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Background and objective: One of the main goals of epidemiological studies is to build models capable 

of forecasting the prevalence of a contagious disease, in order to propose public health policies for com- 

bating its propagation. Here, the aim is to evaluate the influence of immune individuals in the processes 

of contagion and recovery from varicella. This influence is usually neglected. 

Methods: An epidemic model based on probabilistic cellular automaton is introduced. By using a genetic 

algorithm, the values of three parameters of this model are determined from data of prevalence of vari- 

cella in Belgium and Italy, in a pre-vaccination period. 

Results: This methodology can predict the varicella prevalence (with average relative error of 2% − 4% ) in 

these two European countries. Belgium data can be explained by ignoring the role of immune individuals 

in the infection propagation; however, Italy data can be explained by considering contagion exclusively 

mediated by immune individuals. 

Conclusions: The role of immune individuals should be accurately delineated in investigations on the 

dynamics of disease propagation. In addition, the proposed methodology can be adapted for evaluating, 

for instance, the role of asymptomatic carriers in the novel coronavirus spread. 

© 2020 Elsevier B.V. All rights reserved. 

1

 

a  

i  

o  

o  

T  

s

 

n  

e  

i  

w  

c  

P

d

i  

i  

i  

c  

i  

o

 

d  

a  

t  

o

 

w  

o  

e  

h

0

. Introduction 

In epidemiological studies based on mathematical models, an

ccurate estimation of the model parameters is crucial for design-

ng effective control strategies. The role of immune individuals is

ften neglected in these studies; that is, immune individuals are

ften disregarded in the transmission and healing processes [1] .

he main goal of this work is to examine the validity of this as-

umption. 

Suppose that recovery from an infection confers lifelong immu-

ity. A typical example is varicella (chickenpox), a contagious dis-

ase transmitted through social contacts [2] . This disease primarily

nfects children. Usually, immune adults take care of sick children,

ithout the risk of getting infected again. Also, the meeting of sus-

eptible and infected children is partially promoted by these same
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mmune adults, because children usually go to schools, parks, clubs

n the company of them. In this scenario, immune individuals can

ncrease the contagion rate of susceptible individuals and can de-

rease the convalescence period of infected individuals. Therefore,

t is reasonable to conjecture that immune individuals play antag-

nistic roles in the spread of this infection. 

The propagation of contagious diseases, in which immune in-

ividuals influence the contagion and recovery rates, was already

nalytically investigated from a model written as a set of differen-

ial equations [3] . Here, an equivalent model formulated in terms

f cellular automaton [4] (CA) is proposed to analyze this issue. 

Genetic algorithm (GA) is an optimization metaheuristics in

hich chromosomes, the candidate-solutions for the to-be-solved

ptimization problem, evolve by applying operators of crossover,

litism, mutation, and selection [5] . It is expected that some of

hese chromosomes represent near-optimal solutions after some

enerations. GA has been used for estimating parameters of models

ased on CA in epidemiological studies [6] and in other contexts

7–9] . 
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Fig. 1. Time evolutions of the percentages of S -individuals (solid line), I -individuals 

(dotted line), and R -individuals (dash-dotted line) from an initial condition with 

99% of S -individuals and 1% of I -individuals (and, obviously, 0% of R -individuals), 

obtained from a numerical simulation of the CA model with n = 500 , m = 8 , r = 

192 , k = 0 . 2 , q = 0 . 1 , p = 0 . 1 , P 3 = 0 . 5 , P 5 = 0 . 2 , and P 6 = 0 . 2 . The systems reaches 

an endemic steady-state given by S ∗ = 0 . 31 , I ∗ = 0 . 18 , and R ∗ = 0 . 51 . 
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The parameter identification of epidemic models can be con-

sidered an inverse problem, which has been solved by employing

distinct computational techniques [10–12] . Here, GA is employed

to determine the values of three parameters of the proposed epi-

demic model based on CA. This parameter identification is per-

formed on data of prevalence of varicella in Belgium and Italy,

around the year 20 0 0. The values found for these parameters sup-

ports a discussion on the mentioned conjecture. 

This manuscript is organized as follow. In Section 2 , the epi-

demic model based on CA and the GA employed in its parame-

ter identification are introduced. In Section 3 , the numerical results

are presented. In Section 4 , the possible relevance of this study is

stressed. 

2. Methods: CA and GA 

CA has been used in works on computational epidemiology

[13–22] . Let a CA be represented by a two-dimensional lattice with

n × n cells. To avoid edge effects, the boundary conditions are

taken as periodic (that is, the top and bottom edges are connected

and the left and right edges are also connected; thus, the lattice

has a toroidal shape). Here, each cell of the CA lattice corresponds

to an individual of the host population, which may be infected

by a pathogen. At each time step t , from each cell, m undirected

links start and they end in other cells inside a Moore neighbor-

hood with radius r (thus, m undirected links start from each cell

to others pertaining to the square matrix of size 2 r + 1 centered

in such a cell). Let q i,r = 2(r + 1 − i ) / [ r(r + 1)] be the probability

of a cell contacting any other in the i -th layer, with i = 1 , 2 , ..., r

(the i -th layer is formed by the cells with Moore radius equal to i ).

For instance, for r = 2 , then q 1 , 2 = 2 / 3 is the probability of a cell

contacting any of the 8 cells in the layer i = 1 and q 2 , 2 = 1 / 3 is

the probability of contacting any of the 16 cells in the layer i = 2 .

All links are rewired at each time step t . Such a time-varying con-

nectivity is used to emulate migratory movements inside the ge-

ographical area represented by the two-dimensional lattice. This

dynamic random network was called as mainly locally connected

graph [23] . In the computer simulations shown in the next sec-

tion, the topological features of this graph (that is, the values of n,

m , and r ) remain fixed and the chromosomes of the GA are only

composed by genes related to the infection properties. Certainly,

other types of complex networks could be employed [24,25] . They

could be used to take into account, for instance, non-isotropic fea-

tures of the simulated environment [26,27] . 

At each time step t , each individual is in one of three states

regarding the health status: S (susceptible), I (infected), or R (re-

covered/immune). The rules of state transition of this SIR model

are the following. At the time step t , the transition S → I repre-

senting contagion of a S -individual occurs with probability P 1 (V I ) =
1 − e −kV I , in which V I is the number of I -neighbors at t and k is a

positive constant expressing the disease infectivity (observe that

P 1 (0) = 0 and P 1 ( V I ) → 1 for kV I → ∞ ). If this S -individual was

not infected due to direct contact with sick neighbor, the transi-

tion S → I can still occur with probability P 2 (V I , V R ) = 1 − e −qV I V R , in

which V R is the number of R -neighbors and q is a positive constant

expressing the disease transmission mediated by R -individuals. At

the time step t , the transition I → R representing recovery of

an I -individual occurs with the constant probability P 3 . If this I -

individual remains sick, the transition I → R can still occur with

probability P 4 (V R ) = 1 − e −pV R , in which p is a positive constant ex-

pressing cure supported by R -individuals. The transitions I → S and

R → S represent death of I and R -individuals, respectively. These

transitions occur with the constant probabilities P 5 and P 6 , respec-

tively. Note that when I and R -individuals die, they are replaced by

S -individuals. Thus, the population size is kept constant and equal

to N = n 2 . The states of all individuals are simultaneously updated
n the end of each time step. Similar epidemic models based on

robabilistic CA were already proposed [23,28–30] ; however, this

s the first one that takes into consideration the role of immune

ndividuals in the spreading of a contagious disease. 

In a computer simulation, after a transient period, the percent-

ges of S, I and R -individuals tend to fluctuate around constant

alues; that is, the system tends to a stationary solution, as illus-

rated in Fig. 1 . The percentages of S, I and R -individuals in this

teady state are denoted by S ∗, I ∗, and R ∗ = 1 − (S ∗ + I ∗) . If I ∗ = 0 ,

he steady state is known as disease-free; if I ∗ > 0, as endemic. In

 simulation, S ∗ and I ∗ are calculated as the average amounts of S

nd I -individuals divided by N , obtained in the last w time steps

rom a total of T time steps. Thus, fluctuations due to the random

ature of the CA model are smoothed by this averaging process. On

verage, the values of S ∗ and I ∗ do not change from one simulation

o another; that is, the endemic attractor reached in each simu-

ation does not change. Obviously, w and T must be conveniently

hosen; that is, w and T must be chosen in order to compute S ∗

nd I ∗ after the system reaching its steady state. In Fig. 1 , T = 100 .

bserve that the steady state is attained for t � 30; thus, in this

ase, w = 70 would be a suitable choice. 

The CA parameters to be fitted by the GA are k, q , and p . The

alues of the other parameters (which are the constant probabil-

ties P 3 , P 5 , and P 6 ) are obtained from literature. Thus, each GA

hromosome is composed of three genes (the values of k, q , and p ).

he optimal chromosome contains values of k, q , and p such that,

n a simulation with the CA model, then S ∗ = S tar and I ∗ = I tar , in

hich S tar and I tar are the targets; that is, the average percentages

f S and I -individuals found in the European countries considered

n this work. 

Three fitness functions, denoted by F 1 , F 2 , and F 3 , are used to

valuate how good a chromosome (a candidate-solution) is. These

unctions are: 

 1 = 

1 √ 

L 2 
S 

+ L 2 
I 

(1)

 2 = 

1 

L S + L I 
(2)

 3 = min 

(
1 

E S 
, 

1 

E I 

)
(3)

ith L S = max (ε, | log (S ∗/S tar ) | ) , L I = max (ε, | log (I ∗/I tar ) | ) , E S =
ax (ε, | S ∗ − S tar | /S tar ) , E I = max (ε, | I ∗ − I tar | /I tar ) , and 0 < ε � 1.

f S ∗ = S tar and I ∗ = I tar , then L S , L I , E S , and E I are equal to ε. In

his case, the maximum value is 1 / ( 
√ 

2 ε) for F 1 , 1/(2 ε) for F 2 , and

/ ε for F 3 . Observe that the better the chromosome, the higher

ts fitness. In fact, the optimal chromosome maximizes these three
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Fig. 2. Time evolution of the fitness by using F 1 . The minimum, maximum, and 

average values of F 1 are shown for the 100 generations. In each generation, the 

maximum value corresponds to the best-fit chromosome, the minimum value to the 

worst-fit chromosome, and the average value is determined by taking into account 

the 100 chromosomes. 
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Table 1 

Relative errors for the best chromosome found for each fitness function and 

each country. For instance, for S tar 
BEL , the relative error e F 1 is given by e F 1 = | S ∗ −

0 . 035 | / 0 . 035 , with S ∗ obtained from a CA simulation with the best chromosome 

found by the GA with the fitness function F 1 . The average relative errors for each 

fitness function and each country are also shown. 

Target e F 1 e F 2 e F 3 

S tar 
BEL 0.03500 0.1143 0.1645 0.0625 

I tar 
BEL 0.00022 0.0591 0.0000 0.0636 

R tar 
BEL 0.96478 0.0041 0.0060 0.0023 

Average error for Belgium 0.0592 0.0568 0.0428 

S tar 
ITA 

0.100000 0.0186 0.0240 0.1523 

I tar 
ITA 

0.000033 0.1212 0.0303 0.1212 

R tar 
ITA 

0.899967 0.0021 0.0027 0.0169 

Average error for Italy 0.0473 0.0190 0.0968 
unctions. Recall that R ∗ is not explicitly considered in these fitness

unctions because it is not an independent variable. 

Each generation of the GA has η chromosomes. In the first gen-

ration, these η chromosomes are randomly created. Then, genetic

perators are employed for producing new chromosomes as fol-

ows [5] : 

1. the probability of a chromosome being picked for reproduction

is proportional to the value of its fitness. Thus, by using the

roulette wheel selection, η chromosomes are picked and η/2

pairs are formed; 

2. each pair swaps their genes with probability c per gene in a

process called crossover. Thus, a new pair can be conceived; 

3. after crossover, a Gaussian mutation is applied for each gene;

that is, a new value for each gene is randomly assigned from

a Gaussian probability distribution with average as the current

value of the gene and standard deviation equal to s . It is im-

posed that this standard deviation decreases from one genera-

tion to another; 

4. the new generation is formed by the ξ best evaluated chro-

mosomes (without any modification) of the current genera-

tion, which is called elitism, and η − ξ chromosomes created

by crossover and mutation; 

5. each chromosome of this new generation is evaluated; that is,

from its values of k, q , and p , a computer simulation with the

CA model is performed (for T time steps) and the percentages

S ∗ and I ∗ are obtained (by considering the last w time steps).

Then, the fitness is calculated and the next new generation of

η chromosomes is created as described. 

Observe that only the long-term behavior of the CA model is

aken into account to fit its parameters. The rationale behind this

ssumption is that varicella was (in fact, still remains, even af-

er vaccination) endemic in many countries. Thus, only data re-

ated to S ∗ and I ∗ (and, consequently, R ∗ = 1 − (S ∗ + I ∗)) are usu-

lly available and these are the data used here to fit the CA model.

f the approach proposed in this work was employed to study the

pread of a new pathogen, as the novel coronavirus, then features

f the transient behavior of the amounts of S, I and R -individuals

hould/could taken into consideration. 

The results obtained from numerical simulations by combining

A and GA are presented in the next section. 

. Results 

In the CA model, the parameter values of the contact network

re n = 500 (therefore, there are N = 250 0 0 0 individuals in the

ost population), m = 8 (thus, 8 random undirected connections

tart from each individual), and r = 192 (recall that r is the radius

f the Moore neighborhood where these connections are made).

reliminary tests revealed that these are suitable choices. One time

tep of the CA model corresponds to one day of real time. The

robabilities P 3 , P 5 , and P 6 are assumed to be the inverse of the

ean lifetime related, respectively, to the state transitions I → R,

 → S , and R → S . Hence, the probability of recovery from varicella

er time step is P 3 = 1 / 7 day 
−1 

, because the convalescence period

s about one week. The death rate by varicella is considered low

about 3 per 10 0,0 0 0 cases); therefore, the values of P 5 and P 6 are

aken to be equal in this work. Thus, sick and immune individ-

als have the same mortality rate. In other words, here, the dis-

ase does not increase the chance of dying. By considering that the

verage life expectancy in Belgium and Italy was about 78 years

round the year 20 0 0, then P 5 = P 6 = 1 / (78 × 365) day 
−1 

[3] . 

For Belgium, the target is S tar 
BEL 

= 0 . 035 and I tar 
BEL 

= 0 . 0 0 022

3,31] ; for Italy, S tar 
ITA 

= 0 . 1 and I tar 
ITA 

= 0 . 0 0 0 033 [3,32] . These num-

ers represent the normalized amounts of susceptible and infected

ndividuals found in each country. 
The initial condition in the CA simulations is 99% of susceptible

ndividuals and 1% of infected individuals, who are homogeneously

istributed over the CA lattice. The steady state is achieved after

0–70 time steps. Here, T = 100 and w = 20 . Thus, the average val-

es for S ∗ and I ∗ are calculated by taking into account the last 20

ime steps of a simulation with 100 time steps. Alternatively, S ∗

nd I ∗ could be calculated by running w CA simulations and by av-

raging the percentages of S and I -individuals at the final time step

 obtained in these w simulations. 

Each GA generation is composed of η = 100 chromosomes and

nly the best one is carried over to the next generation without

ny alteration; that is, ξ = 1 . Mutation starts with s = 0 . 2 and this

tandard deviation decreases s/T = 0 . 002 per GA generation. In the

rossover, the probability of a pair of chromosomes exchanging

heir genes is c = 0 . 3 per gene. In the fitness functions, ε = 10 −5 . 

The chromosomes of the first generation are randomly created

n the interval 0 ≤ k, q, p ≤ 10 from a uniform distribution in the

ogarithmic scale. This starting point and a time-decreasing stan-

ard deviation improved the GA performance. The total number

f GA generations is 100; hence, since there are 100 candidate-

olutions in each GA generation, the total number of CA simula-

ions is 10 0 0 0 for each fitness function. The simulations took about

0 hours to run in a workstation with two processors Intel Xeon E5

620v4 2.1Gh, 64 GB RAM memory, and a graphics processing unit

VIDIA Tesla P100 12GB optimized for parallel computation. 

The time evolution of the fitness functions F 1 , F 2 , and F 3 for the

wo countries are shown in Figs. 2–4 , respectively. Also, from the

est chromosome found for each country and each fitness function,

he difference between the target and the steady state reached in

he CA model is calculated. Table 1 presents these results. Observe

hat F 2 gives the best result for Italy data; and F 3 , for Belgium

ata. For Belgium, the average relative error (considering S, I and

 -individuals) is about 4% for F 3 ; for Italy, the average relative er-
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Table 2 

The three best chromosomes and the corresponding average relative errors found for the three fitness functions and 

the two countries. The chromosomes in bold are the best ones presented in Table 1 . 

Belgium Fitness function Chromosome k q p Average relative error 

1st 0.317148 0 2.380381 0.0592 

F 1 2nd 0.325249 0 4.059666 0.0772 

3rd 0.324976 0 2.748391 0.0784 

1st 0.321887 0 6.085629 0.0568 

F 2 2nd 0.327320 0 4.603481 0.0569 

3rd 0.326857 0 5.351604 0.0608 

1st 0.339118 0 6.312226 0.0428 

F 3 2nd 0.328485 0 6.599133 0.0453 

3rd 0.337657 0 6.582061 0.0593 

Italy Fitness function Chromosome k q p Average relative error 

1st 0 0.066087 0.307163 0.0473 

F 1 2nd 0 0.158563 8.702950 0.1203 

3rd 0 0.073670 0.290357 0.1299 

1st 0 0.064927 0.299330 0.0190 

F 2 2nd 0 0.064927 0.299330 0.0194 

3rd 0 0.119496 1.321768 0.0384 

1st 0 0.102425 0.684363 0.0968 

F 3 2nd 0 0.051506 0.173286 0.1698 

3rd 0.029681 0.030867 0.103871 0.1901 

Fig. 3. Time evolution of the fitness along 100 generations by using F 2 . 

Fig. 4. Time evolution of the fitness along 100 generations by using F 3 . 
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ror is about 2% for F 2 . The three best chromosomes for the three

fitness functions for both countries are shown in Table 2 . 

The best chromosome found for Belgium is k BEL = 0 . 339118 ,

q BEL = 0 , p BEL = 6 . 312226 ; for Italy, k ITA = 0 , q ITA = 0 . 064927 ,

p ITA = 0 . 299330 . These results are discussed in the next section. 

4. Discussion and conclusion 

Despite the unknown degree of underreporting, the CA model

proposed here can predict (with average relative error of 2% − 4% )

the varicella prevalence found in two European countries around

the year 20 0 0. For Belgium, k � 0.3, q = 0 , and p � 6. Thus, Bel-

gium data can be explained by ignoring the role of R -individuals in

the infection propagation (because q = 0 ). For Italy, the best chro-

mosome corresponds to k = 0 , q � 0.06, and p � 0.3. Therefore,

Italy data can be explained by considering contagion exclusively

mediated by R -individuals (because k = 0 ). Table 2 confirms that

q = 0 for Belgium and k = 0 for Italy compose the best chromo-

somes for the three fitness functions. Thus, in this work, real-world
ata can be predicted (with precision of 2–4%) by supposing that

isease spread is only due to the direct contact among S and I -

ndividuals (that is, k > 0 and q = 0 ) or by supposing that disease

pread is only due to the direct contact among S and I -individuals

ediated by R -individuals (that is, k = 0 and q > 0). Certainly, both

hese ways of disease propagation must simultaneously occur in

oth countries. However, the epidemic data can be explained by

onsidering either one way or the other way, which is a surpris-

ng result. The way with k > 0 and q = 0 is commonly found in

heoretical studies; the way with k = 0 and q > 0 is the novelty of

he proposed CA model. In addition, for Belgium data, the param-

ter related to recovery mediated by R -individuals is greater than

he one for Italy data. In fact, for the first country, p � 6; for the

econd country, p � 0.3. 

In short, the main conclusion is: since R -individuals can take

art in the processes of contagion and recovery, their roles should

e accurately delineated in studies on dynamics of disease spread.

sually, their presence is assumed to be only beneficial from an

pidemiological point of view, because, due to their acquired im-

unity, they can not directly propagate the infection. However,

hey can catalyze the meeting among S and I -individuals. This fact

hould not be neglected in mathematical approaches. 

Two particular features of the implemented GA were crucial in

he parameter identification: a decreasing mutation rate and the

nitial generation of chromosomes randomly picked from a uniform

istribution in the logarithmic scale. From an expert system per-

pective, the methodology presented here can be applied to fore-

ast the prevalence of other contagious diseases, as the one caused

y the novel coronavirus. In future works, vaccination can also be

aken into consideration. 
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