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Abstract
Among patients with Coronavirus disease (COVID-19), the ability to identify patients at risk for deterioration during their 
hospital stay is essential for effective patient allocation and management. To predict patient risk for critical COVID-19 
based on status at admission using machine-learning models. Retrospective study based on a database of tertiary medical 
center with designated departments for patients with COVID-19. Patients with severe COVID-19 at admission, based on low 
oxygen saturation, low partial arterial oxygen pressure, were excluded. The primary outcome was risk for critical disease, 
defined as mechanical ventilation, multi-organ failure, admission to the ICU, and/or death. Three different machine-learning 
models were used to predict patient deterioration and compared to currently suggested predictors and to the APACHEII risk-
prediction score. Among 6995 patients evaluated, 162 were hospitalized with non-severe COVID-19, of them, 25 (15.4%) 
patients deteriorated to critical COVID-19. Machine-learning models outperformed the all other parameters, including the 
APACHE II score (ROC AUC of 0.92 vs. 0.79, respectively), reaching 88.0% sensitivity, 92.7% specificity and 92.0% accu-
racy in predicting critical COVID-19. The most contributory variables to the models were APACHE II score, white blood 
cell count, time from symptoms to admission, oxygen saturation and blood lymphocytes count. Machine-learning models 
demonstrated high efficacy in predicting critical COVID-19 compared to the most efficacious tools available. Hence, artificial 
intelligence may be applied for accurate risk prediction of patients with COVID-19, to optimize patients triage and in-hospital 
allocation, better prioritization of medical resources and improved overall management of the COVID-19 pandemic.
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Introduction

In December 2019, a novel pathogen emerged in China, 
spreading rapidly around the globe, to the point, where by 
March 2020, the World Health Organization (WHO) has 
declared the novel coronavirus (COVID-19) outbreak a 
global pandemic [1]. The clinical presentation of infection 

by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) ranged between asymptomatic infection, mild symp-
toms and critical disease, defined by respiratory and/or 
multi-organ failure and death [2–5].

The pandemic challenged healthcare systems world-
wide, which confronted overwhelming burden of patients 
with COVID-19, emphasizing the critical role of effective 
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patient’s triage, to allow adequate clinical care for those 
deteriorating to critical COVID-19 [6–8]. In the absence 
of effective triage, medical system insufficiency required 
national reinforcement actions in several instances [9], 
emphasizing the need for effective risk-prediction tools that 
are essential for viable healthcare system [10].

While identifying severe patients at their acute phase is 
clinically trivial, early identification of those at risk to dete-
riorate, and those with very low risk for critical disease, are 
the measures required for efficient triage. Only few baseline 
parameters were associated with poor COVID-19 outcome 
[11], including older age [12] and the presence of comorbid-
ities [13, 14]. Other factors suggested had peak/nadir value 
at the severe disease phase, and not at baseline, and included 
hypoxia, thrombocytopenia [15], coagulation abnormalities 
(prolonged prothrombin time, high d-dimer levels [16, 17]), 
liver injury [18, 19], cellular (neutrophilia, lymphopenia) 
and cytokine-based immune-related parameters (increased 
interleukins six, eight and ten levels) [20] that led to assess-
ment of interleukin-6 as a target for molecular inhibition 
[21], and high disease-severity scores [22].

Machine-learning (ML) algorithms enable assessment of 
the relations between input and output of complex processes. 
In the context of risk stratification, ML models generate bet-
ter performance than traditional prediction models [23, 24], 
owing to their ability to reveal nonlinear associations, supe-
rior optimization of multi-factorial algorithms and built-in 
methodologies for model validation [25, 26]. The application 
of different ML models in feature selection and classifica-
tion of multidimensional heterogeneous data, can provide 
promising tools for inference in medical practice [27] and 
was suggested for trend prediction [28] and risk stratification 
of patients with COVID-19 [29].

The need for efficient triage facing the COVID-19 pan-
demic, forces us to seek in our toolbox for the optimal pre-
diction tool in our possession. Therefore, the aim of this 
study is to test the capabilities of ML models for the triage of 
patients with COVID-19, by predicting their risk for critical 
COVID-19 based on baseline clinical parameters.

Methods

Population, patient selection, inclusion, 
and exclusion criteria

This was a retrospective study, including all patients admit-
ted to COVID-19 designated departments in a single ter-
tiary medical center between March 8 and April 5, 2020. 
Patients included had confirmed COVID-19 infection 
based on reverse-transcriptase polymerase chain reaction 
(RT-PCR) for the SARS-CoV-2 ribonucleic acid (RNA). 
All patients were evaluated at the Sheba MC Department 

for Emergency Medicine, and underwent routine baseline 
evaluation, including recording of medical history, current 
complaints, measurement of vital signs, baseline testing for 
blood count, kidney and liver function tests, and inflamma-
tory markers.

Severe disease was defined by meeting one or more of 
the following criteria [30]: Respiratory rate ≥ 30 breaths/
min, arterial oxygen saturation ≤ 93% at room air, and PaO2/
FiO2 ≤ 300. Critical patients were defined according to the 
following criteria: respiratory failure necessitating mechani-
cal ventilation, hospitalization in ICU multi-organ failure 
and/or death [31]. Patients with severe disease at presenta-
tion were excluded to allow unbiased analysis, for predicting 
deterioration in patients during their hospitalization.

Machine learning models

In order to predict deterioration, we used three different 
machine-learning algorithms [32]: Neural Network, Ran-
dom Forest [33], and Classification and Regression Decision 
Tree (CRT). Performances of the testing samples from each 
model are reported by mean, sensitivity, specificity, positive 
predictive value and accuracy. Receiver operator character-
istic (ROC) curves were plotted, and mean area under the 
curve (AUC) calculated for each ROC plot.

Artificial neural network

Artificial neural network (ANN) was built using SPSS 25 
interface, using hyperbolic tangent activation function for 
the hidden layer and Softmax activation function with cross-
entropy error function for the output layer. The network com-
prised an input layer including 16 normalized variables (14 
covariate and two factors), one hidden layer and an output 
layer. The network batch-trained over approximately 70% of 
the samples using scaled conjugate gradient as the optimiza-
tion algorithm and tested on the remaining 30%. The model 
was validated using tenfold cross-validation method (train-
ing/test sample ratio: 70/30% × 10). In other words, 70% of 
all cases were randomly assigned to the training phase, and 
the remaining 30% to the test phase, the diagnostic ability 
was measured, and this procedure recurred for ten times.

Random forest classification

Random forest classification (RF) model was built using 
Java-based statistical processor (JASP) platform [34], and 
was composed of an ensemble 42 randomized decision trees. 
RF uses two powerful tools: The first is bagging, in which 
each decision tree in the forest is trained on a bootstrap sam-
ple of the training data (50% bootstrap samples in our analy-
sis). The second tool is random feature selection, in which 
RF randomly selects subset of features for decision rules at 
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each node (20% holdout test data in the current analysis). 
The cases not used for training [out-of-bag (OOB) samples] 
were used for cross-validation and optimization, with mean 
probability score per tree used for computing the model pre-
dictive ability.

Classification and regression tree

Classification and regression (CRT) decision tree model was 
built on SPSS 25 interface, using the CRT iterative classifi-
cation method for automatic feature selection and predicting 
the target variable by splitting rules to classify the popula-
tion into homogenous classes. The model used Gini impu-
rity measure to test the gain of each split and automatically 
selection of continuous variable optimal cutoffs. Tenfold 
cross-validation was used for model testing and validation.

Statistical analysis

Data analysis was performed using SPSS version 25 
(Armonk, NY) software [35] with two-sided significance 
level of α = 0.05. Descriptive statistics are presented using 
prevalence and percentage values for categorical variables, 
while continuous variables are presented with means and 
standard deviation, skewed distributed variables are pre-
sented by median and range. Group comparisons were tested 
using Student’s t test for continuous normally distributed 
variables, and the Mann–Whitney U test for non-parametric 

comparisons. Categorical comparisons were tested using the 
χ2 test or the Fisher’s exact test, as appropriate.

ROC analysis was used to evaluate the associations of 
different variables with critical COVID-19 infections by cal-
culating the ROC AUC. Cutoffs for optimal prediction were 
selected using Youden index and variables performance 
parameters were computed, including sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV) and accuracy. Comparison of the prediction ability 
was performed based on the above measures and the balance 
accuracy measures, such as F1 score 

(
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Results

A total of 6995 patients were evaluated at Sheba Medical 
Center during the study period. Of those, 175 confirmed 
COVID-19 patients were hospitalized to COVID-19 des-
ignated departments, 13 patients were excluded due to 
tracheal intubation in the emergency ward or direct hospi-
talization in the ICU. Thus, 162 patients were included in 
the current analysis (Fig. 1), with a mean age at admission 
of 60.4 ± 16.3 years (range 21–95) and male gender pre-
dominance (n = 107, 66.0%) and with 84.0% comorbidities 
prevalence. The median length of stay was six days, after 
the exclusion of patients mechanically ventilated, who were 

Fig. 1   Patients flow chart for inclusion and outcome. RR, respiratory rate; PaO2 arterial oxygen partial pressure; FiO2 fraction of inspiration oxy-
gen; ICU intensive care unit
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still hospitalized at the end of the study period. Patient’s 
characteristics are depicted in (Table 1).

Twenty-nine patients (17.9%) developed severe disease, 
including 25 (15.4%) patients that were classified as critical, 
22 of them (13.6%) required mechanical ventilation during 
their hospital stay. Of the eight (4.9%) patients that died of 
COVID-19, five were mechanically ventilated due to respira-
tory failure. The median time for intubation or death among 
the critical COVID-19 group was six days (range 2–14).

Comparison between patients with critical vs. 
non‑critical COVID‑19

This comparison was conducted to examine the differ-
ence of risk factors that were tested at the time of severe 
diseases, whereas here, they are tested by their status at 
admission. In terms of demographic and baseline medi-
cal background, patients with critical vs. non-critical 

COVID-19 were more often diagnosed with chronic 
obstructive pulmonary disease (COPD, 12.0% vs. 1.5%, 
p = 0.027), had trend towards older age at diagnosis 
(65.5 ± 16.9 vs. 59.4 ± 16.0, p = 0.077), had more comor-
bidities (96.0% vs. 81.8%, p = 0.08) and comparable gen-
der distribution (p = 0.25) and body mass index (p = 0.85).

Analysis of the initial evaluation in the emergency ward 
revealed several differences between patients that even-
tually developed vs. not-developed critical COVID-19: 
higher respiratory rate (23.6 ± 7.8 vs. 19.1 ± 4.9 per min, 
p = 0.003), lower room-air oxygen saturation (90.4 ± 4.8 
vs. 94.9 ± 4.8 percent, p < 0.0001), higher white blood 
cells count (9.4 vs. 6.2 K/mcL, p = 0.025), absolute neu-
trophil counts (6.6 vs. 4.6 K/mcL, p = 0.024), C-reactive 
protein levels (CRP, 121.9 vs. 75.5  mg/L, p = 0.013), 
aspartate transferase levels (AST, 60.6 vs. 41.4 units/L, 
p = 0.002), lactate dehydrogenase levels (LDH levels, 

Table 1   Patients demographics, clinical data and comparison of the Critical COVID-19 infection group vs. the non-critical group

The significant values are bold as required
HTN hypertension; OSA obstructive sleep apnea; IHD ischemic heart disease; COPD chronic obstructive pulmonary disease; MAP mean arterial 
pressure; RR respiratory rate; SOFA sequential organ failure assessment; APACHE Acute Physiology And Chronic Health Evaluation II; LOS 
length of stay
* excluding the patients still admitted during the follow up period

Variable All sample n = 162 Noncritical n = 137 Critical n = 25 p value
Average/n Average/n Average/n

Gender (male) n (%) 107 (66.0%) 88 (64.2%) 19 (76.0%) 0.25
Age (years) mean (SD) 60.35 (16.3) 59.4 (16) 65.5 (16.9) 0.077
BMI mean (SD) 28.73 (5.1) 28.8 (5.4) 28.6 (3.4) 0.845
Comorbidity n (%)
 Presence 136 (84.0%) 112 (81.8%) 24 (96.0%) 0.08
 HTN 63 (38.9%) 49 (35.8%) 14 (56.0%) 0.056
 Obesity 23 (14.2%) 16 (11.7%) 7 (28.0%) 0.055
 OSA 9 (5.6%) 7 (5.1%) 2 (8.0%) 0.63
 Heavy smoking 21 (13.0%) 17 (12.4%) 4 (16.0%) 0.75
 IHD 17 (10.5%) 13 (9.5%) 4 (16.0%) 0.303
 Diabetes 43 (26.5%) 33 (24.1%) 10 (40.0%) 0.098
 COPD 5 (3.1%) 2 (1.5%) 3 (12.0%) 0.027
 Asthma 12 (7.4%) 11 (8.0%) 1 (4.0%) 0.694

Vital signs mean (SD)
 Fever (c) 37.63 (0.9) 37.57 (0.8) 37.9 (1.1) 0.081
 MAP 93.99 (10.6) 94.1 (10.4) 93.4 (11.7) 0.687
 Pulse (bpm) 93.93 (15.3) 93.1 (14.5) 98.6 (18.5) 0.148
 RR 19.96 (5.8) 19.1 (4.9) 23.6 (7.8) 0.003
 Saturation (%) 94.18 (4.1) 94.9 (4.8) 90.4 (4.8)  < 0.0001
 SOFA score median (range) 0 (0–5) 0 (0–5) 0 (1–3) 0.43
 APACHE II score median (range) 7 (0–18) 6 (0–12) 10 (2–18)  < 0.0001
 Verified exposure n (%) 47 (29.0%) 39 (28.7%) 8 (32%) 0.737
 LOS median (range), days* 6 (1–42) 5 (1–36) 12 (1–42) 0.016
 Time from symptoms median (range), days 6 (0–21) 7 (0–21) 4 (0–11) 0.11
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436.6 vs. 327.3 units/L, p < 0.0001) and lower albumin 
levels (3.6 vs. 3.9, g/dL, p = 0.002), respectively (Table 2).

Single variables prediction ability for critical 
infections

When analyzing the diagnostic ability of each single param-
eter using ROC analysis, the best single predictor was oxy-
gen saturation at ambient air, with AUC of 0.787 (p < 0.001), 
93.5% cutoff was identified (Youden index) for classifying 
critical infection group with 80.0% sensitivity, 75.0% speci-
ficity, 37.0% positive predictive value (PPV), 95.3% negative 
predictive value (NPV) and 75.8% accuracy with F1 score of 
0.51. Performance indices for all single variants are depicted 
in (Table 3).

Combining variables into the APACHE II weighted 
score yielded better performance indices than either of the 
other variables separately, with an AUC of 0.789, 68.0% 
sensitivity, 81.0% specificity, 39.5% PPV, 93.3% NPV and 
79.0% accuracy, improving accuracy only by 3.2%. Other 
risk scores, such as the Sequential Organ Failure Assess-
ment (SOFA) score and the National Early Warning Score 
2 (NEWS2), that fell behind with AUC of 0.544 and 0.511, 
respectively.

ML models

To increase the prediction ability, we evaluated the predic-
tive ability of various ML models. Artificial Neural Network 
model (ANN) had the advantage of tenfold cross-validation 

Table 2   Lab works comparison 
of the Critical COVID-19 
infection group vs. the non-
critical group

The significant values are bold as required
WBC white blood count; HGB hemoglobin; HCT hematocrit; PLT platelets; PT prothrombin time; INR 
international normalized ratio; AST Aspartate transaminase; ALT Alanine transaminase; LDH lactate dehy-
drogenase; CPK creatinine phosphokinase; CRP C-reactive protein

Variable All sample n = 162 Non-critical n = 137 Critical n = 25 p value
Average/n Average/n Average/n

Blood count mean (SD)
 WBC (K/mcL) 6.68 (3.8) 6.15 (2.5) 9.4 (7) 0.025
 HGB (g/dl) 13.4 (1.6) 13.45 (1.5) 13.16 (2.3) 0.687
 HCT (%) 40.3 (4.7) 40.38 (4.2) 39.93 (6.8) 0.987
 PLT (K/mcL) 200.1 (85.5) 195.65 (80.9) 223.4 (105.1) 0.177
 Neutrophils (K/mcL) 4.91 (2.9) 4.59 (2.4) 6.59 (4.3) 0.024
 Lymphocyte (K/mcL) 1.18 (2.3) 0.99 (0.5) 2.14 (5.5) 0.226

Coagulations mean (SD) (missing data)
 PT (sec) (n = 84) 82.96 (18.3) 82 (19.4) 86 (14.1) 0.468
 INR (n = 84) 1.12 (0.2) 1.12 (0.2) 1.1 (0.1) 0.567
 Fibrinogen (mg/dl) (n = 39) 520.8 (232.1) 498.4 (243.9) 556.7 (215.1) 0.47
 d-dimer (ng/ml) (n = 52) 2799.8 (8250.9) 1709.1 (2221.9) 5045.3 (14,090.7) 0.53

Chemistry mean (SD)
 Creatinine (mg/dl) 0.97 (0.5) 0.95 (0.5) 1.1 (0.4) 0.078
 Sodium (meq/l) 135.08 (4.2) 135.53 (4) 132.7 (4.4)  < 0.0001
 Potassium (meq/l) 4.25 (0.5) 4.25 (0.44) 4.27 (0.7) 0.515
 Bilirubin (mg/dl) 0.61 (0.3) 0.61 (0.24) 0.62 (0.32) 0.78
 AST (IU/l) 44.47 (29.7) 41.36 (26.2) 60.56 (40.3) 0.002
 ALT (IU/l) 33.14 (29.5) 32.93 (31.2) 34.24 (19.3) 0.398
 LDH (IU/l) 344.55 (135) 327.3 (129.6) 436.6 (128.1)  < 0.0001
 Albumin (g/dl) 3.87 (0.5) 3.92 (0.44) 3.61 (0.57) 0.002
 CPK (IU/l) 372 (1590) 188.6 (332.8) 1173.2 (3583.6) 0.021
 CRP (mg/l) 83.2 (71.4) 75.53 (64.5) 121.85 (91.2) 0.013
 Ferritin (ng/ml) (n = 75) 696.2 (1444) 576.1 (544.1) 1105.8 (2892.3) 0.294

Venous blood gas test mean (SD) (missing data)
 pH (n = 78) 7.38 (0.08) 7.38 (0.06) 7.36 (0.12) 0.693
 PCO2 (n = 79) 42.5 (7.6) 42.55 (7.2) 42.4 (8.6) 0.925
 PO2 (n = 64) 34.7 (19.6) 32.5 (15.2) 42.8 (29.9) 0.431
 Lactate (n = 76) 20.9 (7.4) 21.02 (7.1) 20.55 (8.5) 0.5
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to increase its external validity, with limited sensitivity on 
the other hand, and indeed demonstrated accuracy improve-
ment of 11.0% from the APACHE II score with sensitivity, 
specificity, PPV, NPV and accuracy of 59.0%, 96.3%, 74.6%, 
92.8% and 90.5%, respectively, reaching ROC AUC of 0.92.

Random Forest (RF) classification achieved accuracy 
improvement of 12.0% from the APACHE II score with 
sensitivity, specificity, PPV, NPV and accuracy of 75.0%, 
95.8%, 75.0%, 95.8% and 92.9%, respectively, with a ROC 
AUC of 0.93.

Finally, Classification and Regression Tree (CRT) model 
reached sensitivity, specificity, PPV, NPV and accuracy 
of 88.0%, 92.7%, 68.8%, 97.7% and 92.0%, respectively, 
with ROC AUC of 0.90. Model comparison is presented 
in Fig. 2a.

Since the various models used automatic feature selec-
tion, delving into the models enabled assessment of vari-
ables importance. Based on the RFC model, the contributory 
variables were APACHE II score, white blood cell count, the 
time from symptoms to admission and oxygen saturation, 

while in the ANN model, blood lymphocyte count was more 
contributory than oxygen saturation (Fig. 2b).

Discussion

In the current analysis, we aimed to assess the utility of 
machine-learning algorithms for predicting outcome 
of patients with non-critical COVID-19 based on clini-
cal parameters on admission. We found clear difference 
between patients who developed later critical vs. non-critical 
COVID-19, mainly in vital signs (respiratory rate and room-
air oxygen saturation) and inflammation markers (blood 
WBC, neutrophil counts and CRP) and in the APACHE II 
score that combines these makers. However, our analysis 
demonstrates that machine-learning algorithms amplify 
the diagnostic accuracy and the discriminative efficacy of 
these markers, maximizing their use for predicting the risk 
of patients with COVID-19 to develop severe disease during 
the disease course.

Table 3   Single variable prediction ability for critical infection using ROC analysis

The significant values are bold as required
APACHE Acute Physiology And Chronic Health Evaluation II; LDH  (IU/l) lactate dehydrogenase; RR respiratory rate; AST  (IU/l) Aspartate 
transaminase; CPK (IU/l), creatinine phosphokinase; CRP C-reactive protein; WBC (K/mcL), white blood count; PLT (K/mcL), platelets; ALT 
(IU/l), Alanine transaminase; SOFA sequential organ failure assessment; HCT (%), hematocrit; HGB (g/dl) hemoglobin

variable AUC​ P CI Cutoff Sen (%) Spec (%) PPV (%) NPV (%) ACC (%) F MCC

APACHE II 0.789  < 0.001 (0.69–0.89) 8.5 68 81 39.5 93.3 79 0.5 0.4
Saturation 0.787  < 0.001 (0.68–0.89) 93.5 80 75 37 95.3 75.8 0.51 0.42
LDH 0.745  < 0.001 (0.65–0.84) 349.5 75 62.5 27.3 93 64.5 0.4 0.28
RR 0.72 0.004 (0.59–0.86) 19.5 83.3 59.5 31.9 94 63.9 0.46 0.33
Sodium 0.72  < 0.001 (0.61–0.83) 134.5 76 66.4 30.2 93.5 67.9 0.43 0.32
Albumin 0.694 0.002 (0.56–0.83) 3.55 64 84.8 45.7 92.2 81.3 0.53 0.43
AST 0.691 0.003 (0.59–0.79) 40.5 72 60.5 26.1 91.8 62.3 0.38 0.24
CPK 0.67 0.021 (0.52–0.82) 290.5 47.4 88 47.4 88 80.4 0.47 0.35
CRP 0.657 0.013 (0.53–0.78) 83.9 68 64.3 27.4 91 64.9 0.39 0.24
Neutrophils 0.643 0.024 (0.5–0.79) 5.06 64 71 29.6 91.2 69.9 0.41 0.27
WBC 0.642 0.025 (0.49–0.79) 6.93 64 76.3 34 91.7 74.4 0.44 0.32
Age 0.611 0.077 (0.48–0.74) 63.85 64 59.1 22.2 90 59.9 0.33 0.17
Creatinine 0.611 0.078 (0.5–0.72) 0.78 88 37.4 21.2 94.2 45.5 0.34 0.2
Fever 0.61 0.082 (0.48–0.74) 38.35 36 86.1 32.1 88.1 78.4 0.34 0.21
Pulse 0.591 0.148 (0.46–0.72) 103 40 78.8 25.6 87.8 72.8 0.31 0.16
PLT 0.585 0.18 (0.45–0.73) 216 56 72.5 28 89.6 69.9 0.37 0.22
Lymphocyte 0.576 0.23 (0.45–0.7) 0.68 84 32.8 19.3 91.5 41 0.31 0.13
ALT 0.553 0.39 (0.43–0.67) 19.5 88 30.2 19.6 92.9 39.6 0.32 0.15
SOFA 0.544 0.48 (0.43–0.66) 0.5 56% 55.5 18.7 87.4 55.6 0.28 0.08
Potassium 0.54 0.52 (0.41–0.67) 3.95 40 73.3 22.2 86.5 67.9 0.29 0.11
Bilirubin 0.518 0.78 (0.39–0.65) 0.53 52 60.9 20.6 86.7 59.5 0.3 0.1
HCT 0.5 0.99 (0.37–0.64) 44.17 24 85.5 24 85.5 75.6 0.24 0.09
HGB 0.475 0.69 (0.34–0.61) 14.95 24 86.3 25 85.6 76.3 0.24 0.1
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The novelty of our study lies in the fact that these dif-
ferent trends were already available at admission, 6 days 
(median) before the patients developed severe COVID-
19, enabling early-on identification of patients at risk, and 
adjusting their management and in-hospital allocation. 
To accurately identify predictors for disease outcome in 
patients with COVID-19, we assessed clinical, hematologi-
cal and biochemical parameters at admission and not at the 
advanced/severe phase of the disease and excluded patients 
with severe disease at presentation. Hence, if validated, these 

factors could be utilized for predicting the risk for patients’ 
clinical deterioration during their hospital stay and may 
assist in the decision-making of the triaging physicians.

Our methodology differs our analysis from previous 
studies [36–38] and may explain the absence of platelet 
count [15] or d-dimer levels [16] as predictors, as these 
may only develop in a latter disease stage. In addition, 
our results differ from previous reports in the association 
of age and hypertension with severe COVID-19. This gap 
may stem from the selection of patients that were admitted 

Fig. 2   Prediction abilities and features of the different models. Radar 
plot of predication abilities for critical patients (a) and feature selec-
tion output—importance to the model in percentage (b), ANN arti-
ficial neural network; AUC​ area under the curve; PPV positive pre-

dictive value; NPV negative predictive value, WBC white blood 
cell; LDH lactate dehydrogenase; AST aspartate transaminase; CRP 
C-reactive protein; HCT hematocrit
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rather than population-based analysis or by more accurate 
delineation of predictors for COVID-19 using machine-
learning analysis.

Machine-learning models provide the advantage of 
learning non-linear relations between the input and the 
output, allowing inclusion of heterogeneous variable 
types in one model, which is not feasible in univariate 
or multivariable analysis or risk-score prediction models. 
The poor-outcome predictors suggested for COVID-19 
patients include age, comorbidity and different laboratory 
abnormalities, when testing a recent death prediction ML 
model [39], based on LDH, CRP and lymphocytes, that 
model fall behind with death prediction accuracy of 73.8% 
and critical prediction accuracy of only 67.9%. Our study 
demonstrates the superiority of ML models that provided 
improved prediction, high NPV and high accuracy, com-
pared to those currently available.

In its peak, the COVID emergency department inquiries 
go beyond the ICU capacity, forcing us to seek for the best 
tool identifying the high-risk patients. ML models outper-
formed the previously presented methods and enable us 
with a “state-of-the-art” tool to utilize during emergency 
department triage to anticipate disease progression for 
the best placement on the one hand, and perhaps a more 
aggressive treatment regimen on the other hand.

A learning model is only going to be as good as the 
input data inserted in the model. Hence, other reliable fac-
tors need to be tested to maximize the prediction ability 
of the models. Although the models were built using dif-
ferent validation processes, such as nested data split and 
tenfold cross-validation, to increase its validity, the model 
needs to undergo prospective validation process to verify 
the results before application of the model.

This study has some limitations. First, its retrospective 
single-center methodology decreases its external valid-
ity, especially considering the high COVID-19 variability 
between different countries and populations. Second, this 
study has small number of patients with severe disease, 
challenging the statistical power. Third, the AI models’ 
diagnostic performance was tested vs. best univariate/
risk-score predictors, as no other baseline prediction tools 
were previously reported. Hence, prospective validation is 
required for enabling the clinical implementation of our 
results.

In conclusion, artificial intelligence decision-supporting 
tools may serve as the “silver bullet” in the triage of con-
firmed COVID-19 patients, to optimize patients’ allocation 
and personalize the surveillance and care based on the 
different disease course predicted for each patient. Further 
validation is required to enable clinical implementation of 
our findings.
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