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. Summary of the main points 

This first section serves both as an extended introduction and

s a global discussion of our results described in more detail be-

ow. The reader may wish to look first at this section briefly to get

he main ideas, then consult it again later as a summary. 

In this article, we first establish a basic model of the number of

nfected people as a function of time without involving any policies

uch as lockdown, social distancing, testing, mask protection, etc.

e then modify the basic model to include extra parameters asso-

iated with implementing policies. The basic models assume that

ll infected individuals infect the same number of people on aver-

ge. We further consider a more sophisticated two-category model,

here different categories of individuals infect different numbers

f people. We apply various measures, such as age and degree

f socialization, to differentiate the two categories, and illustrate

hem with numerical examples. We also discuss herd immunity for

oth basic and two-category models. 

We use the estimated Chinese fatality rate and the fatality rate

board the Diamond Princess 1 by age to estimate the French fa-

ality rate, taking into account that the age distribution of infected

eople is not the same as the general age distribution. We then es-

imate the number of infected individuals by the reported number

f deaths and the estimated fatality rate. We use the number of
∗ Corresponding author. 

E-mail addresses: joseph.najnudel@bristol.ac.uk (J. Najnudel), ju-yi.yen@uc.edu 

J.-Y. Yen). 
1 The Diamond Princess is a British-registered cruise ship on which a widespread 

OVID-19 outbreak occurred in February 2020. 
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eaths instead of the number of confirmed cases since the major-

ty of cases are expected to remain undetected. 

We note that the fatality rate is important for the evaluation

f the general public’s acceptance of getting a large proportion of

he population infected, which is needed for herd immunity. Some

ind of testing sample can be helpful to evaluate the total num-

er of infected people, which implies an evaluation of the fatality

ate by dividing the number of deaths by the total number of in-

ected individuals. A large decrease of the fatality rate by effective

r at least partially effective treatments may increase the general

ublic’s acceptance of herd immunity. 

The well-known reproduction number R in epidemiological

odels is analyzed and estimated for the models introduced in

his article. The general strategy for controlling the spread of the

pidemic is to reduce the value of R . 

The following observations are drawn from our oversimplified

odels applied to France which may be modified by additional in-

ormation: 

• The values of R with or without policy implementation . With

no action taken to control the epidemic, it grows approximately

exponentially until the population quickly reaches herd immu-

nity. The reproduction number in France is likely to be between

2.5 and 4, with an increase in the number of infected people of

about 30 percent per day. 

The epidemic is globally controlled under lockdown, with a re-

production number estimated to be between 0.4 and 0.7, and

an estimated decrease in the number of infected people of

about 6 percent per day. 

• The fatality rate . We estimate the fatality rate to be less than

0.5 percent among people under 60 years old, around 1 percent

https://doi.org/10.1016/j.chaos.2020.110115
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110115&domain=pdf
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mailto:ju-yi.yen@uc.edu
https://doi.org/10.1016/j.chaos.2020.110115


2 J. Najnudel and J.-Y. Yen / Chaos, Solitons and Fractals 140 (2020) 110115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

n

X

w

X

T

 

 

 

 

 

r  

fi  

c  

c  

b  

n  

i  

d  

t  

l  

1  

d  

M  

H

w

β

B  

t  

r  

k  

c  

d  

i  

s  

c  

d  

i  

o  

t  

t  

v  
for people between 60 and 69 years old, and much higher for

people 70 years old or older. 

There have been discussions about a partial lockdown for peo-

ple 70 years old or older. Such a strategy cannot prevent the

growth of the epidemic by itself since the lockdown is not per-

fect, thus a significant proportion of people 70 years old or

older may still be infected. However, based on our analysis, this

can reduce the proportion of infected people 70 years old or

older, which decreases the global fatality rate. The overall fatal-

ity rate depends not only on the fatality rate by age, but also

on the age distribution of the infected population: it is likely

that older people are less infected than younger people because

they have less contact with others. In one of the two-category

examples presented in this article, we get a possible decrease

of the fatality rate by a factor of 2 or 3 in this scenario. 

• Herd immunity . The current level of herd immunity is ex-

pected to play a minor role in the control of the epidemic, be-

cause only a small (but not negligible) minority of the popu-

lation has been infected. Herd immunity requires a large frac-

tion of the population to be infected. Controlling the growth of

the epidemic until herd immunity is reached reduces the pro-

portion of infected people, but not necessarily by very much.

The usual formulas giving the proportion of infected people as

a function of the reproduction rate are overestimated when the

population is not homogeneous in terms of contagion. However,

the order of magnitude is not dramatically changed. A possible

situation where herd immunity could be reached earlier would

be the case where a significant part of the population is, from

the beginning, not susceptible to infection (for example, if there

is cross immunity with other viruses). 

• Simulations . At the end of the article, we present some simula-

tions of the epidemic for the coming months, until the summer

of 2021, under twelve different scenarios. The simulations give

very different results, depending on the values of the parame-

ters chosen. This illustrates the great uncertainty of the current

situation, and suggests that there is an important risk of a sec-

ond peak around the beginning of summer 2020. 

According to our analysis, in order to completely suppress the

epidemic in France by itself, a lockdown would need to last more

than 6 months. The epidemic will be difficult to control after re-

leasing the lockdown; social distancing, protection like masks, tests

and contact tracing are expected to be helpful for that. Social dis-

tancing restrictions should be widely respected in order to keep

the reproduction number at a low level. A minority of the popula-

tion not respecting the restrictions may significantly increase the

reproduction number. When the reproduction number becomes

larger than 1, everyone is affected by the growth of the epidemic,

even if those with less contagious contacts remain less infected

than those with more contacts. 

We should be aware of the uncertainty of the development and

investigate carefully the evolution of the epidemic so that we are

more prepared to adapt to the new situation. It will be interesting

to know if the contagion is slower during spring and summer: this

would help to control the pandemic in the coming months, so that

we have more time to find effective treatments. 

2. The basic model 

Here, we consider the following model relative to the number

of infected people as a function of time: 

• Every day, each infected individual contaminates β new indi-

viduals on average. 

• Every day, a proportion γ of infected individuals are either re-

covered, dead, or isolated, and are therefore no longer conta-
gious. (
The assumptions implied by this model are the following: 

• All infected individuals play the same role in terms of conta-

gion. 

• All infected people have the same chance of recovering the next

day: we do not distinguish between different stages of the dis-

ease. 

• There are sufficiently many infected people to neglect random

fluctuations and the fact that the number of infected people is

an integer. 

• The proportion of infected people is small enough to neglect

herd immunity. 

We choose a date of reference denoted as day 0, and we assume

hat the number of infected people on this day is X 0 . If X n is the

umber of infected individuals at day n , we have for this model: 

 n +1 = X n (1 + β − γ ) 

hich implies 

 n = X 0 (1 + β − γ ) n . 

here are three main cases: 

• If β < γ , then the factor 1 + β − γ is smaller than 1, which

indicates that the number of infected people decreases expo-

nentially. 

• If β = γ , then the number of infected people remains constant.

• If β > γ , then the number of infected people increases expo-

nentially. 

This model is far too simple to describe reality with any accu-

acy, but we can still try to find the parameters β and γ which

t observations as well as possible. If we consider the case of the

oronavirus in France, the initial rate of growth of the epidemic

an be roughly approximated by the rate of evolution of the num-

er of deaths around the date of the lockdown. We look at the

umber of deaths instead of the number of cases, since the major-

ty of cases are expected to be undetected. During the initial lock-

own, we assume that its effect on deaths should be small since

he probability of sudden death of newly infected individuals is

ow. The estimation of the number of deaths in France until March

4 (included), given by Wikipedia, is 91, whereas the number of

eaths until March 21, is 562 [1,4] . The date of the lockdown is

arch 17. This is a growth by a factor 562/91 � 6 in one week.

ence, values of β and γ fitting the data should satisfy 

(1 + β − γ ) 7 � 6 

hich gives 

− γ � 0 . 3 . 

efore lockdown in France, the number of infected people appears

o have grown by about 30 percent per day! Of course, this is a

ough estimate since the total number of infected people is un-

nown. However, this clearly shows that each day of delay in de-

iding on lockdown has a huge effect on the evolution of the epi-

emic. Another remark is that the rate of growth of the number of

nfected people gives β − γ , but not β and γ separately. Policies

uch as lockdown, wearing masks, improving personal hygiene, so-

ial distancing, contact tracing, massive testing, vaccines, etc., can

ecrease the value of β , while treatments, quarantining infected

ndividuals, etc., can increase the value of γ . The overall effects

f all scientific policies should be seriously considered to improve

he collective values of the two parameters. For example, massive

esting can help detect the infected cases earlier so infected indi-

iduals can be treated earlier (increasing γ ) and isolated earlier

decreasing β as well as increasing γ ). 
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The initial approach implemented by the French government to

ontain coronavirus was the lockdown policy, therefore, we first fo-

us on analyzing the difference between having or not having lock-

own. The goal of the lockdown is to decrease the value of β by

ecreasing the number of contacts between people. Lockdown has

o direct effect on γ a priori. Let us assume that β is replaced by
′ after lockdown, whereas γ remains unchanged. After lockdown,

e deduce that the number of infected people is increased by a

actor of 1 + β ′ − γ every day. If day 0 is assumed to be before the

ockdown at day � , we have at any day n ≥ � after the lockdown: 

 n = X � (1 + β ′ − γ ) n −� = X 0 (1 + β − γ ) � (1 + β ′ − γ ) n −� , 

here again X n denotes the number of infected individuals at day

 . If β and γ are fixed, with β > γ , we have three possible situa-

ions depending on the value of β ′ : 
• If β ′ > γ , the epidemic continues to grow exponentially, but at

a smaller rate, even after the lockdown. 

• If β ′ = γ , the epidemic stabilizes after the lockdown. 

• If β ′ < γ , the epidemic grows exponentially until the lockdown,

and then decreases exponentially. 

Since the daily number of deaths in France is lower at the end

f April than at the beginning, we may assume that we are in the

hird situation β ′ < γ . According to the current basic model, the

eak of the number of infected people is then at the day of the

ockdown. The peak of the number of deaths is later due to the

ime between infection and death. The rate of decay of the num-

er of infected people after lockdown can be approximated by the

ate of decay of the number of deaths if the fatality rate of the dis-

ase is assumed to be constant, which appears to be reasonable in

 short period of time. However, we have to take observations at

ufficiently late periods of the lockdown in order to have (almost)

ll deaths coming from people infected after the lockdown, and

herefore (almost) no influence of the pre-lockdown situation on

he evolution of the number of deaths. During the week between

pril 13 and April 19 (one month after the lockdown), there were

according to Wikipedia) 5325 deaths; during the week between

ay 4, and May 10, (three weeks later, still during the lockdown),

here were 1485 deaths in France [1,4] . This is a ratio of about 0.28

n three weeks, and thus 

(1 + β ′ − γ ) 21 � 0 . 28 

hich gives 

′ − γ � −0 . 06 , 

.e. a decrease of 6 percent per day. 

With this rate of decay, we can deduce the time of lockdown

hich would be needed to suppress the epidemic in France. The

rder of magnitude of the number of infected people at the lock-

own is certainly between 10,0 0 0 (not much more than the num-

er of detected cases) and 10,0 0 0,0 0 0 (more than 1/7 of the total

opulation). In order to suppress the epidemic in France, we have

o decrease this number to 0, and this situation is expected to oc-

ur when the model provides a value far below 1; hence, a de-

rease from the peak at the lockdown by a factor, say, between 10 4 

nd 10 8 . According to the model, the corresponding day n should

e such that 

 n /X � = (1 + β ′ − γ ) n −� ∈ [10 

−8 , 10 

−4 ] , 

.e. 

 . 94 

n −� ∈ [10 

−8 , 10 

−4 ] 

hich implies 

 − � ∈ [148 , 298] . 

n words, according to the model, the lockdown should have lasted

etween 5 and 10 months in order to suppress the epidemic in
rance. Such a time is far longer than what is politically accept-

ble, and so it is not reasonable to expect that lockdown alone can

uppress the epidemic. 

. The parameter R 

In basic epidemiological models, the most well-known parame-

er is R : the average number of new infections arising from each

nfected individual. In particular, R 0 is a particular value of R ,

hich is valid only at the beginning of the epidemics when most

f the population is susceptible, or more precisely, everybody but

ne infected individual. In the basic model above, each individual

nfects on average β individuals per day, until (s)he is isolated, re-

overed, or dead, i.e. no longer contagious. The average time of

ontagion can be modeled as follows. If some day, an individual

s contagious, the probability to no longer be contagious the next

ay is γ , and so the probability to still be contagious the next

ay is 1 − γ . The probability to still be contagious after two days

s then (1 − γ ) 2 , the probability to still be contagious after three

ays is (1 − γ ) 3 , and so on. Notice that this reasoning means that

he chances to remain contagious from one day to another do not

epend on the past, which is of course not very realistic; however,

t has the advantage of simplicity. The average time of contagion is

hen obtained by adding the following numbers: 

• 1, since all infected individuals are contagious at least the first

day. 

• 1 − γ , since this proportion of infected individuals are conta-

gious at least one extra day. 

• (1 − γ ) 2 , since this proportion of infected individuals are con-

tagious at least one further extra day. 

• (1 − γ ) 3 , since this proportion of infected individuals are con-

tagious at least one further extra day, and so on. 

The average time of infection is then 

:= 1 + (1 − γ ) + (1 − γ ) 2 + (1 − γ ) 3 + . . . . 

ultiplying τ by 1 − γ , we have, 

(1 − γ ) τ = (1 − γ ) + (1 − γ ) 2 + (1 − γ ) 3 + (1 − γ ) 4 + . . . , 

hus 

 + (1 − γ ) τ = 1 + (1 − γ ) + (1 − γ ) 2 + (1 − γ ) 3 

+ (1 − γ ) 4 + . . . 

hich implies 

 + (1 − γ ) τ = τ, 1 − γ τ = 0 , 

nd so τ = 1 /γ . An infected individual contaminates on average β
ndividuals per day, for an average time of 1/ γ days. The average

umber of infections arising from an infected individual is then

odeled by the number 

 = 

β

γ
. 

ince β/ γ > 1 is equivalent to β > γ , the discussion above shows

hat we have: 

• An exponential increase of the number of infected individuals

if R > 1. 

• An exponential decrease of the number of infected individuals

if R < 1. 

• A constant number of infected individuals if R = 1 . 

Notice that R cannot be recovered directly from the rate of

ncrease of infected people. Indeed, R = β/γ , whereas the rate

f increase is 1 + β − γ , and β/ γ is not uniquely determined by

 + β − γ . More concretely, the rate of increase of the epidemic
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depends not only on the number of new infections per infected in-

dividual, but also on the time between generations of infected in-

dividuals. That is why the AIDS pandemic has a much slower evo-

lution than most other infectious pandemics, because the average

time between generations of infected individuals is some number

of months or years, whereas the order of magnitude for the coro-

navirus is days or weeks. In order to know R , we need not only

to have β − γ , but also β and γ separately. A way to estimate γ
is to evaluate the average time τ for which an individual is con-

tagious. Such evaluation is difficult, in particular for asymptomatic

infected people. As we have seen before, τ = 1 /γ in the model,

and so γ = 1 /τ . It is reasonable to assume that the duration of the

contagion is at least 5 days. In the minimal case where τ = 5 , we

get γ = 0 . 2 , and in the pre-lockdown situation where we have es-

timated that β − γ = 0 . 3 , we deduce that β = 0 . 5 , and then R =
β/γ = 2 . 5 . On the other hand, under lockdown, we have seen that

the new value β ′ of the rate of infection is expected to approxi-

mately satisfy β ′ − γ = −0 . 06 , and since β ′ ≥ 0, we have γ ≥ 0.06,

which means τ ≤ 1/0.06, i.e. τ ≤ 16.7 days. In the case where the

average infection time is τ = 14 days, we have γ = 1 / 14 � 0 . 07 ,

and so β � 0.37, which gives approximately R = 0 . 37 / 0 . 07 � 5 . 3 . It

is then reasonable to assume 2.5 < R < 5.3. 

Another way to estimate β and γ separately is to evaluate the

decrease of β due to the lockdown. We can, for example, assume

the following scenario: 

• A proportion of 5 percent of individuals do not respect the lock-

down, and therefore their number of contacts remains the same

(multiplied by 1). 

• A proportion of 30 percent of individuals have to go out, for

example for work, and their number of contacts is reduced by

a factor of 2 (multiplied by 0.5). 

• A proportion of 65 percent of individuals can stay home almost

all the time and their number of contacts is reduced by a factor

of 10 (multiplied by 0.1). 

In this situation, the average number of contacts between indi-

viduals is multiplied by 

(0 . 05 × 1) + (0 . 30 × 0 . 5) + (0 . 65 × 0 . 1) = 0 . 265 

i.e approximately divided by 4. If we assume that the number of

contacts transmitting infections is divided by 4, it means that the

number of individuals infected by a given person is divided by 4,

i.e. β ′ = β/ 4 . In this scenario, we have the two equations: 

β − γ = 0 . 3 , 

β

4 

− γ = −0 . 06 . 

Then subtracting the second equation from the first, we get: 

3 β

4 

= 0 . 36 , 

hence β = 0 . 48 , γ = 0 . 18 and R � 2.67. For a division by 3 of the

number of infectious contacts, we get R = 2 . 25 , for a division by 6,

we get R � 3.27, for a division by 10, we get R = 4 , for a perfect

lockdown (no new infections), we get R = 6 . Since it does not seem

plausible for the number of contacts to be divided by more than

10, it seems reasonable to assume that 

2 . 5 < R < 4 , 

taking into account the lower bound of 2.5 estimated previously

(from the fact that the infection time should be more than 5 days).

It is also interesting to investigate the value of R after the lock-

down, which will be denoted by R ′ . We have 

R 

′ = 

β ′ 
γ

. 
ence, 

R 

′ − 1 

R − 1 

= 

(β ′ /γ ) − 1 

(β/γ ) − 1 

= 

β ′ − γ

β − γ
� 

−0 . 06 

0 . 3 

= −0 . 2 . 

e then get 

 

′ = 1 − 0 . 2(R − 1) . 

or 2.5 < R < 4, we get 

 . 4 < R 

′ < 0 . 7 . 

otice that for these estimates, the largest value of R corresponds

o the smallest value of R ′ . A more precise study by the Insti-

ut Pasteur gave the confidence intervals 3.18 < R < 3.43 and

.5 < R ′ < 0.54, which were later revised as 2.8 < R < 2.99 and

.65 < R ′ < 0.68 [5] . These intervals are inside the intervals com-

uted here. 

. The fatality rate 

The fatality rate by age among confirmed cases of coronavirus

n China has been estimated as follows: 0.2 percent under 40 years

f age, 0.4 percent between 40 and 49 years, 1.3 percent between

0 and 59 years, 3.6 percent between 60 and 69 years, 8 percent

etween 70 and 79 years, 15 percent above 80 years [2] . However,

t is likely that these fatality rates are overestimates of the true fa-

ality rate, because many infected people are not tested since they

ave no or few symptoms. An interesting example is the Diamond

rincess, where wide testing has been done. The population in the

iamond Princess on February 5 was approximately distributed as

ollows: 22 percent under 40 years of age, 9 percent between 40

nd 49 years, 11 percent between 50 and 59 years, 25 percent be-

ween 60 and 69 years, 27 percent between 70 and 79 years, 6

ercent above 80 years [3] . Among infected people as of February

0, the distribution was the following: 11 percent under 40 years

f age, 4 percent between 40 and 49 years, 9 percent between 50

nd 59 years, 29 percent between 60 and 69 years, 38 percent be-

ween 70 and 79 years, 9 percent above 80 years. If we apply the

stimated Chinese fatality rates to the Diamond Princess infected

istribution by age, then the overall fatality rate we get is 

(0 . 002 × 0 . 11) + (0 . 004 × 0 . 04) + (0 . 013 × 0 . 09) 

+ (0 . 036 × 0 . 29) + (0 . 08 × 0 . 38) + (0 . 15 × 0 . 09) , 

.e. 0.05589, approximately 5.6 percent. The number of deaths from

he Diamond Princess is 14, out of 712 infected people, so a true

atality rate of approximately 2 percent. A plausible way to esti-

ate the true fatality rate by age is then to multiply the Chinese

ates given above by 2/5.6, i.e. approximately 0.36. We get approx-

mately: 0.07 percent under 40 years of age, 0.14 percent between

0 and 49 years, 0.47 percent between 50 and 59 years, 1.3 percent

etween 60 and 69 years, 2.88 percent between 70 and 79 years,

.4 percent above 80 years. 

The global French population is distributed approximately as

ollows: 47 percent under 40 years of age, 13 percent between

0 and 49 years, 13 percent between 50 and 59 years, 12 percent

etween 60 and 69 years, 8 percent between 70 and 79 years, 7

ercent above 80 years. The age distribution of infected people is

ot the same as the general age distribution. Indeed, for example,

eople under 40 years old are 22 percent of the population of the

iamond Princess, but only 11 percent of the infected population

3] . Hence, one can estimate that when a person is under 40 years

ld, his or her probability of being infected is half the correspond-

ng probability for the general population. Similarly, people over 80

ears old are 6 percent of the population of the Diamond Princess,

ut 9 percent of the infected population [3] . Hence, one can esti-

ate that when a person is over 80 years old, his or her probabil-

ty to be infected is 1.5 times the corresponding probability for the
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eneral population. If we apply these ratios to the age distribution

f the general French population, we get numbers proportional to 

7 × 11 

22 

= 23 . 5 , 13 × 4 

9 

� 5 . 7 , 13 × 9 

11 

� 10 . 6 , 

2 × 29 

25 

� 13 . 9 , 8 × 38 

27 

� 11 . 3 , 7 × 9 

6 

= 10 . 5 . 

f we rescale this last sequence of numbers in order to get a total

f 100 percent, we get the following estimate of the age distribu-

ion of infected people in France: 31 percent under 40 years of age,

 percent between 40 and 49 years, 14 percent between 50 and 59

ears, 18 percent between 60 and 69 years, 15 percent between 70

nd 79 years, 14 percent over 80 years. Applying the fatality rates

y age computed above (by multiplying the Chinese numbers by

.36), we get an estimation of the overall French fatality rate: 

(0 . 0 0 07 × 0 . 31) + (0 . 0014 × 0 . 08) + (0 . 0047 × 0 . 14) 

+ (0 . 013 × 0 . 18) + (0 . 0288 × 0 . 15) + (0 . 054 × 0 . 14) , 

.e. 0.015207, approximately 1.5 percent. 

This computation assumed that the age distribution of infected

eople is biased with respect to the age distribution of the gen-

ral population, in the same way for the Diamond Princess and for

he general French population. This assumption is questionable be-

ause the amount of contact between people of different ages is

ot distributed in the same way in the boat and in France. If we

ssume instead that in France, the rate of infection does not de-

end on age, then the age distribution of infected people is the

ame as the age distribution of the general population. In this case,

e estimate a global French fatality rate of 

(0 . 0 0 07 × 0 . 47) + (0 . 0014 × 0 . 13) + (0 . 0047 × 0 . 13) 

+ (0 . 013 × 0 . 12) + (0 . 0288 × 0 . 08) + (0 . 054 × 0 . 07) , 

.e. 0.008766, approximately 0.9 percent. 

The study by the Institut Pasteur mentioned above gives the fol-

owing confidence intervals for the fatality rates, as functions of

ge: less than 0.02 percent under 40 years of age, between 0.03

nd 0.09 percent between 40 and 49 years, between 0.1 and 0.36

ercent between 50 and 59 years, between 0.5 and 1.4 percent be-

ween 60 and 69 years, between 1.4 and 3.7 percent between 70

nd 79 years, between 6 and 15.6 percent above 80 years [5] . Our

stimate is above the confidence interval under 60 years old, inside

he confidence interval between 60 and 79 years old, and slightly

nder the confidence interval over 80 years old. 

The overall fatality rate found by Institut Pasteur has a confi-

ence interval between 0.4 and 1 percent [5] ; our rate is above

his interval in our first computation and at the top of the interval

n our second computation. This suggests that in the study by In-

titut Pasteur, the older people are less likely to be infected than

n our estimates. 

Notice that all these estimates are subject to very large uncer-

ainty. In particular, they use the fact that there were 14 deaths

n the Diamond Princess, which is a small number. The most sim-

le probabilistic model for small random integer numbers is given

y a Poisson random variable. Any Poisson random variable with

ean between 8 and 22 has more than one percent chance to

e exactly equal to 14, whereas the probability is around 10 per-

ent for a Poisson variable of mean 14. Hence, it is plausible that

he fatality rate for a large population with the same age distribu-

ion as the Diamond Process is anything between 8/14 � 0.57 and

2/14 � 1.57 times the rate effectively observed in the Diamond

rincess due to the random fluctuations of the Poisson distribu-

ion. These possible multiplicative factors may then be applied to

ur previous estimate of the French fatality rate. If we combine this

ncertainty with the two computations we have done, respectively

iving 1.5 and 0.9 percent, we get a range between 0.5 percent and

.4 percent. 
. The number of infected individuals 

The number of infected people is equal to the number of deaths

ivided by the fatality rate. We can now estimate the number of

ndividuals already infected, or who will be infected until the end

f the current lockdown on May 11. Since the peak of infections

s on the day of the lockdown (March 17) in the basic model de-

cribed above, the peak of deaths is at the beginning of April (the

ypical time between infection and death should be around 2–3

eeks). In the computation of the number of infected people on

ay 11, we should then roughly take into account the number of

eaths until the end of May. This number is approximately 29,0 0 0

28,596 by May 27), then the number of infected people is about

9,0 0 0 divided by the fatality rate. All the estimates of the fatality

ate discussed above are between 0.4 and 2.5 percent. 

For a fatality rate of 2.5 percent, we get 29, 0 0 0/0.025, i.e.

round 1.2 million infected individuals in France until May 11, i.e.

.8 percent of the population. 

For a fatality rate of 1 percent, we get 29, 0 0 0/0.01, i.e. 2.9 mil-

ion infected people, i.e. 4.3 percent of the population. 

For a fatality rate of 0.5 percent, we get 5.8 million infected

eople, i.e. 8.7 percent of the population. 

For a fatality rate of 0.4 percent, we get 7.25 million infected

eople, i.e. 10.9 percent of the population. 

The confidence interval given by the Institut Pasteur was be-

ween 2.3 and 6.7 million people, i.e between 3.4 and 10 percent

f the population, and has been revised to 1.8 to 4.7 million peo-

le, i.e. between 2.7 to 7.1 percent of the population [5] . 

This estimate of the number of cases gives a slightly refined

stimate of the lockdown time we would need in order to suppress

he epidemic. We need to go from 1 to 10 million infections to

elow 1 infection, i.e. a decrease by a factor between 10 6 to 10 8 .

ince the estimated rate of decay under lockdown is 6 percent, we

ould need between 223 and 298 days, i.e. 7 to 10 months. On

he other hand, the infected people are still a small minority of the

opulation. Hence, France is in the most uncertain situation where

here is neither hope for a direct suppression of the epidemic by a

ockdown, nor significant herd immunity. 

. Reducing R 

We recall that the parameter R , representing the average num-

er of persons infected by a given individual, is equal to β/ γ
here β is the average number of persons contaminated each day

y a given infected individual, and γ is the proportion of infected

ndividuals who become non-contagious after one day. In the ba-

ic model introduced above, the number of infected individuals is

ultiplied by 1 + β − γ every day. The general strategy, in order

o reduce the contagion, is to reduce R , which can be done by

educing β and/or increasing γ . In order to reduce β , we have

een that lockdown is effective: other possibilities are social dis-

ancing, protection by masks, hygiene improvement, cancellation

f events with a large number of participants, and closure of bars

nd restaurants. In order to increase γ , one needs to isolate in-

ected individuals, and also increase the number of tests. People

ith higher probability of being infected, and people with a lot of

ontacts should be prioritized for testing. In the estimates obtained

bove, if we assume R = 3 . 3 (recall that R has been estimated to

e between 2.5 and 4), we have β � 0.43, γ � 0.13 before lock-

own, and β ′ � 0.07 after lockdown, which gives R ′ � 0.54. A cru-

ial question concerns the value of R after lockdown, in particular,

hether it can be maintained below 1 or not. With the values just

bove, a scenario for maintaining R at 1 might be the following: 

• Masks, hygiene and social distancing decrease β from 0.43 to

0.2. 
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• Massive testing manages to detect and isolate 7 more percent

of the current infected population every day, increasing γ from

0.13 to 0.2. 

An important question concerns the seasonality of the disease,

which might reduce R during spring and summer. 

Here is a scenario where we do not manage to maintain R be-

low 1: γ increases to 0.18, β decreases to 0.27, and the new value

of R is 1.5. In this case, the number of infected people increases

by 27 − 18 = 9 percent per day, i.e. a multiplication by 14 every

month. This is a guarantee to reach herd immunity (see below)

during the summer, unless more restrictions are introduced again. 

7. Herd immunity 

Until now, we have neglected herd immunity in the model,

which can be justified by the fact that a small proportion of the

population has been infected. The most basic model taking herd

immunity into account, called SIR, can be described as follows. At

day n , a proportion S n of the population is susceptible, i.e. is not

currently infected but may be infected later by other individuals,

and a proportion I n of the population is currently infected. An in-

fected individual contaminates on average βS n susceptible individ-

uals in one day, and a proportion γ of infected individuals are not

contagious anymore the next day and cannot be re-infected later

(we assume that being infected provides immunity, which is nat-

ural to expect but still not yet proven). The replacement of β by

βS n here is due to the fact that among the β infectious contacts

of a given infected individual, a proportion 1 − S n of them are al-

ready infected, or have already been infected before, so they are

supposed to be immune. We get the following equation: 

I n +1 = (1 − γ + βS n ) I n , 

which is similar to the equation satisfied by X n defined previously,

with β replaced by βS n . The model here is close to the basic model

above if S n is close to 1, i.e. most individuals have still not been

infected. Moreover, we have 

S n +1 = S n (1 − βI n ) , 

the term −S n βI n meaning that the newly infected people are

not susceptible anymore at day n + 1 . Notice that in general, this

model is presented in continuous time, which gives a system of

differential equations. 

Recall that β ≤ γ corresponds to R ≤ 1 in the previous model.

The number of infected individuals is decreasing exponentially if

R < 1. Hence, the epidemic is under control. If β > γ , the number

of infected people is exponentially increasing at the beginning, un-

til the point where the multiplicative factor 1 − γ + βS n becomes

smaller than or equal to 1, i.e. βS n ≤ γ , S n ≤ γ / β , or S n ≤ 1/ R . This

means that the number of infected people is maximal (we reach

the peak of the epidemic) when the proportion of susceptible in-

dividuals is 1/ R , i.e. the proportion of individuals already infected

is 1 − 1 /R . If 2.5 < R < 4, we get 0 . 6 < 1 − 1 /R < 0 . 75 , i.e. we need

to have 60 to 75 percent of people already infected in order to

control the epidemic. Notice that after the point when S n = 1 /R,

the number of infected individuals decreases but does not instantly

fall to zero, so there are newly infected people. It is not very diffi-

cult to approximate the proportion of individuals who are infected

some time during the epidemic. Indeed, we observe that the rela-

tive variation of I with respect to the variation of S is given by: 

I n +1 − I n 

S n +1 − S n 
= 

(−γ + βS n ) I n 
−βS n I n 

= 

βS n − γ

−βS n 
= −1 + 

γ

βS n 
= −1 + 

1 

RS n 
. 

Hence, 

I n +1 − I n = (S n +1 − S n ) 
(

1 

RS 
− 1 

)
. 
n 
ow, we can add these equations over all integers n , from −∞ (far

n the past), to ∞ (far in the future). We get 

 ∞ 

− I −∞ 

= 

1 

R 

∑ 

n ∈ Z 

(
S n +1 

S n 
− 1 

)
− (S ∞ 

− S −∞ 

) . 

et us now suppose that the relative variation of S is small from

ne day to the next one, i.e. a small proportion of the population

s infected on a given day. This approximation may be discussed,

nd can be made automatically true by replacing a discrete time

odel by a model in continuous time (which is generally done). If

he relative variation of S is small, we can approximate S n +1 /S n − 1

y ln (S n +1 /S n ) . In this case, we get 

 ∞ 

− I −∞ 

� 

1 

R 

∑ 

n ∈ Z 
ln 

(
S n +1 

S n 

)
− (S ∞ 

− S −∞ 

) 

herefore, 

 ∞ 

− I −∞ 

� 

1 

R 

ln 

(
S ∞ 

S −∞ 

)
− (S ∞ 

− S −∞ 

) . 

ow, I −∞ 

and I ∞ 

are equal to zero, because these numbers corre-

pond to the number of infected individuals before the epidemic

nd when the epidemic is over. Moreover, S −∞ 

= 1 : before the

pidemic, everybody is susceptible, since nobody is immune. The

alue of S ∞ 

is the proportion of people who are never infected

uring the epidemic, and thus are always susceptible. We get 

1 

R 

ln (S ∞ 

) − (S ∞ 

− 1) � 0 

hich gives approximately 

1 

J 
ln (1 / (1 − J)) = R 

here J = 1 − S ∞ 

is the proportion of individuals who are infected

ome time during the epidemic. The solution of this equation does

ot have a convenient closed form, but it can easily be solved nu-

erically. We can also write the equation as 

 + 

J 

2 

+ 

J 2 

3 

+ 

J 3 

4 

+ · · · = R. 

his equality confirms that we are in the situation R > 1. For R =
 . 5 , we get J � 0.89; and for R = 4 , we get J � 0.98. In other words,

ithout any policy to control the epidemic, most of the population

s expected to be infected sometime, according to the SIR model.

otice that the value of J found here is larger than the value of

 − 1 /R usually given for herd immunity. In fact, these numbers

orrespond to two different situations: 

• If we let the epidemic grow naturally, we get a proportion J of

infected people. 

• If we control the growth of the epidemic until a proportion

larger than 1 − 1 /R of the population is infected, then recov-

ers or dies, we can release the restrictions and the epidemic is

stopped by herd immunity. 

Hence, temporary control of the epidemic until we reach herd

mmunity can potentially reduce the proportion of infected peo-

le from J to 1 − 1 /R . For R = 2 . 5 , 1 − 1 /R = 0 . 6 and for R = 4 ,

 − 1 /R = 0 . 75 : we need 60 to 75 percent of infected people for

controlled herd immunity,” instead of 89 to 98 percent of infected

eople for ”uncontrolled herd immunity.”

Notice that these numbers are probably an overestimate. In-

eed, the model does not distinguish between individuals, and so

mplicitly assumes that an infected individual contaminates ran-

om people in the French population. In reality, contamination is

ore local (family, friends, colleagues), so ”local herd immunity”

e.g. if all family members are infected) can prevent the epidemic

rom reaching levels as high as what is predicted by the SIR model.
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e will later study how the proportion of infected people is re-

uced when we consider two categories of people, with different

ates of infectious contacts. In any case, it is very likely that a large

roportion of the population should be infected in order to reach

erd immunity, even controlled. 

We can also notice that in the current French situation, it is

ikely that herd immunity plays a minor role. Since less than 10

ercent of the population is likely to be immune, the proportion

f susceptible people is more than 0.9. We have estimated that

= 0 . 43 and γ = 0 . 13 ; if we assume that R = 3 . 3 , then in this

ase, we have βS 0 � 0.39 if S 0 = 0 . 9 . In other words, the daily

ate of increase of the number of infected people is reduced by

t most 4 percent by herd immunity; and without political deci-

ions to control the epidemic, the ”effective R , ” after taking into

ccount herd immunity, is 0.39/0.13, i.e. 3 instead of 3.3. 

. A model with two categories of individuals 

In the models discussed earlier, all infected individuals were as-

umed to infect the same number of individuals on average. It is

ossible to consider slightly more sophisticated models, where dif-

erent categories of individuals are infecting different number of

eople. We can consider two categories of people, where an indi-

idual of category 1 infects β1,1 people per day in category 1 and

2,1 people per day in category 2, whereas an individual of cate-

ory 2 infects β1,2 people per day in category 1 and β2,2 people

er day in category 2. We assume that these four parameters are

trictly positive and we neglect herd immunity for the moment. If

t day n, X n denotes the number of infected individuals in cate-

ory 1 and Y n is the number of infected individuals in category 2,

e have, after taking into account that a proportion γ ∈ (0, 1) of

nfected individuals is not contagious anymore the next day: 

 n +1 = (1 + β1 , 1 − γ ) X n + β1 , 2 Y n , 

 n +1 = β2 , 1 X n + (1 + β2 , 2 − γ ) Y n . 

f we denote 

 n := 

(
X n 

Y n 

)
, 

e have 

 n +1 = MZ n 

here 

 = 

(
1 + β1 , 1 − γ β1 , 2 

β2 , 1 1 + β2 , 2 − γ

)
. 

he eigenvalues λ of the matrix M satisfying the equation: 

2 − (2 + β1 , 1 + β2 , 2 − 2 γ ) λ + (1 + β1 , 1 − γ )(1 + β2 , 2 − γ ) 

−β1 , 2 β2 , 1 = 0 . 

he discriminant of this equation is given by 

= (2 + β1 , 1 + β2 , 2 − 2 γ ) 2 − 4(1 + β1 , 1 − γ )(1 + β2 , 2 − γ ) 

+ 4 β1 , 2 β2 , 1 . 

ince (a + b) 2 − 4 ab = (a − b) 2 for all a, b ∈ R , we have 

= (β1 , 1 − β2 , 2 ) 
2 + 4 β1 , 2 β2 , 1 > 0 

ince we have assumed that β1,2 and β2,1 are strictly positive.

ence, we have two distinct real eigenvalues, 

− = 1 + 

1 

2 

(
β1 , 1 + β2 , 2 − 2 γ −

√ 

�
)
, 

+ = 1 + 

1 

(
β1 , 1 + β2 , 2 − 2 γ + 

√ 

�
)
. 
2 
ince � > (β1 , 1 − β2 , 2 ) 
2 , we have 

− < 1 + 

1 

2 

( β1 , 1 + β2 , 2 − 2 γ − | β1 , 1 − β2 , 2 | ) 
= 1 + min (β1 , 1 , β2 , 2 ) − γ , 

nd 

+ > 1 + max (β1 , 1 , β2 , 2 ) − γ . 

he eigenvalues have the same mean as the diagonal entries of M ,

nd a larger mutual difference. If x and y are the coordinates of an

igenvector corresponding to the eigenvalue λ, we need 

(1 + β1 , 1 − γ − λ) x + β1 , 2 y = β2 , 1 x + (1 + β2 , 2 − γ − λ) y = 0 . 

or λ = λ±, we get 

 + β1 , 1 − γ − λ = 

β1 , 1 − β2 , 2 ∓
√ 

�

2 

, 

nd 

 + β2 , 2 − γ − λ = 

β2 , 2 − β1 , 1 ∓
√ 

�

2 

. 

ince � is strictly larger than | β2 , 2 − β1 , 1 | , all these numbers are

trictly positive for λ = λ− and strictly negative for λ = λ+ . Since

1,2 and β2,1 are non-zero, we deduce that the eigenvector should

atisfy: 

x 

y 
= 

β1 , 1 − β2 , 2 ±
√ 

�

2 β2 , 1 

= 

2 β1 , 2 

β2 , 2 − β1 , 1 ±
√ 

�
. 

t is not difficult to check that the two last quotients are equal.

oreover, x and y should have the same sign for λ = λ+ and op-

osite signs for λ = λ−. Let us fix two eigenvectors V + and V − cor-

esponding to the eigenvalues λ+ and λ−. We know that V + has co-

rdinates with the same sign, by possibly changing V + to its oppo-

ite, we can assume that this vector has positive coordinates. Since

 − has coordinates of opposite signs, V + and V − are independent,

hich implies that they span R 

2 . We can then write 

 0 = 

(
X 0 

Y 0 

)
= α+ V + + α−V −

or some α+ , α− ∈ R . For all integers n ≥ 0, we have Z n +1 = MZ n ,

nd so 

 n = M 

n Z 0 = α+ M 

n V + + α−M 

n V −, 

hich implies 

 n = α+ λn 
+ V + + α−λn 

−V −. 

ince Z n has positive coordinates and α−λn −V − has coordinates

f opposite signs, we necessarily have α+ � = 0 . Moreover, we can

rite 

Z n 

λn + 
= α+ V + + (λ−/λ+ ) n α−V −. 

ecall that 

+ = μ + 

1 

2 

√ 

�

nd 

− = μ − 1 

2 

√ 

�

here 

= 1 + 

1 

2 

( β1 , 1 + β2 , 2 − 2 γ ) . 

ecall that γ < 1 (the proportion of infected individuals who re-

over or are isolated the next day), β1,1 , β2,2 > 0 and hence μ > 0,
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which implies that λ+ > | λ−| . The quantity (λ−/λ+ ) n exponen-

tially decays to zero, which implies that 

Z n 

λn + 
−→ α+ V + 

when n tends to infinity. In more concrete words: 

• If we are sufficiently advanced in the epidemic, the number of

infected individuals grows approximately exponentially, with a

daily growth factor λ+ . 
• The proportion of infected individuals in each category is pro-

portional to the corresponding coordinates of the eigenvector

V + . 
• However, the rate of growth may be different at the beginning

of the epidemic. 

In the case where Z 0 is proportional to V + , then the number

of infected individuals evolves exactly exponentially with rate λ+ .
If β denotes, in this situation, the average number of individuals

contaminated in one day by a given infected individual, then the

number of infected individuals grows by a factor 1 + β − γ every

day (the term −γ comes from people who are not contagious any-

more the next day). Hence, we should have 1 + β − γ = λ+ , which

gives 

β = λ+ + γ − 1 = 

1 

2 

(β1 , 1 + β2 , 2 + 

√ 

�) . 

The average number of people contaminated by an infected indi-

vidual during all the contagion is then R := β/ γ , i.e. 

R = 

1 

2 γ
(β1 , 1 + β2 , 2 + 

√ 

�) 

= 

1 

2 γ
(β1 , 1 + β2 , 2 + 

√ 

(β1 , 1 − β2 , 2 ) 2 + 4 β1 , 2 β2 , 1 ) . 

As in the basic model, the epidemic grows if and only if 1 + β −
γ = λ+ is larger than 1, i.e. β > γ , or R > 1. The situation is similar

to the case of the previous model, but with a more complicated

expression for R . 

We can now look at a few examples. The first one is when the

separation into two categories is irrelevant for the contagion. Let

π1 and π2 be the proportions of individuals in categories 1 and 2

in the population, respectively, and π1 + π2 = 1 . If there is no par-

ticular preference between the two categories for contamination,

then any individual will contaminate β individuals in one day for

some value of β: βπ1 individuals in category 1 and βπ2 in cate-

gory 2. We then have: 

M = 

(
1 + β1 , 1 − γ β1 , 2 

β2 , 1 1 + β2 , 2 − γ

)

= 

(
1 + βπ1 − γ βπ1 

βπ2 1 + βπ2 − γ

)
. 

Recall that β1,2 represents the contaminations from category 2 to

category 1. We get 

� = β2 (π1 − π2 ) 
2 + 4 β2 π1 π2 = β2 (π1 + π2 ) 

2 = β2 , 

which gives 

λ+ = 1 + 

1 

2 

( β(π1 + π2 ) − 2 γ + β) = 1 + β − γ , 

λ− = 1 + 

1 

2 

( β(π1 + π2 ) − 2 γ − β) = 1 − γ . 

The asymptotic rate of growth of epidemic is then the same as in

the basic model, namely 1 + β − γ . In fact, a direct computation

of the sum of the coordinates of MV for a given vector V shows
hat the number of infected individuals is exactly multiplied by

 + β − γ each day. Hence, the predictions of the model are the

ame as the predictions of the basic model, which is not surpris-

ng since we have assumed that the separation into two categories

s irrelevant for the contagion. 

Another example is when we have two categories of the same

ize (half the population), one more sociable than the other. We

ight assume that the mutual contamination of the two categories

s proportional to the product of their ”degrees of socialization.” If

j denotes the ”degree of socialization” of the category j , we may

ssume βi, j = σi σ j , then 

 = 

(
1 + σ 2 

1 − γ σ1 σ2 

σ1 σ2 1 + σ 2 
2 − γ

)
. 

ne can compute the eigenvalues, and one gets: 

+ = 1 − γ + σ 2 
1 + σ 2 

2 , λ− = 1 − γ . 

ne can take for eigenvectors: 

 + = 

(
σ1 

σ2 

)
, V − = 

(
σ2 

−σ1 

)
. 

he rate of increase of the epidemics is 1 − γ + σ 2 
1 + σ 2 

2 , and we

an check that 

 = 

1 

2 γ
(σ 2 

1 + σ 2 
2 ) . 

he eigenvector V + shows that in the long run, people are infected

roportionally to their degree of socialization. However, if one of

he categories is very sociable, σ 2 
1 

+ σ 2 
2 

is large even if the other

ategory has a very low sociability. If category 1 has sufficient so-

iability to make R > 1 even when category 2 has very low so-

iability, then category 2 will be infected with exponential growth

ven though it is less infected than category 1. It is then essen-

ial that decisions of social distancing are widely respected by the

opulation. 

Let us illustrate this fact by another example. We assume that

fter an exponentially growing epidemic, social distancing restric-

ions are implemented, but with 15 percent of the population not

especting them when they are together. We assume that γ = 0 . 13 ,

nd that before social restriction, β = 0 . 43 (this corresponds to the

oronavirus before lockdown, in the case where R = 3 . 3 ). Let us di-

ide the population into two categories: category 1 with π1 = 85%

f the population respecting social distancing, category 2 with

2 = 15% of the population not respecting social distancing. Before

he decision to social distance, we may assume that the two cate-

ories are irrelevant: 

 = 

(
1 + βπ1 − γ βπ1 

βπ2 1 + βπ2 − γ

)
= 

(
1 . 2355 0 . 3655 

0 . 0645 0 . 9345 

)
. 

he largest eigenvalue is 1.3, which gives a growth of 30 percent

er day of the epidemic. The corresponding eigenvector has coor-

inates 0.85 and 0.15, i.e. 85 percent of the infected population is

n category 1 and 15 percent is in category 2. Let us now assume

hat social distancing divides the contacts by 3.5. If everybody re-

pects social distancing, the rate of contamination is divided by 3.5

nd thus β goes from 0.43 down to 0.1229 (which is smaller than

= 0 . 13 ), and so the epidemic is under control ( R � 0.94). If peo-

le in category 2 do not respect social distancing at all when they

re together, we get 

1 , 1 = βπ1 / 3 . 5 , 

1 , 2 = βπ1 / 3 . 5 , 

2 , 1 = βπ2 / 3 . 5 , 

2 , 2 = βπ2 , 
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nd after social distancing, the matrix M becomes: 

 

′ = 

(
1 + βπ1 / 3 . 5 − γ βπ1 / 3 . 5 

βπ2 / 3 . 5 1 + βπ2 − γ

)

� 

(
0 . 97443 0 . 10443 

0 . 01842 0 . 9345 

)
. 

n this case, the largest eigenvalue is 1.0026, R ′ � 1.02, and the epi-

emic grows. Looking at the coordinates of V + , we see that in the

ong run, about 79 percent of infected individuals are in category

, and 21 percent in category 2. Hence, even if people in category 1

re less infected than people in category 2 (79 percent of infections

or 85 percent of the population), they are still widely infected, and

re impacted by the consequences of the growing epidemic. No-

ice that in this example, people in category 2 still respect social

istancing when they meet people in category 1. We can look at

hat happens when people in category 2 only partially respect so-

ial distancing when they meet people in category 1, say, dividing

he contacts by 2 instead of 3.5. In this case, the matrix becomes: 

0 . 97443 0 . 18275 

0 . 03225 0 . 9345 

)
. 

e get a largest eigenvalue of 1.03379, R ′ � 1.26, i.e. a rather fast

rowth of the epidemic (3.4 percent per day). In the long run, 75

ercent of infections are in category 1 and 25 percent in category

. 

Another numerical example can be computed in order to model

n almost full lockdown of people aged 70 or more, who are ap-

roximately 15 percent of the French population. Let us say that

eople under 70 are in category 1 and people over 70 are in cat-

gory 2. In the situation before lockdown, if we assume that the

ategories are irrelevant for contagion (not necessarily very realis-

ic, since people over 70 have in general fewer contacts than peo-

le under 70), we get the same matrix 

 = 

(
1 + βπ1 − γ βπ1 

βπ2 1 + βπ2 − γ

)
= 

(
1 . 2355 0 . 3655 

0 . 0645 0 . 9345 

)
s before. Let us assume that the contacts involving category 2 are

ivided by 10 after selective lockdown. We then get 

1 , 1 = βπ1 , 

1 , 2 = βπ1 / 10 , 

2 , 1 = βπ2 / 10 , 

2 , 2 = βπ2 / 10 . 

his gives a new matrix 

 

′ = 

(
1 . 2355 0 . 03655 

0 . 00645 0 . 87645 

)
. 

n this case, λ+ � 1 . 236 , R � 2.8, i.e. a very quick growth of the

pidemic (by 23.6 percent per day), not dramatically different from

he situation before selective lockdown. In the long run, about 1.8

ercent of infected people are in category 2, instead of 15 percent

n the situation before lockdown. In other words, in this model,

ockdown of people over 70 is inefficient to globally control the

pidemic, but it reduces the portion of older people in the infected

opulation by a factor of 8 to 9. If we refer to the previous esti-

ates of the fatality rates by age, we get that the global fatality

ate is reduced by a factor of 2 to 3. 

Notice that it is likely that people over 70 years old have fewer

ontacts than people under 70. Then, even without social distanc-

ng restrictions, it is natural to expect that they are less infected

han younger people. The estimates we have found on the fatal-

ty rate by age are not very far from the estimates given in the

tudy by the Institut Pasteur. However, our estimates of the over-

ll fatality rate (0.8 and 1.3 percent) are significantly larger than
he estimates of Institut Pasteur (confidence interval between 0.3

nd 0.9 percent). This is probably partially due to the fact that our

revious estimates do not take into account that older people are

ikely to be less infected than younger people. 

Another remark can be made when we look at the evolution of

he total number of infected people just after the selective lock-

own. At the time of the lockdown, for each infected individual,

e have on average 0.85 individuals in category 1 and 0.15 in cat-

gory 2. The day after, we get 

1 . 2355 0 . 03655 

0 . 00645 0 . 87645 

)(
0 . 85 

0 . 15 

)
= 

(
1 . 0556575 

0 . 13695 

)
, 

.e. 1.0556575 infected individuals in category 1 and 0.13695 in cat-

gory 2. In one day, the number of infected individuals is then

ultiplied by 1.1926075, i.e. increased by about 19.3 percent. This

s less than the rate of increase of 23.6 percent which occurs in the

ong run. To summarize, the daily rate of increase of the number

f infected people is 30 percent before selective lockdown, goes

own to 19.3 percent the day just after the lockdown, and then

ncreases again to 23.6 percent in the long run. Let us now as-

ume that besides the selective lockdown, we do some massive

esting which increases the value of γ from 0.13 to 0.33. In this

ase, everything remains similar, except that the two eigenvalues

re shifted by −0 . 2 . The rate of increase is now −0 . 7 percent just

fter the lockdown, then grows to 3.6 percent: the number of in-

ected people is decreasing for some time and then increases again.

Here, we have discussed models with two categories, it is of

ourse possible to generalize the study to models with more than

wo categories by using larger matrices. 

. Herd immunity with two categories of individuals 

In the previous section, we considered two kinds of individuals,

ut we neglected immunity, as in the basic model. We will now

resent a model where we take immunity into account. We take

he same basic parameters β1,1 , β1,2 , β2,1 , β2,2 corresponding to

he rates of contagion in the case where the proportion of immune

ndividuals is negligible. 

We have two categories of individuals, a proportion π1 of them

eing in category 1 and a proportion π2 being in category 2, with

1 + π2 = 1 . We assume that at day n , a proportion S 1, n of the total

opulation is in category 1 and susceptible, a proportion I 1, n of the

opulation is in category 1 and infected, a proportion S 2, n of the

opulation is in category 2 and susceptible, and a proportion I 2, n 

f the population is in category 2 and infected. The proportion of

usceptible individuals in category 1 is S 1, n / π1 and the proportion

f susceptible individuals in category 2 is S 2, n / π2 . Hence, between

ay n and day n + 1 , with the notation above, an infected individ-

al in category 1 contaminates β1,1 S 1, n / π1 individuals in category 1

nd β2,1 S 2, n / π2 individuals in category 2. Similarly, an infected in-

ividual in category 2 contaminates β1,2 S 1, n / π1 individuals in cat-

gory 1 and β2,2 S 2, n / π2 individuals in category 2. We then get 

 1 ,n +1 = I 1 ,n (1 − γ ) + (S 1 ,n /π1 ) ( β1 , 1 I 1 ,n + β1 , 2 I 2 ,n ) , 

 2 ,n +1 = I 2 ,n (1 − γ ) + (S 2 ,n /π2 ) ( β2 , 1 I 1 ,n + β2 , 2 I 2 ,n ) , 

 1 ,n +1 = S 1 ,n − (S 1 ,n /π1 ) ( β1 , 1 I 1 ,n + β1 , 2 I 2 ,n ) , 

 2 ,n +1 = S 2 ,n − (S 2 ,n /π2 ) ( β2 , 1 I 1 ,n + β2 , 2 I 2 ,n ) . 

f we denote 

 = 

(
β1 , 1 β1 , 2 

β2 , 1 β2 , 2 

)
, 
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I n = 

(
I 1 ,n 
I 2 ,n 

)
, 

S n = 

(
S 1 ,n 
S 2 ,n 

)
, 

�n = 

(
S 1 ,n /π1 0 

0 S 2 ,n /π2 

)
, 

we get 

I n +1 = ( (1 − γ ) Id +�n B ) I n 

and 

S n +1 = S n − �n BI n . 

Hence, 

I n +1 − I n = −γ I n + �n BI n = γ B 

−1 �−1 
n (S n +1 − S n ) − (S n +1 − S n ) . 

We have 

�−1 
n (S n +1 − S n ) = 

(
π1 

S 1 ,n +1 −S 1 ,n 
S 1 ,n 

π2 
S 2 ,n +1 −S 2 ,n 

S 2 ,n 

)
. 

If we assume that the relative variation of S 1, n and S 2, n is small

in one day, we can approximate (S j,n +1 − S j,n ) /S j,n by ln (S j,n +1 ) −
ln (S j,n ) for j equal to 1 or 2. This approximation becomes rigor-

ously true in a continuous time model. Letting 

L n := 

(
π1 ln S 1 ,n 
π2 ln S 2 ,n 

)
, 

we get 

I n +1 − I n = γ B 

−1 (L n +1 − L n ) − (S n +1 − S n ) . 

Summing for all n ≥ 1, we get 

I ∞ 

− I −∞ 

= γ B 

−1 (L ∞ 

− L −∞ 

) − (S ∞ 

− S −∞ 

) . 

As in the one-dimensional model, the number of infected people is

zero far in the past and the future. Moreover, everybody is suscep-

tible at the beginning, and then, taking into account the proportion

of the population in categories 1 and 2, 

S −∞ 

= 

(
π1 

π2 

)
, S ∞ 

= 

(
π1 (1 − J 1 ) 
π2 (1 − J 2 ) 

)
, 

L −∞ 

= 

(
π1 ln π1 

π2 ln π2 

)
, 

L ∞ 

= 

(
π1 ( ln π1 + ln (1 − J 1 )) 
π2 ( ln π2 + ln (1 − J 2 )) 

)
, 

where J j is the proportion of individuals in category j who become

infected some time during the epidemic. We deduce 

γ B 

−1 

(
π1 ln (1 − J 1 ) 
π2 ln (1 − J 2 ) 

)
+ 

(
π1 J 1 
π2 J 2 

)
= 0 , 

which implies (
π1 ln (1 / (1 − J 1 )) 
π2 ln (1 / (1 − J 2 )) 

)
= γ −1 B 

(
π1 J 1 
π2 J 2 

)
, 

and then (
ln (1 / (1 − J 1 )) 
ln (1 / (1 − J 2 )) 

)
= R 

(
J 1 
J 2 

)
where 
 := γ −1 

(
π−1 

1 
0 

0 π−1 
2 

)
B 

(
π1 0 

0 π2 

)

= γ −1 

(
β1 , 1 β1 , 2 π2 /π1 

β2 , 1 π1 /π2 β2 , 2 

)
. 

n the previous section, we computed a reproduction rate R , and

e saw that 

 = 

1 

2 γ

(
β1 , 1 + β2 , 2 + 

√ 

(β1 , 1 − β2 , 2 ) 2 + 4 β1 , 2 β2 , 1 

)
. 

n fact, R is the largest eigenvalue of the matrix R . 

Let us now discuss the examples considered in the previous

ection. 

In the case of irrelevant categories, we have 

 = γ −1 

(
βπ1 βπ2 

βπ1 βπ2 

)
. 

otice that in the previous section, we had an extra term 1 − γ on

he diagonal entries which is not in the matrices B or R . In this

ase, 

 

(
J 1 
J 2 

)
= (β/γ )(π1 J 1 + π2 J 2 ) 

(
1 

1 

)
. 

ince this vector has two equal coordinates, we need to have

n (1 / (1 − J 1 )) = ln (1 / (1 − J 2 )) , then J 1 = J 2 = J for some J ∈ (0, 1),

.e. the proportion of people who get infected some time is the

ame in the two categories. Now, 

 

(
J 1 
J 2 

)
= (β/γ )(π1 J + π2 J) 

(
1 

1 

)
= R 

(
J 
J 

)
, 

ince we have computed R = β/γ in this example. Hence, J should

atisfy ln (1 − J) = RJ, i.e. the same equation as in the model with a

ingle category. This confirms that the categories are irrelevant in

he present example. 

In the example with two categories of the same size ( π1 = π2 =
 / 2 ) and different degrees of socialization σ 1 and σ 2 , we have 

 = γ −1 

(
σ 2 

1 σ1 σ2 

σ1 σ2 σ 2 
2 

)
. 

he equations we need to solve are 

n (1 / (1 − J 1 )) = γ −1 σ1 (σ1 J 1 + σ2 J 2 ) , 

n (1 / (1 − J 2 )) = γ −1 σ2 (σ1 J 1 + σ2 J 2 ) . 

he right-hand sides of the equations should be proportional to σ 1 

nd σ 2 , and it should be the same for the left-hand sides. We then

ave, for some α > 0, 

 1 = 1 − e −σ1 α/ 
√ 

γ , J 2 = 1 − e −σ2 α/ 
√ 

γ , 

nd 

= (σ1 / 
√ 

γ )(1 − e −σ1 α/ 
√ 

γ ) + (σ2 / 
√ 

γ )(1 − e −σ2 α/ 
√ 

γ ) , 

.e. 

= s 1 (1 − e −s 1 α) + s 2 (1 − e −s 2 α) 

or s 1 = σ1 / 
√ 

γ and s 2 = σ2 / 
√ 

γ . Notice that we have previously

omputed R = γ −1 (σ 2 
1 

+ σ 2 
2 
) and so s 2 

1 
+ s 2 

2 
= R . Let us assume that

 1 = 0 . 7 , s 2 = 1 . 4 , so R = 2 . 45 . In this example, category 2 is twice

s sociable as category 1. We numerically find α � 1.784, and

hen 

 1 = 1 − e −s 1 α � 0 . 713 , J 2 = 1 − e −s 2 α � 0 . 918 . 

he global proportion of infected people is then about 81.5 percent.

his is less than the proportion of 88.6 percent which we obtain
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or the model with a single category for the same value R = 2 . 45 .

s in the example in the previous section for social distancing, if

ot being respected by 15 percent of the individuals when they are

ogether, we have for π1 = 0 . 85 , π2 = 0 . 15 , and γ = 0 . 13 : 

1 , 1 = 0 . 43 π1 / 3 . 5 , 

1 , 2 = 0 . 43 π1 / 3 . 5 , 

2 , 1 = 0 . 43 π2 / 3 . 5 , 

2 , 2 = 0 . 43 π2 , 

hich gives approximately: 

 � 

(
0 . 80329 0 . 14176 

0 . 80329 0 . 49615 

)
nd R � 1.0205. We now need to solve 

n (1 / (1 − J 1 )) = 0 . 80329 J 1 + 0 . 14176 J 2 , 

n (1 / (1 − J 2 )) = 0 . 80329 J 1 + 0 . 49615 J 2 . 

e find numerically 

 1 � 0 . 03465 , J 2 � 0 . 05242 . 

he global proportion of infected individuals is 

1 J 1 + π2 J 2 � 0 . 0373 , 

hich is slightly less than what we obtain for the model with one

ategory for the same value of R . In the same example with the

ontacts between 1 and 2 divided by 2 instead of 3.5, we get 

 � 

(
0 . 80329 0 . 24808 

1 . 40576 0 . 49615 

)
, 

nd R � 1.26. We solve numerically 

n (1 / (1 − J 1 )) = 0 . 80329 J 1 + 0 . 24808 J 2 , 

n (1 / (1 − J 2 )) = 1 . 40576 J 1 + 0 . 49615 J 2 . 

e get 

 1 � 0 . 3111 , J 2 � 0 . 4 94 8 

nd then a global proportion of 

1 J 1 + π2 J 2 � 0 . 3387 . 

his is again smaller than what we get for a single category with

 = 1 . 26 , i.e. 0.3821. 

The partial lockdown of people over 70 years old gives 

 = 

(
2 . 81154 0 . 04962 

0 . 28115 0 . 04962 

)
, 

nd R � 2.8166. We solve numerically 

n (1 / (1 − J 1 )) = 2 . 81154 J 1 + 0 . 04962 J 2 , 

n (1 / (1 − J 2 )) = 0 . 28115 J 1 + 0 . 04962 J 2 

nd we get 

 1 � 0 . 9271 , J 2 � 0 . 2385 , 

nd a global proportion of infected people of 0.8238, instead of

.9264 for a single category. Notice that the older people are much

ess infected than the others, but not by a factor of 10. 

In all of the examples above, the fact that the contacts are not

niform in the population reduces the total number of infected in-

ividuals for a given value of R > 1, but not in a dramatic way. 

The proportion of infected individuals we have computed is not

he same as the minimum needed in order to get herd immunity.
n order to compute this proportion, we assume that we have con-

rolled the epidemic in such a way that there are very few cur-

ently infected people, but sufficiently many immune individuals.

ince there should be few new infections, we can assume that the

roportion of susceptible individuals in each category stabilizes at

evels S 1 and S 2 . In this situation, the evolution of the number of

nfected individuals can be written as follows: 

 n +1 = ((1 − γ ) Id +�B ) I n , 

here 

= 

(
S 1 /π1 0 

0 S 2 /π2 

)
, 

.e. the same equation as before, but with a fixed number of sus-

eptible individuals. We get herd immunity, i.e. the epidemic is un-

er control, if the largest eigenvalue of (1 − γ ) Id +�B is strictly

maller than 1. If we want to minimize the number of previously

nfected individuals, we need to maximize the global proportion

f individuals who are still susceptible, i.e. S 1 + S 2 . In order for

he eigenvalues of (1 − γ ) Id +�B to be smaller than 1, we need

he eigenvalues of �B to be smaller than γ , i.e. the eigenvalues of
−1 �B to be smaller than 1. We have 

−1 �B = 

(
S 1 0 

0 S 2 

)
R 

(
π−1 

1 
0 

0 π−1 
2 

)

= 

(
R 1 , 1 S 1 /π1 R 1 , 2 S 1 /π2 

R 2 , 1 S 2 /π1 R 2 , 2 S 2 /π2 

)
. 

f we assume that a proportion 1/ R of the individuals in each cate-

ory is immune, we get S 1 = π1 /R, S 2 = π2 /R, and 

−1 �B = R 

−1 

(
R 1 , 1 R 1 , 2 π1 /π2 

R 2 , 1 π2 /π1 R 2 , 2 

)
. 

his matrix is conjugated to R /R and so its largest eigenvalue is

. Hence, we can have herd immunity if the proportion of already

nfected people is larger than 1 − 1 /R, as in the case with one cat-

gory. However, this situation is not optimal since herd immunity

an be obtained with less infected individuals in general. In gen-

ral, we need to maximize S 1 + S 2 , conditioned on the fact that 

1 

2 

(
R 1 , 1 S 1 /π1 + R 2 , 2 S 2 /π2 

+ 

√ 

(R 1 , 1 S 1 /π1 − R 2 , 2 S 2 /π2 ) 2 + 4 R 1 , 2 R 2 , 1 S 1 S 2 /π1 π2 

)
s smaller than 1. 

In the case of irrelevant categories, we get 

 = γ −1 

(
βπ1 βπ2 

βπ1 βπ2 

)
, 

nd then we need 

1 

2 γ

(
βS 1 + βS 2 + 

√ 

(βS 1 − βS 2 ) 2 + 4 β2 S 1 S 2 

)
o be smaller than 1. This condition gives (β/γ )(S 1 + S 2 ) < 1 , i.e.

 1 + S 2 < 1 /R . This gives a proportion of infected individuals equal

o 1 − 1 /R, and there is no improvement with respect to the model

ith one category. 

In the case with two different degrees of socialization σ 1 and

2 , and for π1 = π2 = 1 / 2 , we have 

 = γ −1 

(
σ 2 

1 σ1 σ2 

σ2 σ1 σ 2 
2 

)
. 

ince the determinant of the matrix R is zero, i.e R 1 , 1 R 2 , 2 =
 1 , 2 R 2 , 1 , we deduce that the quantity inside the square root is

qual to 

(R 1 , 1 S 1 /π1 + R 2 , 2 S 2 /π2 ) 
2 , 
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and then we need 

R 1 , 1 S 1 /π1 + R 2 , 2 S 2 /π2 = 2 γ −1 (σ 2 
1 S 1 + σ 2 

2 S 2 ) < 1 

since π1 = π2 = 1 / 2 in this model. Let us assume that category 2

is more sociable than category 1, i.e. σ 2 > σ 1 . In this case, S 1 + S 2 
is maximal for fixed values of σ 2 

1 
S 1 + σ 2 

2 
S 2 when S 2 is as small

as possible, i.e. the most sociable category is infected first. Since

S 1 and S 2 are between 0 and 1/2, the optimal solution is either

S 1 = 1 / 2 and S 2 ∈ (0, 1/2), or S 1 ∈ (0, 1/2) and S 2 = 0 (all category

2 is immune). In the first situation, we need 

2 γ −1 (σ 2 
1 / 2 + σ 2 

2 S 2 ) < 1 , 

which gives 

S 2 < (γ − σ 2 
1 ) / 2 σ 2 

2 = (1 − s 2 1 ) / 2 s 2 2 , 

where s 1 = σ1 / 
√ 

γ , s 2 = σ2 / 
√ 

γ , and then R = s 2 
1 

+ s 2 
2 
. This solution

is available when S 2 remains positive, i.e. s 1 < 1. In this case the

overall proportion of infected individuals is 

1 − S 1 − S 2 = 

1 

2 

− 1 − s 2 1 

2 s 2 
2 

= 

R − 1 

2 s 2 
2 

. 

If s 1 ≥ 1, we need all category 2 to be infected in order to have

optimal herd immunity. In this case, we get the condition 

2 γ −1 S 1 σ
2 
1 < 1 , 

i.e. 

S 1 < 

γ

2 σ 2 
1 

= 

1 

2 s 2 
1 

which is smaller than 1/2 as needed. The proportion of infected

individuals is 

1 − S 1 − S 2 = 1 − 1 

2 s 2 
1 

. 

In the case where s 1 = 0 . 7 , s 2 = 1 . 4 , R = 2 . 45 , we are in the first

situation and we get a proportion of infected individuals given by 

2 . 45 − 1 

2 × 1 . 4 

2 
� 0 . 37 , 

74 percent of category 2 and 0 percent of category 1. With a single

category, the rate of contamination is about 59 percent. The global

improvement is not negligible. 

In the case of 15 percent of individuals not respecting social

distancing when they are together, we have 

R � 

(
0 . 80329 0 . 14176 

0 . 80329 0 . 49615 

)
and R � 1.0205. We need to maximize S 1 + S 2 for 

1 

2 

( 

0 . 80329 S 1 / 0 . 85 + 0 . 49615 S 2 / 0 . 15 

+ 

√ 

(0 . 80329 S 1 / 0 . 85 − 0 . 49615 S 2 / 0 . 15) 2 

+4 · 0 . 14176 · 0 . 80329 · S 1 S 2 / (0 . 15 · 0 . 85) 

) 

smaller than 1. The optimum occurs when nobody is infected in

category 1, which implies S 1 = 0 . 85 , and S 2 � 0.1395. The propor-

tion of infected individuals is then 1.05 percent. With one cate-

gory, we need 2 percent of infected individuals. In the case where

the individuals of category 2 do not fully respect social distancing

even if they meet people in category 1, we have computed 

R � 

(
0 . 80329 0 . 24808 

1 . 40576 0 . 49615 

)
, 

and R � 1.26. We need to maximize S + S for 
1 2 
1 

2 

( 

0 . 80329 S 1 / 0 . 85 + 0 . 49615 S 2 / 0 . 15 

+ 

√ 

(0 , 80329 S 1 / 0 . 85 − 0 . 49615 S 2 / 0 . 15) 2 

+4 · 0 . 24808 · 1 . 40576 · S 1 S 2 / (0 . 15 · 0 . 85) 

) 

maller than 1. The optimum again gives nobody infected in cate-

ory 1, with S 1 = 0 . 85 and S 2 � 0.0 6 61. In this case, 8.39 percent

f the population is infected. The usual formula 1 − 1 /R gives 20.6

ercent of the population being infected. With lockdown of people

ver 70 years old, we get 

 � 

(
2 . 81154 0 . 04962 

0 . 28115 0 . 04962 

)
, 

nd R � 2.8166. In this case, the optimum is when nobody is in-

ected over 70 years old. We get S 1 � 0.3007 and S 2 = 0 . 15 , giving

4.93 percent of infected individuals, all under 70 years old. The

sual formula gives 65.5 percent. 

The examples above show that the minimal proportion of in-

ected individuals needed for herd immunity can be significantly

ower than 1 − 1 /R if the distribution of the infectious contacts is

nhomogeneous. However, it remains a large proportion of the pop-

lation if R is significantly larger than 1. Moreover, reaching the

inimum implies that we control how much each category of the

opulation is infected, which cannot be precisely done in prac-

ice. Notice that the numerical examples discussed here are not

ecessarily very relevant, since they assume that social distanc-

ng decisions are applied in the long run, whereas the main in-

erest of herd immunity is that one can release social restrictions.

t would be more relevant to consider matrices of infection rates

orresponding to the situation where there are no particular social

estrictions when we reach herd immunity. 

0. Some simulations for the coming months 

In this section, we present a few simulations of the rate of satu-

ation of the hospitals, for twelve different scenarios. This is based

n the SIR model. The parameters are the following: 

• The parameter β under lockdown, and without lockdown, after

May 11. 

• The parameter γ before, and after improvement of the testing

capacity. 

• The minimum rate of saturation of the healthcare system for

which a further lockdown is decided. 

• The rate of decay of the hospitalizations due to the improve-

ment of treatments. 

• The seasonality of the disease. 

• The true proportion of infected people at the beginning of the

lockdown, on March 17. 

• The time needed to improve testing capacity. 

• The rate of saturation of hospitals at the first peak at the be-

ginning of April, arbitrarily taken to be 80 percent. 

• The duration of future lockdowns. 

For each of the parameters, different values are considered for

ach of the twelve scenarios. These values are detailed in the joint

cilab program. Each scenario gives a curve representing the evo-

ution of the rate of saturation of hospitals (saturation above the

ed line), as a function of the date, represented here by the num-

er of days after January 1, 2020. The duration of the simulation

s 600 days, i.e. until summer 2021. Summer 2020 is around day

00, and winter 2020–2021 is around day 400. The twelve curves

re very different from each other. Seven of them have an impor-

ant second peak, which can be very big, at the beginning of the

ummer 2020, one of them (corresponding to a strong seasonality)
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as a second peak during winter 2020–2021. These curves are not

redictions but illustrate the very large uncertainty of the present

ituation. 
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