DESI-MS data regardless of race, further demonstrating the commonality of 

diagnostic lipid profiles. Future studies are needed to validate these findings on larger patient 

cohorts.

The main goal of our multicenter study was to evaluate the performance of the DESI-MSI 

workflow in producing reproducible data for breast-cancer diagnosis across institutions and 

operators. A few multicenter studies have been performed to evaluate the performance of 

proteomics analysis for breast-cancer diagnosis using traditional proteomics assays45 and 

MALDI-MSI.46 In the MALDI-MSI study, 40 breast-cancer tissues were analyzed in two 

centers in Europe (n = 12 in Munich, and n = 18 in Leiden) using independent sample sets, 

methods, and operators.46 Hierarchical clustering yielded 100 and 80.9% classification 

accuracies for discriminating extra-tumoral and intratumoral stromal profiles in the Munich 

and Leiden data sets, respectively. In our study, sample exchange among centers was 

implemented, and a standardized experimental workflow was adopted to ensure uniformity 
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in the analytical approach of DESI-MSI employed in the United States and Brazil, despite 

differences in the mass-spectrometer platforms and minor operational parameters. Our 

interlaboratory analysis using the same tissue samples analyzed in Brazil and the United 

States revealed high mass-spectra similarity in the high m/z region (m/z 700–1200) of the 

data for both normal (cosine similarity = 0.86) and cancerous (cosine similarity = 0.93) 

tissues, and moderate similarity in the relative abundances of low m/z ions (m/z < 400) was 

observed for normal breast tissue (cosine similarity = 0.48), despite high similarity in the 

low m/z region for cancerous tissue (cosine similarity = 0.91). The DESI mass spectra in the 

low m/z region is mostly composed of ions identified as background solvent peaks, small 

metabolites, and fatty acids. Whereas variations in chemical noise and background ions were 

anticipated across different mass spectrometers, differences in the relative abundances of 

biologically relevant ions such as FA were unexpected. We suggest that these differences 

could be due to small variations in the DESI spray-geometry parameters or the mass-

spectrometer S-lens ion-optics RF values, which may lead to more efficient desorption or 

transmission of ions. Further, these differences could be due to lipid degradation owing to 

possible variations in temperatures and freezing conditions during international sample 

shipment in dry ice, factors which have been associated with increases in FA abundance in 

DESI-mass-spectra profiles (for more information, please see the Supporting Information).47 

As normal breast tissue provides poorer molecular profiles than IDC, higher variance was 

observed in the low m/z range for normal breast tissues. Nevertheless, high reproducibility 

in the higher m/z range, in which glycerophospholipids and other complex lipid markers are 

detected, was seen for normal and cancerous tissues analyzed in the United States and 

Brazil. Lasso classifiers built using 44 predictive features detected at the restrictive m/z 
range provided outstanding performance in cross-validation both per-pixel (97.6% accuracy, 

n = 18 691) and per-patient (98.5% accuracy, n = 66). The classification models provided 

high accuracy in cancer diagnosis using an independent data set acquired in the United 

States (99.2% per-pixel accuracy, n = 6358) and, most remarkably, acquired in Brazil 

(95.3% per-pixel accuracy, n = 11 377). These results validate the predictive power of the 

lipid-ion markers and classification models built from DESI-MSI data for breast-cancer 

diagnosis and provides strong evidence that this technology is robust for breast-cancer 

diagnosis across centers and populations.

Determining ER, PR, and HER2 status is essential for identifying breast-cancer molecular 

subtypes to help guide treatment for patients. Previous studies have also suggested a 

relationship between lipid profiles and breast-cancer molecular subtypes.42 In our study, we 

further evaluated the ability of using the lipid data acquired by DESI-MSI in the United 

States to build predictive models for positive or negative statuses of HER2, PR, and ER 

separately, as well as combined HR. Per-patient accuracy of 90.9% was achieved for 

predicting positive or negative ER status (n = 77), whereas 89.6% per-patient accuracy was 

achieved for predicting positive or negative PR status (n = 77). When evaluating the 

combined HR status, we achieved 100% per-patient accuracy. Although prediction of 

combined HR status has been previously reported by DESI-MSI (accuracy of 86.7%, n = 

27), our results now indicate that the lipid information is also predictive of ER and PR status 

separately. When evaluating HER2 status, we found no relationship between lipid profiles 

detected by DESI-MSI and HER2 status (38.8% per-patient accuracy, n = 67), as was 
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previously found using DESI-MSI. This confusion could be due to intratumor heterogeneity 

of HER2-positive breast cancers,48,49 which may lead to variations in lipid metabolism 

within the cancer-tissue regions from which the mass spectra were extracted for statistical 

analysis. The use of FISH to determine HER2 status was also only employed when IHC 

results were “undetermined”, potentially leading to higher incidence of inaccurate HER2 

statuses.50 Further studies using IHC and FISH assays to investigate the spatial expression of 

HER2 in each tissue section correlated with lipid abundances will be performed to better 

investigate these observations. In addition, further studies using larger sample cohorts will 

be performed to investigate possible correlations between lipid profiles detected by DESI-

MS imaging and other patient and clinical characteristics, including breast-cancer molecular 

subtypes, stage, and treatment choice.

In conclusion, our study provides strong evidence that the lipid information acquired by 

DESI-MSI is highly accurate in predicting breast cancer as well as ER and PR status. Most 

importantly, our multicenter study has demonstrated that DESI-MSI is a robust, highly 

reproducible technology for rapid breast-cancer-tissue section diagnosis and may be useful 

in the clinical setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Negative-ion-mode DESI-MSI of IDC and normal breast tissues. (A) Representative profile 

for the IDC-tissue region. (B) Representative profile for the normal-breast-tissue region. (C) 

Representative ion images for the IDC-tissue sample and optical images of the H&E stained 

tissue section. (D) Representative ion images for the normal-tissue sample and optical 

images of the H&E stained tissue section. Tumor areas are outlined in red on H&E slides. 

Areas of red intensity within the ion images represent the highest (100%) relative 

abundances, whereas black represents the lowest (0%). PI: glycerophosphoinositol, PS: 

glycerophosphoserine, FA: fatty acid. Lipid species are described by the numbers of fatty 

acid chain carbons and double bonds.
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Figure 2. 
(A) DESI-MSI performed on a large cohort of human tissue samples collected from different 

countries and from patients of different races. (B) Similar negative-ion-mode DESI mass 

spectra were obtained for breast-IDC-tissue samples from patients of different races and 

collection sites. Projections of the 86 mass spectra from the breast-IDC-tissue samples onto 

the first three principal components (PC) do not separate patients by (C) race or (D) country 

of collection, as observed in the 3D PCA plots. The first three PCs explain 63.0% and 60.0% 

of the total variance of the full data set for race and country, respectively.
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Figure 3. 
Classification per-pixel and per-patient prediction results for normal and IDC samples 

including sensitivity, specificity, and overall accuracy in (A) cross-validation performed with 

data acquired in the United States, (B) test set with data acquired in the United States, and 

(C) test set with data acquired in Brazil.
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Figure 4. 
Per-pixel and per-patient sensitivity, specificity, and overall accuracy of the prediction results 

for positive or negative (A) ER, (B) PR, (C) HR, and (D) HER2 statuses. Prediction results 

were obtained using a 5-fold CV approach.
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Table 1.

Summary of the Main Experimental Parameters Used in the United States and Brazil DESI-MSI Experiments

United States Brazil

mass spectrometer LTQ-Orbitrap Elite Q-Exactive Hybrid Quadrupole-Orbitrap

S-lens RF value 60 100

resolving power (at m/z 400) 60 000 70 000

m/z range 100–1500 100–1200

DESI solvent ACN/DMF (1:1) ACN/DMF (1:1)

DESI gas pressure 180 psi 150 psi

DESI flow rate 1.5 μL/mL 0.7–1.2 μL/mL

spatial resolution 250 μm 200 μm
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