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A B S T R A C T

COVID-19 has been spreading rapidly around the world since December 2019. The main goal of this study is to
develop a more effective method for diagnosing and predicting the COVID-19 spread and to evaluate the ef-
fectiveness of control measures to reduce and stop the virus spread. To this end, the COVID-19 Decision-Making
System (CDMS) was developed to study disease transmission. CDMS divides the population into groups as
susceptible, infected, cured and dead. The trends of the people’s number in these groups have deterministic and
stochastic components. The deterministic components are described by a differential equations system with
parameters determined by the data reported. The stochastic components are represented as an indicator of
instability that characterizes the tendency of COVID-19 spread. The simulation experiments have shown a good
agreement between the CDMS estimates and the data reported in Russia and Greece. The analysis performed
showed that the newly-introduced instability indicator may be the precursor to the pandemic dynamics. In this
context, our results showed three potential candidates for a second wave of COVID-19 disease: USA, Russia and
Brazil. Although the proportion of infected individuals in countries with high temperatures is lower than in
European countries and Russia, temperature and humidity are slowly affecting the effects of the pandemic.
Finally, the results presented may contribute to the urgent need to reduce the risks associated with the second
wave of the COVID-19, to improve public health intervention and safety measures to be taken by various
countries.

1. Introduction

The mathematical tools of epidemiology, the biological models of
the population, and the statistical methods allow the study of different
processes of spread of the various viruses both in a restricted area and
on a global scale (Brauer and Castillo-Chavez, 2012, Brauer et al., 2019,
Freedman, 2012, Krapivin et al., 2015, Varotsos et al., 2013, 2016,
2020). Specifically, mathematical methods are used in microbiology
and virology to detect important factors that control the spread of the
virus. Traditionally, a mathematical model has been able to predict the
evolution of the virus between different regions, which is the focus of
the World Health Organization (WHO), mainly for some West African
countries. For example, a forecasting of the progression of the epidemic
with a deadly human disease was made for the Ebola virus disease
discovered in 1976 in Central Africa. In this case, the spread of the
Ebola virus was limited to two areas including Zaire and Sudan, which
did not require global efforts to reduce its spread to other areas. Un-
derstanding the pathways of any virus transmission is usually achieved
by using different mathematical models adapted to the epidemiological
parameters of the specific virus.

The situation with coronavirus differs significantly from other
events in recent decades. Global panic erupted in early December 2019
when the first victim of COVID-19 was diagnosed in Wuhan, China.
After that, the number of infected people in many countries increased
rapidly. Most governments have begun to introduce restrictions on
human mobility inside and outside their countries in order to reduce
the spread of the virus. In particular, these restrictions, which were
intended to reduce and eliminate the spread of the coronavirus, include,
among others things:

• restrictions of international and domestic flights,

• prohibition of population concentration in groups,

• defining different marketing processes,

• transition to remote working regime,

• establishment a self-isolation regime for many groups of the human
population (social distancing),

• use quarantine regime and isolate individuals or their groups con-
sidered to be suspected carriers of the virus, and

• introduction of financial support measures for various sectors of the
national economy.
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However, the situation with COVID-19 differs significantly from the
pandemic cases in the past, both in the very high rate of global spread
and in the dramatic increase in infected and diseased people and in the
absence of a vaccine against this virus. Therefore, epidemic models
developed in time helped to understand the role of different quarantine
parameters. The existing mathematical models that were able to adapt
to the short-term forecasts of stochastic processes that govern the
COVID-19 pandemic (Chen et al., 2020, Karako et al., 2020, Plank et al.,
2020, Tiwari, 2020) offered great help in this. Most of these models use
differential equations systems, some parameters of which reflect the
characteristics of the COVID-19 pandemic process.

He et al. (2020) developed a discrete-time stochastic epidemic
model from which relevant parameters were estimated using statistical
data from January 11 to February13, 2020 in China. Plank et al. (2020)
based on a continuous-time branching process model, considered dif-
ferent scenarios to isolate the cases and assessed the effects of re-
strictive control on the population of New Zealand. Tiwary (2020)
evaluated the effectiveness of the Susceptible-Infected-Removed (SIR)
and Susceptible-Infectious-Quarantined-Recovered (SIQR) models for
reducing COVID-19 spread using personal isolation and has defined
parameters and indicators that quantify the COVID-19 spread in India.
Karako et al. (2020) using the stochastic transmission model, assessed
the effectiveness of the strategies for controlling the spread of COVID-
19 in Japan. Analyzing the cases in China, Chen et al. (2020) proposed
a time-independent susceptible-infected-recovered model that can be
used to predict the number of infected and dead. This model is based on
two time-invariant variables that reflect an individual’s average con-
tacts with others per unit time and the recovery rate.

The present study develops the method of predicting the spread of
COVID-19 by examining various scenarios depending on the range of
people movements and interactions (Chen et al., 2020, Krapivin, 1970,
Krapivin and Mkrtchyan, 2019). The COVID-19 decision-making system
(CDMS) is designed to assess epidemic parameters and predict the
epidemic consequences.

2. Method

The epidemic situation in many countries at the beginning of
COVID-19 infection was shaped by different social restrictions and
medical events which, as a rule, were determined on the basis of spe-
cialized solutions, the effectiveness of which depends significantly on
the use of technology for big data processing and management
(Cracknell and Varotsos, 2007, 2011, Varotsos et al., 2019, Kwon et al.,
2020, Varotsos et al., 2017). Modeling technology and constructive
algorithm help to evaluate the effect of such solutions as the in-
troduction of quarantine, social distancing, and individual protective
means. A variety of symptomatic conditions have arisen due to the
COVID-19 pandemic, such as the examination of the deterministic and
stochastic processes of the population moving around a given area,
taking into account specific individual interactions of people infected
with the virus.

The schematic diagram of COVID-19 infection and its prevention
includes a series of functional processes such as infection, disease, re-
covery and death. The rates and trends of the medical incomes are a
function of the decisions taken by governments to minimize the effects
of the COVID-19 pandemic. Indeed, many countries do not have
structures for functional and reliable big data clouds that could help
introduce very effective tools for quick solution and rapid response to
the spread of coronavirus. The main scheme of the COVID-19 Decision-
Making System (CDMS) is shown in Fig. 1.

This figure focuses on the existing information analysis and eva-
luation of possible trends in the pandemic with recommendations to
governments to choose a more effective scenario for managing the
spread of coronavirus in region. Table 1 lists the main blocks with
CDMS functions.

CDMS divides the population into groups of individuals as

susceptible (S (t)), infected (P(t)), recovered (R(t)), and dead (D(t)). The
overall size of the population is N. The interactions between groups are
described by the following equations that reflect the dependence of
individuals’ health on different management parameters, such as
quarantine establishment and traffic restrictions.
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where t is the running time, Δt is the operational time interval, β(t) is
the probability of transition in time t, ξ is the immune indicator, η(t) is
the recovering rate in time t, γ(t) is the death rate caused by the disease,
q(t) is the indicator of medical support, I(t) is the instability indicator of
stochastic component.

The numerical evaluations of the parameters in (1) are carried out
by the SARD block using statistical reports on the status of the effects of
COVID-19 disease. Using the reported data, the following parameters
can be calculated (Chen et al., 2020b, Chen et al., 2020a):

= + =β t P t R t P t η t R t P t( ) [Δ ( ) Δ ( )]/ ( ), ( ) Δ ( )/ ( ) (2)

All processes caused by COVID-19 have a stochastic component, the
stability of which characterizes the level of uncertainty in the observed
data and helps to forecast the epidemic characteristics more accurately.
The indicator instability (I(t)) indicates the phase state of the compo-
nents Y(t)={S(t), P(t), R(t), D(t)}(Sukov et al., 2008; Krapivin et al.,
2012; Varotsos and Mazei, 2020):
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where n is the time interval for the mean of the parameters, m is the
start time for data input, s is the number of characteristics registered,
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An indicator I(t) defined by Eqs. (3)–(5) characterizes the variability
of the current mean value of the vector Y(t) components. Indeed, the I(t)
indicator indicates the probability of the individual’s transition over
time ν between the phases of the COVID-19 pandemic that satisfies
Wald’s distribution:
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= −c ν Dν(E ) ( )2 1 Εν is the average time interval of the individual’s
transition until the change of his phase state, Dν is the dispersion of the
time interval ν.

3. Results and discussion

The migration processes of any virus have probabilistic and de-
terministic components that determine the rate of loss of income due to
the virus pandemic. CDMS describes the transient processes that oc-
curred in 2020 in many parts of the world. Epidemiology theory pro-
vides an interdisciplinary approach to disease transmission processes
(Anderson, 1979, Diekmann et al., 2012, Oldstone, 2009, Omran,
2005). The methodological approach to the COVID-19 spread
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conducted at CDMS is based on the use of differential equations and
stochastic methods to simulate transition processes between population
phase states, such as susceptible, exposed, infected, hospitalized, re-
covered, and died (He et al., 2020). The transition of an individual
between his states is considered a stochastic process with the Wald
distribution (Krapivin, 1970, Wald, 1947). The movement of the po-
pulation within the given area is controlled by the restrictions in-
troduced by the administration and is followed by reported and simu-
lated data, and then the consequences of COVID-19 disease depend
mainly on these restrictions. Different countries use almost identical set
of restrictions such as self-isolation, quarantine, testing, social distan-
cing, hospitalization (ICAO, 2020), which are characterized by various
parameters.

Table 2 demonstrates these varieties in the coronavirus epidemic
management parameters. Many authors discuss the dependence of the
expected effects of the COVID-19 pandemic on climate (Fuentes et al.,
2020, Wang et al., 2020). The analysis of global pandemic data allows
the preliminary conclusion that temperature and humidity slowly affect
the effects of pandemic. The rate of infected people in countries with
high temperatures is lower than in European countries and Russia.

The stages of spread and the rate of loss of income due to the
pandemic COVID-19 2020 have different overwhelming results essen-
tially not depending on the region, but as shown in Fig. 2, there is a
correlation between infected and dead people. With the increase in
infected people, the number of dead income has stabilized regardless of

time.
The analysis of the official data in Russia and Greece shows that the

effects of hygiene and infectivity conditions of the hospitalized in-
dividuals have reached the expected results and practically could not be
improved. Nevertheless, there are management parameters that could
improve the results of the COVID-19 pandemic.

The immediate risk of infection and mortality according to Fig. 3
increases with increasing population density. The simulation results
show that the processes describing the COVID-19 infection and the
subsequent results are accompanied by the function I(t) which allows
the conclusion regarding the increase in I(t) to correspond to the in-
crease of the components of Y(t) and vice versa. This result is confirmed
by the behavioral effects of the instability indicator for the atmosphere/
ocean system (Varotsos et al., 2019).

A variety of conditions for the spread of pandemic in a population
divided into categories are synthesized by the SARD block and are
analyzed by PTCDA and FSCPC blocks to formulate possible scenarios
for the implementation of CDMS to evaluate the effectiveness of re-
striction procedures (Atkeson et al., 2020). Based on this idea, two
scenarios are introduced that are used for two countries – Russia and

Fig. 1. Main structure of the COVID-19 decision-making system (CDMS).

Table 1
CDMS functional blocks and their characteristics.

Block Block function

SARD Statistical analysis of the reported data
CII Calculation of the instability indicator
ANIP Assessment of the number of infected people
ANRI Assessment of the number of recovered individuals
EDI Estimate of dead individuals
PTCDA Prognosis of trends in COVID-19 pandemic aftereffects
FSCPC Formation of scenarios for COVID-19 pandemic control

Table 2
Average assessments of COVID-19 transition parameters by different regions.

Region β η ξ γ q

Australia 0.062 0.056 0.37 0.0139 0.77
Belarus 0.093 0.007 0.72 0.0057 0.82
Brasil 0.087 0.044 0,34 0.0312 0.58
China 0.078 0.020 0.63 0.0548 0.75
France 0.093 0.026 0.39 0.1921 0.79
Germany 0.094 0.021 0.42 0.0471 0.81
Greece 0.089 0.111 0.54 0.0701 0.76
Italy 0.097 0.130 0.44 0.1441 0.72
Japan 0.088 0.014 0.45 0.0529 0.79
Russia 0.077 0.017 0.68 0.0132 0.74
South Africa 0.086 0.013 0.41 0.0211 0. 57
USA 0.096 0.019 0.31 0.0559 0.72
World 0.095 0.008 0.45 0.0027 0.68

C.A. Varotsos and V.F. Krapivin Safety Science 132 (2020) 104962

3



Greece. Each of these countries is characterized by the size of its area
and population. Russia has an area of 17.1 million km2 and a popula-
tion density 8.45 per km2. The area of Greece is 131957 km2 and a
population density of 81.24 per km2. These characteristics have largely
determined strategic solutions to eliminate the spread of COVID-19 by
taking into account existing resources to prevent coronavirus.

The number of infected people in Russia includes 10% of those in-
fected in Moscow. An analysis of traffic restrictions introduced during
the pandemic, which began in Russia more than 2 months after the
Moscow shutdown, shows that the problem of returning tourists to
Russia has been solved by a non-optimal method. Travelers arriving
in Moscow from other countries are tested and if some are diagnosed
with coronavirus are self-isolated at home or hospitalized if they have

severe symptoms. The tactics of self-isolation at home of confirmed
individuals with coronavirus is not optimal. Fig. 4 shows the modeling
results when 50% of travelers arriving in Moscow could be isolated
immediately in two weeks (Scenario 1rus). The 2 rus scenario corre-
sponds to 100% isolation of travelers.

The coronavirus pandemic situation in Greece is linked to tradi-
tional events aimed at minimizing the consequences. International
flights were restricted and passengers arriving in Athens and other cities
were tested for coronavirus or quarantined when infected. A critical
analysis of the restrictions introduced in Greece due to the COVID-19
pandemic shows that there are indicators whose improvement could
reduce losses.

The tested passengers could all be isolated during 14 days (Scenario

Fig. 2. The correlation between the number of infected and dead people reported on 24 April and 15 June 2020.

Fig. 3. Dependence of the ratios rPS = P/S, rRP = R/P, and rDP = D/P on the population density.
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1gr), regardless of test results. The first case in Greece was confirmed on
February 26, 2020 but the restrictions were delayed: cafes, bars, mu-
seums, shopping malls, sports facilities and restaurants closed only on
March 13. Restrictions on all unnecessary travel across the country
were imposed on March 22. The 2gr scenario considers that restrictions
in different parts of Greece could be imposed immediately or even
earlier on February 26.

Figs. 4 and 5 characterize the possible expected medical con-
sequences from the implementation of the above scenarios. The trend of
coronavirus pandemic consequences for the Russian population could
be significantly optimized due to the stronger quarantine at Moscow
airports. The I(t) instability indicator calculated for Russia shows that
the number of infected people is slowly declining, which is not in line
with the trends in the countries listed in Table 2.

4. Conclusions

This paper presented an analysis of a COVID-19 decision-making
system with numerical results that showed the possibility of a combined
use of a model and statistical data analysis to assess the pandemic ef-
fects on the population. This study used data reported from 11 January
to 30 June 2020. The newly-introduced instability indicator I(t) de-
scribes trends in the number of susceptible S(t), infected P(t), recovered
R(t) and dead D(t) individuals. The maximum value of I(t) corresponds
to the maximum of these functions. Preliminary analysis of simulation
experiments using CDMS shows that the arrival situation when I(t)
begins to increase after reduction can be interpreted as the beginning of
the second wave of COVID-19.

Unfortunately, there is not enough data to make this study reliable.
The data in Table 3 can only be indicative of the possible presence of a

Fig. 4. Model estimate of the spread of COVID-19 in Russia during 2020.

Fig. 5. Dynamics of COVID-19 disease in Greece.
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coronavirus outbreak in another phase, which is interpreted as a
“second wave”. The results of Table 3 allow the separation of three
candidates for the second wave – the USA, Russia and Brazil. The
probability of the coronavirus pandemic to pass into a negative phase is
equal to 0.46 ± 0.08 for USA, 0.37 ± 0.06 for Russia and
0.42 ± 0.07 for Brazil. In particular, the calculation of I(t) for the
reported data on the pandemic income recorded during a week helps to
estimate this probability for all countries or other restricted areas.

It is clear that protection measures in different countries are not
effective enough and could be more effective in the future to analyze
more data using different models, such as the stochastic model SEIR
(Susceptible, Exposed, Infectious, Recovered) and the susceptible-in-
fected-deceased (SID) model (He et al., 2020, Islam et al., 2020). The
existence of reserves in social and economic measures is followed by the
comparison of relations P(t)/S(t), R(t)/P(t), and D(t)/P(t) for different
countries where the dynamic variations of these indicators can achieve
more than 50%.

In practice, it was impossible to coordinate measures to curb the
pandemic of COVID-19 in conditions of high uncertainty. Therefore, in
this study the decision-making system can be modernized to take into
account the results of COVID-19 pandemic, taking into account the
overall social, medical and administrative resources that can be used to
minimize economic and population losses.

The issue of validating the CDMS is resolved by data shown in
Figs. 4 and 5, where the deviation of the model results from the re-
ported data is evaluated by 8.5% for Russia and 1.6% for Greece. The
rate of a dramatic increase in the reported cases in many countries
depends on the big data generated by a complex task of modernized
CDMS validation, taking into account the uncertainty levels in the data
provided by administration of countries and the World Health Orga-
nization (Ivorra, 2020, Park et al., 2020). In this area the results of the
present study mentioned above clearly provide the potential for im-
proved safety.
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Table 3
Evaluation of the trends of the pandemic instability indicator from various
counties.

Region Date

15 March 15 April 15 May 5 June 15 June 30 June

Australia 0.571 0.884 0.369 0.203 0.201 0.132
Belarus 0.097 0.487 0.978 0.356 0.243 0.188
Brasil 0.566 0.792 0.441 0.291 0.303 0.426
China 0.896 0.253 0.093 0.085 0.102 0.152
France 0.436 0.654 0.721 0.343 0.338 0.289
Germany 0.334 0.846 0.706 0.477 0.272 0.199
Greece 0.404 0.786 0.912 0.404 0.237 0.178
Italy 0.189 0.523 0.798 0.407 0.203 0.254
Japan 0.299 0.763 0.903 0.461 0.322 0.164
Russia 0.096 0.553 0.887 0.445 0.367 0.371
South Africa 0.454 0.784 0.437 0.279 0.195 0.089
USA 0.426 0.652 0.794 0.369 0.278 0.351
World 0.537 0.654 0.703 0.485 0.566 0.496
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