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Abstract

Host protein folding stress responses can play important roles in RNA virus replication and 

evolution. Prior work suggested a complicated interplay between the cytosolic proteostasis stress 

response, controlled by the transcriptional master regulator heat shock factor 1 (HSF1), and human 

immunodeficiency virus-1 (HIV-1). We sought to uncouple HSF1 transcription factor activity from 

cytotoxic proteostasis stress and thereby better elucidate the proposed role(s) of HSF1 in the 

HIV-1 lifecycle. To achieve this objective, we used chemical genetic, stress-independent control of 

HSF1 activity to establish whether and how HSF1 influences HIV-1 replication. Stress-

independent HSF1 induction decreased both the total quantity and infectivity of HIV-1 virions. 

Moreover, HIV-1 was unable to escape HSF1-mediated restriction over the course of several serial 

passages. These results clarify the interplay between the host’s heat shock response and HIV-1 

infection and motivate continued investigation of chaperones as potential antiviral therapeutic 

targets.
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Human immunodeficiency virus-1 (HIV-1) remains a serious global health threat, with 

approximately 37 million people currently living with HIV/AIDS.1 While the number of 

HIV-related deaths continues to decline, owing to advances in treatment and prevention 

strategies in the past decades,2 the epidemic still claims nearly one million lives annually. 

The problems of latent infection and drug resistance remain, as does the continued failure to 

develop an effective HIV vaccine.

With respect to the development of new therapeutic modalities impervious to antiviral 

resistance mechanisms, not just for HIV but also for other RNA viruses, the alternative 

strategy of targeting host systems instead of the rapidly mutating virus itself has gained 

increasing traction.3–4 As a minimalistic pathogen, HIV-1 requires complex interactions with 

host systems for replication.5–6 A clear understanding of the intimate interplay between the 

host and the virus is essential to provide an effective roadmap for viable, host-targeted 

antiviral therapeutics.4, 7

Stress responses evolved to defend cells against damaging internal and external stimuli. In 

some cases, stress responses can provide defenses against invading pathogens. However, 

numerous viral pathogens have also developed strategies to take advantage of these same 

host stress signaling pathways. A prominent example of the latter is the cellular heat shock 

response (HSR), which is responsible for maintaining proteostasis in the cytosol and 

nucleus.8 The HSR is controlled by its master regulator, the heat shock factor 1 (HSF1) 

transcription factor. High levels of HSF1 activity can be triggered by a variety of stressors, 

including protein misfolding in the cytosol. HSF1-mediated upregulation of numerous heat 

shock protein (HSP) chaperones and quality control proteins serves to restore proteostasis, 

after which HSF1 activity is reduced to basal levels.9 Many host chaperones, including 

HSP70 and HSP90, are hijacked by diverse viruses to assist viral protein folding and thereby 

enable virion production.10–13 Inhibition of these same chaperones can suppress viral 
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replication.14–18 Moreover, chaperones can potentiate the evolution of viral proteins. 

Changes in cellular proteostasis capacity can modulate viral evolutionary trajectories,19–21 

and even define the accessibility of destabilized viral protein variants that can enable innate 

immune system escape.22

Hence, host HSF1 activity and the functions of HSF1-regulated host chaperones are often 

beneficial for viruses.10–13, 19–21 However, this conclusion derives largely from studies on 

just a few viruses, including influenza, Dengue, Zika, and polio – with limited studies on 

retroviruses. Similar phenomena might be expected for retroviruses, which also have high 

mutation rates and a need to fold their proteins. On the other hand, the requirement for host 

genome integration in particular adds an additional step that could be differentially 

influenced by HSF1 and other HSPs.

Prior work has suggested an intimate role for the host cell’s HSR in multiple steps of the 

HIV-1 lifecycle. The complexity of HSF1 engagement during HIV-1 replication is perhaps 

best illustrated by HSF1’s apparent ability to either assist12, 23–26 or restrict27–28 HIV-1 

propagation depending on the method used to perturb HSF1 activity. For example, heat 

stress stimulates HIV-1 gene transcription23 and viral replication.25–26 In other work, 

transient overexpression of wild-type HSF1 assisted HIV-1 generation24 and reactivation 

from latency,12 while HSF1 knockdown proved deleterious for HIV-1 production. 

Alternatively, transient overexpression of a constitutively active variant of HSF1 suppressed 

long terminal repeat (LTR)-driven viral transcription27 and downregulated HIV-induced 

inflammation.28 Similarly, the reported roles of individual HSF1-controlled chaperones in 

HIV-1 replication extensively vary between different experimental systems.29–36 In sum, 

although the details are still unclear, there is clearly a complicated interplay between the 

host’s HSR and the HIV-1 lifecycle.

Our objective was to isolate the direct effects of HSF1 activation from the indirect effects of 

the cellular stressors that are traditionally used to activate HSF1, thereby gaining a clear 

understanding of the consequences of HSF1 activity for HIV-1 replication. The achievement 

of this goal requires a tool for stress-independent HSF1 activation. Heat induction of HSF1 

activity is unsuitable because heat is a pleiotropic stress that causes acute and severe protein 

misfolding throughout the proteome. Genetic methods are preferred as they avoid HSR 

activation, however the extent of HSF1 activation is limited by cellular compensation 

mechanisms. For example, overexpression of wild-type HSF1 increases the protein levels of 

the transcription factor, but the excess HSF1 protein is subject to chaperone-mediated 

regulation and is thus kept in an inactive state.37 Genetic HSF1 knockdown is also 

inefficient, owing to compensating proteostasis mechanisms.38 Finally, unregulated 

overexpression of constitutively active HSF1 variants must be employed with great caution 

to avoid nonphysiologic levels of HSF1 induction and consequent pleiotropic remodeling of 

the transcriptome.39 Chemical methods for directly regulating HSF1 activity are preferred.
40–42

We first sought to generate a system in which stress-independent, small molecule-mediated 

induction of HSF1 activity was possible. We engineered a stable, single-colony human T 

lymphocyte (CEM) cell line in which the expression of a constitutively active variant of 
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HSF1 (cHSF1)39, 43 was placed under control of the doxycycline (dox)-dependent 

tetracycline (tet) repressor.39 Treatment of the resulting CEMcHSF1 cell line (Figure 1A) 

with dox resulted in the expression of HSF1 target genes, as demonstrated by the increased 

transcript levels of HSP90, HSP70, and HSP40 (Figure 1B). The single colony cell line was 

carefully chosen to ensure that the upregulation of these downstream chaperones was similar 

in magnitude to that caused by HSF1 activation by the prototypical chemical stressor 

As(III)44 (Figure 1B), ensuring that HSF1 activity was not induced beyond physiologically 

accessible levels.39 We also generated a fluorescent control cell line (CEMCtrl) in which 

cyan fluorescent protein (CFP) expression was similarly placed under control of the tet 

repressor.

With CEMcHSF1 and CEMCtrl cell lines in hand, we next sought to test whether stress-

independent HSF1 activation impacted HIV-1 replication. We began by treating CEMcHSF1 

and CEMCtrl cells with dox for 18 h to activate cHSF1 or CFP expression, respectively. 

Next, we infected these preactivated cells with NL4–3 HIV-1 at a multiplicity of infection 

(MOI) of 0.04 for 96 h, followed by harvesting the infectious supernatant and titering using 

a p24 enzyme-linked immunosorbent assay (ELISA).

We observed that cHSF1 activation significantly reduced total p24 viral titers relative to cells 

with basal HSF1 activity (Figure 1C). In contrast, dox-induced expression of CFP in the 

CEMCtrl cell line did not alter p24 titers, showing that the result was attributable to cHSF1 

activity and not to dox treatment. We further assessed infection kinetics by harvesting the 

viral supernatant at successive time points and titering using the p24 assay. The relative 

difference in p24 titers between cHSF1-activated versus vehicle-treated CEMcHSF1 cells 

became more pronounced as the infection progressed, with no significant difference 

observed in dox- versus vehicle-treated CEMCtrl cells at any time point (Figure 1D). Finally, 

we used the TZM-bl assay45 to quantify the infectious titers of collected viral supernatants. 

Successful infection of reporter TZM-bl cells activates the expression of β-galactosidase in 

an HIV-1 Tat-dependent manner, turning reporter cells blue in the presence of a 5-bromo-4-

chloro-3-indolyl-p-D-galactopyranoside (X-Gal) chromogenic substrate. The fraction of 

stained cells is then proportional to the number of infectious viral particles.45 We observed 

that, as also occurred with the p24 titers, infectious titers were indeed decreased by cHSF1 

activation in CEMcHSF1 cells, whereas they did not change upon CFP activation in CEMCtrl 

cells (Figure 1E).

The high mutation rate of HIV-1 often promotes rapid escape from inhibitory pressure. 

Therefore, we next asked whether continuous propagation of HIV-1 under pressure from 

cHSF1 activity would result in rapid antiviral escape. We performed three serial passages in 

cHSF1-activated versus vehicle-treated CEMcHSF1 cells (Figure 2A). At each passage, the 

pre-activated cells were infected at an MOI of 0.04 for 96 h, followed by harvesting the viral 

supernatant and titering. The infectious (TZM-bl) titers were used to initiate the subsequent 

passage at the same MOI. Notably, both total and infectious viral titers were still decreased 

in +cHSF1 cells relative to vehicle-treated cells even after the third serial passage (Figures 

2B and 2C), indicating that the virus cannot readily adapt to cHSF1-mediated replication 

restriction.
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One potential trivial explanation for HSF1’s effect on HIV-1 replication could be 

cytotoxicity. We assessed cell health in the conditions of our viral propagation experiments 

by using a CellTiter-Glo assay. We observed that cellular ATP levels were not significantly 

altered by stress-independent cHSF1 activation (Figure 3A).

We next asked whether the observed inhibition of HIV-1 was specific to the HSR or could be 

replicated by stress-independent activation of other protein misfolding stress responses. We 

engineered a stable cell line, termed CEMDAX, in which the IRE1-XBP1s and ATF6 arms of 

the unfolded protein response (UPR), which is responsible for maintaining proteostasis in 

the secretory pathway,46 could be activated by small molecules in a stress-independent 

manner. Our approach was to render XBP1s expression dox-inducible by placing the XBP1s 
gene under control of the tetracycline promoter.47 To control the ATF6 arm of the UPR, we 

fused the transcriptionally active form of ATF6 to an Escherichia coli dihydrofolate 

reductase (DHFR) destabilized domain.48 Treatment of CEMDAX cells with trimethoprim 

(TMP) stabilizes the DHFR domain, resulting in ATF6 transcriptional activity. This strategy 

is well-established for stress-independent control of the IRE1-XBP1s and ATF6 arms of the 

unfolded protein response.21, 41, 49–54 We verified the selective, dox-dependent induction of 

XBP1s target genes and the selective, TMP-dependent induction of ATF6 target genes in 

CEMDAX cells using qPCR (Figure S1).49 We also employed a fluorescent control CEMCtrl 

cell line stably engineered to express dox-inducible CFP and E. coli DHFR-fused yellow 

fluorescent protein (YFP). We then pretreated CEMDAX and CEMCtrl cells with dox and 

TMP for 18 h to activate the corresponding constructs, infected the cells with HIV-1 at an 

MOI of 0.04, and measured the resulting p24 titers after 96 h. No significant change in p24 

titers was observed upon dox and TMP treatment in either the CEMDAX or the CEMCtrl cells 

(Figure 3B). Thus, HSF1-mediated abrogation of HIV-1 replication is a specific feature of 

HSR activation, not a general consequence of inducing protein misfolding stress responses.

Next, we used RNA-Seq to globally assess transcriptome remodeling owing to cHSF1 

activation in CEMcHSF1 cells. In particular, we were interested in whether or not stress-

independent cHSF1 induction might elicit an antiviral response in CEMcHSF1 cells. As 

expected, given the specificity of our stress-independent, chemical induction of cHSF1, the 

most prominent upregulated genes were all well-known components of the HSR (Figures 4 

and S2, Table S1).39 Also, as expected, no significant induction of UPR target genes was 

observed (Figure 4 and Table S1).

We applied gene set enrichment analysis (GSEA)55 (Table S2) to better understand key 

features of the transcriptome remodeling caused by cHSF1 activation. We observed that 

known HSR-related gene sets were massively enriched (MSigDB c5 collection; Figure 5A 

and Tables S2A and S2B). Furthermore, the HSF1-binding motif itself was strongly enriched 

upstream of genes that were found to be responsive to stress-independent cHSF1 activation 

(MSigDB c3 collection, Figure S3 and Table S2C). However, we did not observe any 

significant enrichment of antiviral restriction factors using the MSigDB c5 collection (see 

Figure 5B for example enrichment plots and Tables S2A and S2B). Similarly, when other 

functional databases regrouped in the MSigDB c2 collections were interrogated, viral- and 

interferon-response pathways tended either not to display any bias or even to be enriched 

among downregulated gene sets (Tables S2D and S2E).
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These observations suggest that stress-independent HSF1 activation in CEMcHSF1 cells does 

not inhibit HIV-1 replication by inducing a general antiviral response. We next examined 

individual genes within the broad gene ontology group “Defense Response to Virus” (Table 

S3). While typical components of the general antiviral defense response, including many 

interferon-related genes, were not enriched or even downregulated, we were intrigued to 

note that the most upregulated gene in the entire gene set was ZC3HAV1. ZC3HAV1 
encodes the zinc finger antiviral protein ZAP (also known as PARP13), and was upregulated 

3.2-fold in our RNA-Seq experiment upon cHSF1 induction. ZAP is known to restrict the 

replication of multiple viruses, particularly including HIV-1,56–57 by targeting viral mRNA 

in the cytoplasm for degradation.58 ZAP can also bind HSF159 and assist HSF1 binding to 

DNA prior to heat shock.60 Indeed, the first intron of ZAP possesses an HSF1-binding 

motif, located in a putative chromatin regulatory region denoted by a peak of H3K27-

acetylated histones, as reported by the Encyclopedia of DNA Elements (ENCODE) 

consortium in an immortalized B-cell line (chromatin immunoprecipitation (ChIP)-Seq 

ENCODE track on the UCSC Genome Browser).61 We used qPCR to confirm that the 

induction of cHSF1 in CEMcHSF1 cells indeed triggered upregulation of ZAP mRNA 

(Figure S4). On the basis of these observations, ZAP induction is likely to contribute to 

cHSF1-mediated inhibition of HIV-1 replication.

Although ZAP induction may play a role in the inhibition of HIV-1 replication, the key 

finding from our RNA-Seq analysis was that cHSF1 activation largely drives a 

transcriptional remodeling of the cellular chaperone network, with minimal impacts on 

immune responses and traditional viral restriction factors. A number of these chaperones 

have been implicated in the HIV lifecycle and play important roles in viral protein folding 

and assembly.62–64 Thus, it is possible that the remodeled cytosolic and nuclear proteostasis 

network, which did not evolve to support HIV-1 replication but rather to ensure cellular 

proteostasis, might disrupt these steps in the lifecycle by diverting viral proteins from 

function or the orchestrated virion assembly process. In this regard, it is noteworthy that 

comparing the total (p24) to the infectious (TZM-bl) viral titers, we observed that the 

fraction of produced virions that are infection-competent significantly decreased upon 

cHSF1 activation (Figure 6). This observation is consistent with cHSF1 activation disrupting 

steps in the viral lifecycle such as viral protein folding and/or virion assembly that could 

lead to the production of a larger fraction of defective viral particles. Because host 

chaperones not only directly modulate viral protein folding and assembly but also participate 

in earlier steps of the viral replication cycle, such as nuclear import,34 genome integration,65 

and transcription,33, 36 we do not exclude the possibility of additional inhibitory roles of the 

cHSF1-remodeled proteostasis network in these processes.

In summary, the use of a chemically controlled cHSF1 construct allowed us to investigate 

the direct consequences of HSF1 activation at physiologically relevant levels, eliminating the 

requirement for inducing global protein misfolding while also avoiding the off-target 

consequences of cHSF1 overexpression. We were also able to avoid the complications 

associated with transient overexpression of HSF1 or cHSF1,39, 42 including off-target gene 

induction, which convoluted prior studies. Using this approach, we demonstrated that stress-

independent HSF1 activation restricts HIV-1 replication in CEM cells. When cHSF1 was 

activated, fewer total HIV-1 virions were produced and the proportion of infectious virions 
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was also lowered. Moreover, cHSF1-mediated inhibition of HIV-1 replication persisted 

through three consecutive serial passages without detectable recovery of viral titers, 

suggesting that escape mechanisms are not readily available to the virus. The effects of 

cHSF1 activation were HSR-specific and not attributable to reductions in host cell health, 

off-target cHSF1 activity, or activation of protein misfolding stress responses in general.

The exact molecular mechanisms of HSF1-mediated restriction of HIV-1 replication remain 

an important subject for further study and are likely multifactorial. First, viral transcripts are 

known to be targeted to degradation by the HSF1-controlled host restriction factor ZAP, 

which has an HSF1-binding promoter and was transcriptionally upregulated in our system 

despite the absence of a general antiviral response induced by cHSF1. Second, cHSF1 

activation reduces the infectivity of newly formed virions. This observation suggests that the 

remodeled host chaperone network promotes the formation of defective viral particles. 

While deciphering the origins of HSF1-mediated inhibition of HIV-1 replication and 

elucidating in vivo relevance of these findings requires future investigation, this work clearly 

implicates HSF1 as a host antiviral restriction factor for HIV-1 and motivates continued 

consideration of host HSR-targeted therapeutics to address retroviral infections.

Methods

Detailed protocols for the following procedures can be found in the Supporting Information: 

stable cell line construction, quantitative RT-PCR, HIV-1 infection, p24 assays, TZM-bl 

assays, CellTiter-Glo viability assays, RNA-Seq, GSEA, and statistical analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Stress-independent cHSF1 activation decreases HIV-1 replication and the infectivity of 

produced virions. (A) Chemical genetic tool for stress-independent, small molecule-

regulated activation of HSF1. Treatment of CEMcHSF1 cells with dox induces expression of 

cHSF1, which constitutively trimerizes and upregulates the expression of HSF1 target genes 

in the absence of acute proteostatic stress. (B) qPCR analysis of Hsp90 (HSP90AA1), Hsp70 

(HSPA1A), and Hsp40 (DNAJB1) expression in CEMcHSF1 after 18 h of treatment with 1 

μg/mL dox or 2 h of treatment with 100 μM sodium arsenite as a positive heat shock control. 

(C) Fold-change in p24 titers after 96 h of HIV-1 infection at an MOI of 0.04 in CEMcHSF1 

and CEMCtrl cells, treated with 1 μg/mL dox, relative to vehicle-treated cells. (D) Schematic 

of a timecourse infection and total p24 viral titers during different infection time points in 

CEMcHSF1 and CEMCtrl cells. (E) Fold-change in infectious TZM-bl titers after 96 h of 

HIV-1 propagation in CEMcHSF1 and CEMCtrl cells, treated with 1 μg/mL dox, relative to 

vehicle-treated cells. *, **, ***, and ns correspond to p-values <0.05, <0.001, <0.0001, and 

not significant, respectively.
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Figure 2. 
HIV-1 does not adapt to escape HSF1 activation over the course of three serial passages. (A) 

Schematic of NL4–3 HIV-1 serial passaging. CEMcHSF1 cells were pretreated with 1 μg/mL 

dox for 18 h prior to infection with NL4–3 HIV-1 for 96 h at an MOI of 0.04. Infectious 

titers of the viral supernatant were determined using the TZM-bl assay, and then, the 

supernatant was used to infect the subsequent passage at the same MOI. (B) Fold-change in 

total p24 and (C) infectious TZM-bl titers at each passage. *, **, ***, and **** correspond 

to p-values < 0.05, < 0.01, < 0.001, and < 0.0001, respectively.
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Figure 3. 
Decreased HIV-1 replication is not attributable to HSF1-induced cytotoxicity. (A) Cellular 

ATP levels upon 1 μg/mL dox treatment of CEMcHSF1 and CEMCtrl cells for 96 h, as 

assessed using a CellTiter-Glo assay. (B) Total p24 viral titers upon 1 μg/mL dox and 10 μM 

TMP treatment of CEMDAX and CEMCtrl cell lines.
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Figure 4. 
Heat map showing the differential expression of select proteostasis genes upon stress-

independent cHSF1 activation with 1 μg/mL dox for 18 h in CEMcHSF1 cells relative to 

vehicle treatment.
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Figure 5. 
Stress-independent HSF1 induction activates heat shock response genes and does not trigger 

a broad-scale antiviral response. (A) Selected gene set enrichment plots for heat shock 

response-related and (B) antiviral response-related gene sets in CEMcHSF1 cells treated with 

1 µg/mL doxycycline for 18 h to induce cHSF1. These enrichment plots are drawn from the 

MSigDB c5 collection. See Table S2 for the complete gene set enrichment analysis.
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Figure 6. 
HSF1 reduces infectivity of newly produced virions. Fold-change in infectious TZM-bl titers 

per ng of p24 after 96 h of HIV-1 infection at an MOI of 0.04 in CEMcHSF1 and CEMCtrl 

cells treated with 1 μg/mL dox, relative to vehicle-treated cells. ** and ns correspond to p-

values < 0.01 and not significant, respectively.
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