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We propose an SEIARD mathematical model to investigate the current outbreak of coronavirus disease
(COVID-19) in Mexico. Our model incorporates the asymptomatic infected individuals, who represent
the majority of the infected population (with symptoms or not) and could play an important role in
spreading the virus without any knowledge. We calculate the basic reproduction number (Ry) via the
next-generation matrix method and estimate the per day infection, death and recovery rates. The local
stability of the disease-free equilibrium is established in terms of Ry. A sensibility analysis is performed
to determine the relative importance of the model parameters to the disease transmission. We calibrate
the parameters of the SEIARD model to the reported number of infected cases, fatalities and recovered
cases for several states in Mexico by minimizing the sum of squared errors and attempt to forecast the
evolution of the outbreak until November 2020.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

At the beginning of December 2019, a new virus caused an in-
crease in atypical pneumonia at the city of Wuhan in China. The
virus was isolated, sequenced and identified as a new type of coro-
navirus [1]. The virus was called SARS-CoV-2 and the disease asso-
ciated with that virus was called COVID-19 [2]. On March 11, 2020,
the World Health Organization (WHO) declared the outbreak of
COVID-19 as a global pandemic [3]. Most of the infected individu-
als will develop a mild respiratory illness and they won’t need any
special requirements; they will just need to manage the symptoms.
Symptoms associated to COVID-19 are fever, cough and fatigue, few
may develop other symptoms like headache and diarrhea, to name
some.

The first case of COVID-19 confirmed in Mexico was until
February 2020, which was an imported case from Europe, by that
time it was an epicenter of the disease. Mexican authorities an-
nounced on March 14 the “Jornada Nacional de Sana Distancia”
that basically means quarantine for vulnerable groups. Not only
elderly individuals are considered a group of risk, also individu-
als that have co-morbidities like diabetes, hypertension and obe-
sity can develop more complicated respiratory symptoms that can
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be fatal. Mexico declared phase 2 of the coronavirus pandemic
on March 23 with 367 confirmed cases. As of July 16, there were
324 041 confirmed cases and 37 574 deaths. In [4], Cruz-Pacheco
et al. estimated the arrival of the infectious outbreak to Mexico be-
tween March 20 and March 30, 2020. Other models for predicting
the evolution of COVID-19 outbreak in Mexico have been proposed
in Alvarez et al. [5], Acufia Zegarra et al. [6].

In this paper, we modify the SIR epidemic model with a novel
SEIARD epidemic model. We included a subpopulation of asymp-
tomatic individuals, the so-called hidden cases. Even though in
the case of Mexico, there have not been a characterization of the
asymptomatic cases, we believe the proportion of this subpopu-
lation is roughly 0.14 based on the estimation of a mathematical
model applied in Tang et al. [7].

Compartmental models like the one used in this paper have
been used for studying the spread of the COVID-19 pandemic in
several countries, such as China [8-10], Italy [11,12] and other parts
of the world [13-15]. In this study, we use a compartmental math-
ematical model to try to understand the outbreak of COVID-19 in
Mexico, and we evaluate the heterogeneity of COVID-19 through-
out Mexican territory considering two important regions: the Mex-
ico Valley and the Yucatan Peninsula.

The rest of the paper is structured as follows. We formulate the
mathematical model, compute the basic reproduction number and
perform a sensibility analysis in Section 2. In Section 3, we cali-
brate our mathematical model using a sum of squared errors ap-
proach using daily cumulative of infected, death and recovered in-
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Fig. 1. Flow diagram of our mathematical model to evaluate the behavior of the
spread of nCoV-2019 in Mexico. S: susceptible, E: exposed, I: infected with symp-
toms, A: infected but without symptoms (asymptomatic), R;: recovered from symp-
tomatic infection, Rs: recovered from asymptomatic infection, D: dead.

dividuals published daily by the Ministry of Health in Mexico. We
used the data until July 2, 2020. In Section 4, we explore the simu-
lations of the cases in Mexico and compare how different the out-
break is in the two regions. Lastly, we provide some concluding
remarks in Section 5.

2. Mathematical model with asymptomatic individuals

In this work, we will use a compartmental differential equation
model for the spread of COVID-19 in Mexico. The model monitors
the dynamics of six subpopulations, which are: susceptible (5(t)),
exposed (E(t)), infected (I(t)), asymptomatic (A(t)), recovered (R(t))
and dead (D(t)).

The model simulations will be carried out with the following
assumptions:

(a) The susceptible and infected individuals are homogeneous in
the population.

(b) At first, no interventions were applied to stop the spread of
COVID-19.

(c) No births are allowed in the population, and we only take into
account the fatalities associated to COVID-19.

Fig. 1 shows a diagram of the flow through the compartmental
subpopulations.

Susceptible population S(t): This subpopulation cannot in-
crease, because we are not considering any natural recruitments
(births) or deaths that are not related to COVID-19. The susceptible
population will only decrease after an infection, an acquired char-
acteristic due to the interaction with an infected person or asymp-
tomatic one. The transmission coefficients will be I and BA. The
rate of change of the susceptible population is expressed in the
following equation:

__IB(IJFA) )

Exposed population E(t): Because we are modeling an infec-
tious disease caused by a virus, we included the exposed popula-
tion to mimic the latent period, which is the period between the
infection with the virus and the moment when the host is able
to transmit the pathogen to susceptible individuals. The exposed
subpopulation consists of individuals that are infected but not in-
fectious, i.e., they cannot infect others. This population decreases
at a rate w to become infectious with or without symptoms. The
parameter 1/w denotes the average length of the latent period;
hence, after 1/w time units, an exposed individual becomes symp-
tomatically infectious with a probability p or asymptomatically in-
fectious with a probability 1 — p. Consequently,

——ﬂ (;ﬁ’g) WE = ,35(1{]+fl‘)>pw5(1p)w5. 2)

Infected population I(t): Infected (symptomatic) individuals
are generated at a proportion p € (0, 1) from the exposed class.
They recover at a rate y and die at a rate §. This is the only pop-
ulation that acknowledges death. Thus,

di

— = pwE —

I G +y)L (3)

Asymptomatic population A(t): This population is considered
an infected population, but the individuals do not develop the
common symptoms of COVID-19. Asymptomatic individuals are
important to model because they have the ability to spread the
virus without knowing; they are produced at a proportion 1—p
from the exposed class and recover at a rate y. Consequently,

o = (1= PWE = yA. )

Recovered populations R;(t) and R4(t): All individuals infected
with symptoms or not will recover at a rate y. We subdivide the
recovered population in two compartments: individuals who re-
cover after having symptoms (R;) and individuals who recover from
asymptomatic infection (R4). Hence,
dR, dR,

T=rh g=vA (5)

Dead population D(t): Infected individuals with symptoms die
at a rate 4, that is,
dD
— =4l 6
a (6)

Hence, the system of differential equations that will model the
dynamics of coronavirus spread in Mexico is:

as

dt ﬂs( I+A)

& BS(e) —wE.

% =pwE— (8 +y)I.

% = (1 - p)WE — yA, (7)
D _y

We also observe that N:=S+E+I+A+R +R4+D is con-
stant, where N is the size of the population modeled.

2.1. Basic reproduction number with a disease-free equilibrium

There exists a disease-free equilibrium, which is given by S = N,
E=1=A=R;=R4 =D =0, and we will denote it by xq. We calcu-
late the basic reproduction number Ry based on this steady state.
By applying the next-generation matrix method to find Ry, we
must solve the equation Ry = p(FV~1), where F and V are the
derivatives of the new infections matrix F and the transition ma-
trix V, respectively, evaluated at the disease-free equilibrium, and
p denotes the spectral radius. Then

BS(+5)
F=

[N ]
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The derivative of F at xg is:

[0 B B
F=|10 0 0.
10 0 O
The transition matrix is
B WE
V=|-pwE+ @ +y)|.
| —(1—p)WE + yA
The derivative of V at xq is
B w 0 0
V= —pw d+y 0.
| -(1-pw 0 14
The inverse of V is
y 00
vi=lsy om0
-p
5 0y
Then
fp o bam BB
+ +
Fvi=| " o T 0 0
0 0 0

We need to find the eigenvalues of FV~1, which are A; = 6’%

w, Ay =0 and A3 = 0. Then, the basic reproduction number is
given by the dominant eigenvalue, that is,
1—
Ro— PP BO-D)
S+y 14
The basic reproduction number formulated above has two compo-
nents that have a biological interpretation. The first term of (8) is
associated with symptomatic individuals: during the time of recov-
ery 1/y they can infect susceptible individuals at a rate 8, and
these infected individuals may die after a mean time 1/§. Hence,

(8)

B
FE=+—— 9
5= 54y (9)
represents the contribution of symptomatic infectious individuals
to new infections. The same derivation is for the second term of
(8), only this represents the contribution of asymptomatic infec-
tious individuals, which is given by

F=b (10)

The functionality of the basic reproduction number is associated
with the force of infection of both symptomatic and asymptomatic
individuals. Thus, (8) can be expressed by the following equation:

Ro = pEs+ (1 — p)F;. (11)

The stability of our disease-free equilibrium can be explained
by the following theorem, mentioned in Nadim et al. [16]: the
disease-free equilibrium NC = (N, 0,0,0,0,0,0) of our system of
differential equations is locally asymptomatically stable if Ry < 1
and unstable if Ry > 1.

We calculate the Jacobian matrix of our system of differential
equations at the disease-free equilibrium, which is given by

0 0 B B 0 0 0
0o -w B B 0 0 0
0 pw -G6+y) O 0 0 O
Je=|0 (A-pw 0 -y 0 0 O
0 0 % 0 0 0 0
0 0 0 y 0 0 0

0 0 5 0 0 0 0

Let A be the eigenvalue of the matrix Jyc. Then the characteristic

equation is given by det(Jyc — Al) = 0, that is,

BSWAL + Bywr? — Sywrt — y2wArt — BSpwAt — Sy A>
—Y2A% 4+ BWAS — SWA® — 2ywA> — A8 — 2y A8 (12)
—wAb — A7 =0.

To solve (12), we can factorize with A%. Thus, (12) can be rewritten

as

—M[ - BSw — Byw+Syw+ y2w+ BSpw + By + y?

—BW+ 8w+ 2ywW)A + (8 + 2y +W)A2 + 23] =0.

To determine the stability of the disease-free equilibrium, we must

solve the cubic equation

B4 aA? +ah+a3 =0, (13)

where the coefficients are

G =842y +w, a=8y+y>+sw+2yw— Bw,
az = Syw+ y*w+ BSpw — BSw — Byw.

The Routh-Hurwitz criterion tells us that a necessary and suf-
ficient condition for all roots of (13) to have negative real part
is that a3 > 0 and aja; —as > 0. In order to check these condi-
tions, we rewrite a; in terms of the basic reproduction number as
a3 = yw(§ +y)(1 —Rp). From this, it is clear that a3 is positive
whenever Ry < 1. Therefore, we can conclude the following result:

Theorem 1. The disease-free equilibrium of model (7) is stable if and
only if
Rp <1 and

(8 +2y +W)(8y +y? + 5w+ 2yw — Bw)
—Byw+y*w+ BSpw — BSw — Byw) > 0.

2.2. Sensitivity analysis of the basic reproduction number

Using the formula (8) for the basic reproduction number, we
can perform a sensitivity analysis for Ry to determine how impor-
tant each parameter is for disease transmission. Sensitivity indices
allow us to measure the relative change in a variable, in this case
Ro, when a parameter varies. This can be used to determine the ro-
bustness of model predictions to parameter values, and to discover
parameters that have a very high impact on Ry [17]. Hence, we use
the following definition.

Definition 1. If R; is differentiable with respect to a given param-
eter 6, the normalized forward sensitivity index of Ry is defined

by
R — ﬁ . %.
T Ry 06
We will calculate the sensitivity index for Ry with respect to
the parameters §, p, § and y as follows (notice that R, does not
depend on w, so Fﬁ," =0).

Ro _ B( p 1-py _
Ty = E(Sw + 7) =1
R — L(L_ﬁ)_g_ﬂyfﬁ(&y) —___Pop

P T R\sty v/ R G+y)y = @+y)yRo’
o 8. =fr _ __Bp_

5§ T R GHy)E T T G+y)?Ry’

Ro _ v | _=Bp -Ba-p) | _ _B vp 1-p
Iy’ = m[«smz + T] = —RT)[W + 7]'

From this, we can see that Fgo > 0, while Fﬁo, Fgo, F)'fo < 0, which
means that an increment in the contact rate 8 will cause Ry to
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increase, while an increment in the symptomatic case proportion
p, the death rate § or the recovery rate y will cause Ry to decrease.
Also, we can see that

Bép Bép _ _\pr,
Re < Gryovks — Ik
(6+Y)?Ro  (B+7)YRo
which implies that a perturbation in the parameter p produces a
relatively larger change in Ry than a perturbation in 4.

Since Fgo =1, we can see that increasing the contact rate 8 by

a given percentage always increases Ry by that same percentage.

N S
Moreover, 57~ B S0

B( p  1-p\_B| _ vp 1-p R
=5\l o t+t— |+ — =T

Ryt ) T RlEer Ty I
Hence, the parameters with the largest normalized forward sensi-
tivity index are 8 and p.

HE

Ro
B

3. Implementation to estimate the parameters

To describe the evolution of the epidemic in Mexico taking into
account the social distancing measures taken by the government,
we will assume that the infection rate, recovery rate and death
rate are time-dependent functions, similar to those used in Cac-
cavo [12].

To model the effect of epidemic control measures, which cause
the number of contacts per person per unit time to decrease as the
epidemic progresses, we describe the infection rate by the func-
tion

B(t) = Poexp (—jﬁ) + B,

where By + B is the initial infection rate. This rate decreases ex-
ponentially to the value 8, with a characteristic time of decrease
Tg.

The time of recovery for patients may also vary with time due
to the medical staff improving their therapeutic procedures. Hence,
we will assume that the recovery rate is modeled by the function

Y1

t) = —_—
r® J/O—i_H—exp(—t—i—ry)’

where y is the recovery rate at time zero, and y; + ¥ is the re-
covery rate at a later time, which is reached after 7, days of adap-
tation.

Lastly, the death rate may decrease with time due to the adap-
tation of the pathogen or the development of more advanced treat-
ments. Hence, we can model this with the function

where &g + 81 is the initial death rate, which decreases to the value
81 with a characteristic time 7.

If we replace the constant parameters §, 6 and y in Eq. (8) with
the aforementioned time-dependent functions, we can define

Rq(t) = pEs(t) + (1 = p)Ea(t). (14)

As we derived before, Fs and F, are represented by 8, § and y.
Ry(t) is the effective daily reproduction ratio, which measures the
number of new infections produced by a single infected individ-
ual per day, taking into account the evolving public health inter-
ventions and available resources [18]. Due to the fact that we are
modeling a disease that is spreading in a population, the effective
daily reproduction ratio is more suitable to use. R; will diminish as
time passes as a result of two reasons: the susceptible population
becoming infected or the use of interventions (we call it “Jornada

Nacional de Sana Distancia” in Mexico) to stop the spread. To even-
tually stop the spread of SARS-CoV-2, R; should be reduced until
it becomes lower than one.

The set of differential equations was solved using Matlab 2016b
with the ode45 solver, which is based on an explicit Runge-Kutta
(4,5) formula. Our model was calibrated using the cases of COVID-
19 in Mexico. The data were collected in the period since the first
day after Mexico declared phase 2 of the pandemic (March 12) un-
til July 2, 2020, from the open source repository of the Ministry of
Health in Mexico [19].

The optimization of parameters to describe the outbreak of
COVID-19 in Mexico was fitted in two steps. First, we minimized
the Sum of Squared Errors (SSE), in such a way that the solutions
for D(t) and R(t) obtained by the model approximate the reported
cumulative numbers of fatalities and recovered cases, respectively,
while the sum I(t) + R;(t) + D(t) approximates the reported cumu-
lative number of infected cases with symptoms. Since the Mexi-
can government does not keep a record of the number of asymp-
tomatic cases, we assume that the asymptomatic infected popula-
tion is about nine times larger than the population with symptoms,
based on government estimations. We applied three searches to
minimize the SSE function: a gradient-based method, a gradient-
free algorithm, and finally, a gradient-based method. This method
was necessary to obtain the global minimum. For this step, we
adapted the code from Caccavo [12] to our mathematical model.

Secondly, we used the set of parameters obtained by minimiz-
ing the SSE as the initial value of a Markov Chain Monte Carlo
(MCMC) approach, similar to the one used in Zu et al. [20], where
we set the iteration number to 8000 and the first 6000 itera-
tions as burn-in periods. Then, we computed the solutions of the
model for each set of parameters obtained after the burn-in pe-
riod and computed the mean and standard deviation for these so-
lutions and for the effective daily reproduction ratio. Finally, we
plotted the 95% confidence intervals for Ry(t) and for the D(t), I(t)
and R,(t) components of the solutions. The code and the data will
be available in the following github: https://github.com/UgoAvila/
COVD-19-in-Mexico-and-State-Level-Forecast.

4. Evolution of the outbreak of COVID-19
4.1. Evolution of the outbreak of COVID-19 in mainland Mexico

The predicted evolution of the outbreak for COVID-19 in Mexico
can be seen in Fig. 2. The parameters of the mathematical model
were fitted with the experimental data provided by a daily update
from the Mexican Ministry of Health. By adjusting the data from
the period from March 12, 2020 to July 2, 2020, we simulated the
daily new COVID-19 cases in Mexico until November 2020. Fig. 3
shows the variation of the infection rate B(t), recovery rate y(t)
and death rate §(t) with respect to time. The infection rate de-
creases at a good pace with respect to time, taking roughly 70
days from March 12 to an infection rate per day of 0.3. At 200
days past March 12, the infection rate will be between 0.25 and
0.2, this means that in Mexico, there will be new cases of COVID-
19 developing in a new normality of living with the virus. The re-
covery rate in Mexico at ten days past March 12 is increasing, and
past the 10th day the recovery rate becomes constant with respect
to time. This type of behavior may be explained by the fact that,
at first, there were only mild cases in Mexico. Then, by March 22
there were much more severe cases, which are associated with a
death rate that remains roughly constant at a rate of 0.04 per day.

The values of the best fit parameters are given in Table 1. We
also include there the lower and upper bounds of the 95% con-
fidence intervals obtained after the MCMC approach. Using these
values for the parameters, we can calculate the effective daily re-
production ratio Ry(t) for each day (see Fig. 4). As we can see in
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Fig. 2. Graphs for the spread of COVID-19 in Mexico. The dotted red line represents
infected individuals, the solid black line represents the fatalities by the disease, the
dash-dot green line represents recovered individuals, finally, the dashed blue line
represents infected individuals but without any type of symptoms. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 3. Best fit values of the infection, recovery and death rates as functions of time.
Dotted red line is the death rate, dash-dot green line the recovery rate and the
solid blue line the infection rate. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 1

Model parameters obtained from the best fit optimization for Mexico.
Parameter  Best fit value for Mexico =~ 95% CI Unit
Bo 0.4646 (0.4192, 0.5100) 1/day
B1 0.2514 (0.2403, 0.2625) 1/day
Tg 29.0893 (27.2078, 30.9709)  day
Yo 0.0895 (0.0222, 0.1567) 1/day
Y1 0.1539 (0.0937, 0.2140) 1/day
Ty 7.7042 (5.4516, 9.9568) day
8o 0.0097 (0.0051, 0.0144) 1/day
84 0.0355 (0.0329, 0.0381) 1/day
Ts 6.4256 (4.6097, 8.2415) day
w 0.2805 (0.2676, 0.2934) 1/day
p 0.1185 (0.1112, 0.1258) -

Daily reproduction number

8
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Fig. 4. Variation of the effective daily reproduction number through time. The solid
black line represents the value of the reproduction number; the red dotted and
green dash-dot lines are the 95% confidence interval upper and lower bounds, re-
spectively. The blue dashed line represents the value one. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 5. Cumulative number of symptomatic infected individuals (I(t) + R;(t) + D(t))
predicted by the model, 95% confidence interval and reported cases.

Fig. 4, during March Ry(t) decreases exponentially to a value of 2,
although there is a large uncertainty about its exact value in the
first days, then it decreases from 2 to 1 during the months of April,
May and June. The decrease from the first period is very helpful
and Mexico will be entering a declared phase two of the pandemic
with a relatively low reproduction number. We believe this decay
may have occurred because the Ministry of Health applied the “Jor-
nada Nacional de Sana Distancia” before Mexico declared to be in
phase two. Our simulation shows that Ry(t) will become 1 by the
month of July, and it will maintain this value until past October
2020. In Figs. 5-9, we carried out the simulation with the best fit
parameters and confidence intervals. We show a comparison of the
cumulative number of infections (Fig. 5), deaths (Fig. 6) and recov-
ered cases (Fig. 7) with the reported data. We also plot the num-
ber of active symptomatic infections and asymptomatic infections
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Fig. 7. Number of recovered cases (R(t)) predicted by the model, 95% confidence
interval and reported number of recoveries.

in Figs. 8 and 9, respectively. Our simulations show that the peak
of the infection will most likely occur between July and September
2020.

4.2. Heterogeneity of the outbreak of COVID-19 in two regions in
Mexico

We evaluated the heterogeneity of the spread of COVID-19 in
Mexico. We applied our SEIARD model for two important regions
in Mexico: the Mexico Valley (Mexico City, State of Mexico and
Morelos) and the Yucatan Peninsula (Campeche, Quintana Roo and
Yucatan).

4.2.1. Mexico Valley

First, we modeled the evolution of the outbreak of COVID-19 in
the Valley of Mexico, which is shown in Fig. 10. We adjusted the
data provided by the Mexican Ministry of Health from March 12 to
July 2 and simulated the daily cumulative cases for each state until
November 2020. The outbreak in the Mexico Valley will be slightly
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different from the national perspective, and each state will behave
differently.

Mexico City outbreak is different from the other states, even
though it had the largest number of infections: the curve for the
infected population there (red line in Fig. 10a) increased in a con-
trolled way, reaching its peak in early July and starting to descend
from July to November. State of Mexico (Fig. 10b) has the same be-
havior as Mexico City, the only difference is the number of infected
individuals. Morelos (Fig. 10c) had a different cycle of the pan-
demic: the infected individuals increased exponentially by early
May, reaching its peak in mid-May; then, the number of infected
individuals decays at a good pace from June to November. The dif-
ference in the peak may be due to the separation of the capital of
Morelos from Mexico City (86.6 km). Also, the connection between
these states was cut off due to the confinement declared by the
Ministry, which may be a reason for the difference between the
outbreak of the infection in these states.

Fig. 11 shows the variation of the infection, recovery rate and
death rate for the Mexico Valley. The rates between these states
are different: Mexico City (the capital of Mexico, which has one of
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the two more important airports of the country) has the lowest in-
fection rate in the initial days of the simulation, being only a little
above 0.6. At 60 days past March 12, the infection rate becomes
roughly 0.1 and decays as time passes. The recovery rate in Mexico
City starts with severe cases at the early days of the outbreak, and
it will eventually remain constant, having not only severe cases but
mild ones as well. The death rate at the initial days of the outbreak
was 0.03, which is associated with only having severe cases during
the early days, but then the death rate decayed and remained con-
stant with a value of 0.01. The infection rate in the State of Mex-
ico is higher than in Mexico City being around 0.9, but it decays
rapidly as time passes with a value of 0.3 at 60 days past March
12; the State of Mexico will have a similar behavior for the infec-
tion rate as the national perspective: it will be around 0.25 at 200
days past March 12. The recovery rate remains constant through-
out the outbreak, by having at first severe cases, then developing
mild cases as well. There has been data indicating that most of the
severe cases from the State of Mexico were treated by the hospitals
in Mexico City. The death rate has the same behavior as in Mexico
City, the only difference is that at early days many patients died at
a rate of 0.15. Morelos was the state with a higher infection rate
from the Mexico Valley with a value of 1.2, which can be seen in

Fig. 10c as the infected population increased exponentially, but it
decayed rapidly to 0.2 at 30 days past March 12 and has remained
constant since then. The recovery rate at first was very low, this
means that there were severe cases at the initial days of the out-
break; at 50 days past March 12, the recovery rate increased due to
the presence of milder cases. The death rate for Morelos remained
constant at a value of 0.05.

The daily reproduction ratio for Mexico City (Fig. 12a) behaved
differently than the other states. At first, it had a value higher than
8; from May to July, the value decayed exponentially until becom-
ing equal to 1. By August the value will be lower than one, but we
believe this city should be treated differently to the other states
in the Mexico Valley since Mexico City has a much higher influ-
ence of transients daily. This is due to citizens from the surround-
ing areas coming to this city to work, creating a larger population
that comprises not only people living in Mexico City, but citizens
from the State of Mexico and Morelos as well. The State of Mex-
ico has the same behavior for the daily reproduction ratio as Mex-
ico City. The behavior for Morelos is by far different: in the month
of April its value was higher than 8, which was associated with
an increase of the infected population, and by mid-May, its value
decayed rapidly to be lower than one, and it has been the same
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article.)

value since. The lockdown measures in this state were strength-
ened when the infected cases increased rapidly, and those actions
are viewed in the daily reproduction ratio.

In Figs. 13-17, we carried out the simulation with the best fit
parameters and confidence intervals. We show a comparison of
the cumulative number of infections: as we can see, Mexico City
(Fig. 13a) will have the greatest number of infections within the
pandemic of COVID-19, the State of Mexico (Fig. 13b) will be the
second state with most infections. Mexico City will have most of
the fatalities caused by the virus, followed by the State of Mexico,
which has the cities with higher population than the rest of the
states (Fig. 14) with the reported data. We also plot the number of
recovered cases in Fig. 15 and the number of active symptomatic
infections and asymptomatic infections in Figs. 16 and 17, respec-
tively. Asymptomatic individuals are of great importance as they
present a much higher number with respect to symptomatic indi-
viduals, by activating the “Jornada Nacional de Sana Distancia”, the
number of symptomatic infections has been reduced and the curve
of these individuals has been flattened as well.

4.2.2. Yucatan Peninsula

Now, we evaluate the outbreak in the Yucatan Peninsula. We
reviewed Campeche, Yucatan and Quintana Roo; the outbreaks are
depicted in Fig. 18. Campeche is the only state that has reached a
peak, and it was around mid-June. For the states of Yucatan and

Quintana Roo, the cases are still increasing, which means that the
cycle in these regions is far from over.

Campeche has a similar infection rate as Yucatan with a value
of 0.72 at the initial stage of the outbreak (Fig. 19a). It decayed
rapidly by day 50 of the outbreak, when it has a rate of 0.25 and
then remains constant. Its recovery rate was the highest from the
Yucatan Peninsula, at first a lot of severe cases developed and few
mild cases; 100 days must pass for its recovery rate could increase.
When we wrote this manuscript, Campeche was a state of great
concern because it had a death rate much higher than the rest of
the states in the Yucatan Peninsula, its death rate started around
0.1 per day, but as time passed, the death rate decayed, becoming
lower than 0.05. Quintana Roo has the highest infection rate of the
Peninsula with a value equal to 1.1 at the beginning of the simu-
lation (Fig. 19b), but it decays rapidly around 30 days from March
12; the infection rate will be around 0.1 by May 2020. The recov-
ery rate for Quintana Roo starts very low with severe cases, and as
days pass, the recovery rate increases with in theory a higher num-
ber of mild cases. The death rate at the initial days was higher in
Quintana Roo with a value of 0.035;as the days pass, the rate de-
creases, indicating that severe and mild cases are recovering more
often. Finally, in the state of Yucatan, the infection rate started
around 0.71; at 50 days past March 12, it remains constant at a
value slightly lower than 0.2. The recovery rate for Yucatan has
a similar behavior to the rest of the states but with different dy-
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of the references to color in this figure legend, the reader is referred to the web version of this article.)

namics. At first, there were a lot of severe cases where the recov-
ery may last longer; 40 days later, the recovery rate began to in-
crease, which meant that more individuals recovered from COVID-
19. Lastly, the death rate for Yucatan remained constant with a
value lower than 0.02.

Regarding the daily reproduction ratio, Campeche is the state
whose value is the smallest from the Yucatan Peninsula: it started
with a value of 4 (Fig. 20a), they will enter Phase 2 with a value
smaller than 2. From the last week of June to November, its value
will be around one, which means that the disease is decaying in
the number of new infections with respect to the previous months.
For the state of Quintana Roo (Fig. 20b), it started with a very
high value but descended rapidly by mid-April, becoming less than
2. By June, the daily reproduction ratio remains constant with a
value between 1 and 2, this means that the disease is increasing
at a very low rate. Yucatan has a similar behavior as Quintana Roo
(Fig. 20c), starting with a value greater than 8; by the month of

May the value of the Ry(t) decayed exponentially to a value be-
tween one and 2, then it remains constant throughout the out-
break.

Quintana Roo and Yucatan are states of great importance for
this Peninsula, because the cycle of the pandemic is still active, and
it is slightly increasing since the month of June. We thought Quin-
tana Roo (Fig. 21b) was going to have a higher number of infected
individuals, but Yucatan will have much more than the other states
(Fig. 21c). Importantly, the cumulative number of symptomatic
cases in these states is still increasing and thus is not showing any
type of descend. Campeche will have between 4000 and 9000 in-
fected individuals (Fig. 21a). The death toll will be higher in Yu-
catan (Fig. 22c), and then Quintana Roo (Fig. 22b). We also plot
the number of recovered cases in Fig. 23 and the number of active
symptomatic infections in Fig. 24. Finally, we can see in Fig. 25 the
simulation of the asymptomatic cases, which shows that in the Yu-
catan Peninsula the cycle of the pandemic is far from over.
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Fig. 23. Number of recovered cases (R(t)) predicted by the model of the Yucatan Peninsula, 95% confidence intervals and reported number of recoveries.
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reported data.
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Fig. 25. Number of asymptomatic cases (A(t)) predicted by our model for the Yucatan Peninsula and 95% confidence intervals.

5. Discussion

During the outbreak of a pandemic where the transmission is
from infected individuals to healthy individuals, the use of math-
ematical models as a forecast is of great importance. By this ap-
proach, authorities can plan a health care program and control
the spread even with limited resources. In this work, we formu-
lated and analyzed a compartmental mathematic epidemic model
to simulate the outbreak of the virus in mainland Mexico and im-
portant regions of said country.

Our mathematical model was a data driven analysis, using pub-
licly available data from our Ministry of Health, which are updated
daily. Our model incorporates two compartments that are of the
utmost importance: exposed and asymptomatic. By incorporating
the exposed subpopulation, we are modeling the latency period,
and the asymptomatic subpopulation incorporates the individuals
that do not present any type of symptoms but have the ability to
spread the virus and infect more individuals. Both tools are impor-
tant to understand the size and time of the outbreak.

The results of our numerical solutions would let us compare
how different the outbreak will be in the two studied regions. For
overall Mexico, we used the cumulative infections for all 32 states.
The Valley of Mexico will be the region with most infected individ-
uals and deaths, because this region concentrates 22% of the Mexi-
can population. Nevertheless, there is still heterogeneity in the Val-

ley of Mexico: Mexico City and the State of Mexico present a simi-
lar behavior, but in Mexico City they will be more infected individ-
uals with or without symptoms. Even though control measures like
social distancing were applied and the curve of infected individu-
als is flattened, there will be a high number of infected individuals
with symptoms. This being said, Mexico should focus their effort in
applying hospital interconnection and have sufficient resources to
help all individuals who will develop severe respiratory symptoms.

On June 1, the “Jornada Nacional de Sana Distancia" came to an
end, by this day Mexico entered in a new normality governed by a
system very similar to a traffic light system. The traffic light color
is determined following 4 criteria:

» Hospital occupation.

o Evolution of the daily effective number R;.
» The tendency of the hospitalized cases.
The shift of the suspected cases.

Based on these criteria, the economic reactivation was deter-
mined with the epidemic risk with 4 colors (red, orange, yellow
and green), the federal government established the measures that
each state should implement in the midst of the pandemic. This
strategy is focused on releasing the optimal number of individuals
from quarantine, without jeopardizing the hospital occupation. As
we can see, the effective daily reproduction ratio for the Valley of
Mexico is below one for the three states evaluated, which means
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that these states are implementing the measures to try to prevent
the spread of the virus in this new normality. It is important to
mention that the Mexico Valley entered in orange traffic light in
the last week of June, by the time we modeled our data we didn’t
see any increase in the number of active cases.

For the Yucatan Peninsula, Quintana Roo and Yucatan have a
very different behavior from Campeche. Regarding the effective
reproduction number, Campeche is the only state that reaches a
value below or equal to one, hence the disease is decreasing in that
state. Yucatan and Quintana Roo are states where Mexico should
focus their actions in supplying medical stock, because these re-
gions are having an increase in the number of infected individuals.
Yucatan has an alarming behavior, during the “Jornada Nacional de
Sana Distancia”, the number of active cases (hospitalized or iso-
lated in their houses) increased in the two weeks following the
reopening of non-essential activities. We recommend that Yucatan
and Quintana Roo go back to the red color of the traffic light sys-
tem, because the health measures implemented were not enough
and it is possible that a saturation of the hospital capacity to treat
severe COVID-19 cases occurs.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Ugo Avila-Ponce de Ledon: Conceptualization, Methodology,
Software, Formal analysis, Data curation, Writing - original draft,
Writing - review & editing. Angel G.C. Pérez: Conceptualization,
Methodology, Software, Formal analysis, Writing - review & edit-
ing. Eric Avila-Vales: Conceptualization, Methodology, Supervision,
Project administration.

Acknowledgments

Ugo Avila Ponce de Leén is a doctoral student from Programa
de Doctorado en Ciencias Bioldgicas of the Universidad Nacional
Auténoma de México (UNAM). This paper was developed in the pe-
riod of his Ph.D. studies. Ugo Avila Ponce de Leén also received a
fellowship (CVU: 774988) from Consejo Nacional de Ciencia y Tec-
nologia (CONACYT).

This article was supported in part by Mexican SNI under CVU
15284.

References

[1] Zhang G, Zhang ], Wang B, Zhu X, Wang Q, Qiu S. Analysis of clinical character-
istics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia
in Wuhan, China: a retrospective analysis. Respir Res 2020;21(1):1-10.

[2] Coronaviridae Study Group of the International Committee on Taxonomy
of Viruses. The species severe acute respiratory syndrome-related coron-
avirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol
2020;5:536-44.

[3] Urso DL. Coronavirus disease 2019 (COVID-19): A brief report. Clin Manag Is-
sues 2020;14(1):15-19.

[4] Cruz-Pacheco G., Bustamante-Castaneda FJ., Caputo J.G., Jimenez-Corona M.E.,
Ponce-de Leon S. Dispersion of a new coronavirus SARS-CoV-2 by airlines in
2020: Temporal estimates of the outbreak in Mexico. medRxiv2020.

[5] Alvarez M.M., Gonzalez-Gonzalez E., Trujillo-de Santiago G.. Modeling COVID-
19 epidemics in an Excel spreadsheet: Democratizing the access to first-hand
accurate predictions of epidemic outbreaks. medRxiv2020.

[6] Acufia Zegarra M.A., Comas-Garcia A., Herndndez-Vargas E., Santana-Cibrian
M., Velasco-Hernandez ].X. The SARS-CoV-2 epidemic outbreak: a review of
plausible scenarios of containment and mitigation for Mexico. medRxiv2020.

[7] Tang B, Wang X, Li Q, Bragazzi NL, Tang S, Xiao Y, Wu ]. Estimation of the
transmission risk of the 2019-nCov and its implication for public health inter-
ventions. ] Clin Med 2020;9(2):462.

[8] Lin Q, Zhao S, Gao D, Lou Y, Yang S, Musa SS, Wang MH, Cai Y, Wang W,
Yang L, He D. A conceptual model for the coronavirus disease 2019 (COVID-19)
outbreak in Wuhan, China with individual reaction and governmental action.
Int ] Infect Dis 2020;93:211-16.

[9] Zhao S, Chen H. Modeling the epidemic dynamics and control of COVID-19
outbreak in China. Quant Biol 2020;8:11-19.

[10] Khrapov P, Loginova A. Mathematical modelling of the dynamics of the Coro-
navirus COVID-19 epidemic development in China. Int J Open Inf Technol
2020;8(4):13-16.

[11] Fanelli D, Piazza F. Analysis and forecast of COVID-19 spreading in China, Italy
and France. Chaos Solitons Fractals 2020;134:109761.

[12] Caccavo D.. Chinese and Italian COVID-19 outbreaks can be correctly described
by a modified SIRD model. medRxiv2020.

[13] Annas S, Pratama MI, Rifandi M, Sanusi W, Side S. Stability analysis and nu-
merical simulation of SEIR model for pandemic COVID-19 spread in Indonesia.
Chaos Solitons Fractals 2020;139:110072.

[14] Cooper I, Mondal A, Antonopoulos CG. A SIR model assumption for
the spread of COVID-19 in different communities. Chaos Solitons Fractals
2020;139:110057.

[15] Pai C, Bhaskar A, Rawoot V. Investigating the dynamics of COVID-19 pandemic
in India under lockdown. Chaos Solitons Fractals 2020;138:109988.

[16] Nadim S.S., Ghosh 1., Chattopadhyay J.. Short-term predictions and preven-
tion strategies for COVID-2019: A model based study. arXiv preprint arXiv:
200308150 2020.

[17] Rodrigues HS, Monteiro MTT, Torres DFM. Sensitivity analysis in a dengue epi-
demiological model. In: Conference papers in science, 2013; 2013. article ID
721406

[18] Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu ]. An updated estimation of the
risk of transmission of the novel coronavirus (2019-nCoV). Infect Dis Model
2020;5:248-55.

[19] COVID-19 Tablero México, http://datos.covid-19.conacyt.mx/index.php.

[20] Zu ], Li M, Li Z, Shen M, Xiao Y, Ji F. Epidemic trend and transmission risk of
SARS-CoV-2 after government intervention in the mainland of China: a math-
ematical model study. In: SSRN; 2020. p. 3539669.


http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0001
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0002
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0003
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0004
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0005
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0006
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0007
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0008
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0009
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0010
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0011
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0011
http://arxiv.org/abs/200308150
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0012
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0013
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0013
http://datos.covid-19.conacyt.mx/index.php
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0014
http://refhub.elsevier.com/S0960-0779(20)30561-0/sbref0014

