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a b s t r a c t 

We propose an SEIARD mathematical model to investigate the current outbreak of coronavirus disease 

(COVID-19) in Mexico. Our model incorporates the asymptomatic infected individuals, who represent 

the majority of the infected population (with symptoms or not) and could play an important role in 

spreading the virus without any knowledge. We calculate the basic reproduction number ( R 0 ) via the 

next-generation matrix method and estimate the per day infection, death and recovery rates. The local 

stability of the disease-free equilibrium is established in terms of R 0 . A sensibility analysis is performed 

to determine the relative importance of the model parameters to the disease transmission. We calibrate 

the parameters of the SEIARD model to the reported number of infected cases, fatalities and recovered 

cases for several states in Mexico by minimizing the sum of squared errors and attempt to forecast the 

evolution of the outbreak until November 2020. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

At the beginning of December 2019, a new virus caused an in-

rease in atypical pneumonia at the city of Wuhan in China. The

irus was isolated, sequenced and identified as a new type of coro-

avirus [1] . The virus was called SARS-CoV-2 and the disease asso-

iated with that virus was called COVID-19 [2] . On March 11, 2020,

he World Health Organization (WHO) declared the outbreak of

OVID-19 as a global pandemic [3] . Most of the infected individu-

ls will develop a mild respiratory illness and they won’t need any

pecial requirements; they will just need to manage the symptoms.

ymptoms associated to COVID-19 are fever, cough and fatigue, few

ay develop other symptoms like headache and diarrhea, to name

ome. 

The first case of COVID-19 confirmed in Mexico was until

ebruary 2020, which was an imported case from Europe, by that

ime it was an epicenter of the disease. Mexican authorities an-

ounced on March 14 the “Jornada Nacional de Sana Distancia”

hat basically means quarantine for vulnerable groups. Not only

lderly individuals are considered a group of risk, also individu-

ls that have co-morbidities like diabetes, hypertension and obe-

ity can develop more complicated respiratory symptoms that can
∗ Corresponding author. 
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e fatal. Mexico declared phase 2 of the coronavirus pandemic

n March 23 with 367 confirmed cases. As of July 16, there were

24 041 confirmed cases and 37 574 deaths. In [4] , Cruz-Pacheco

t al. estimated the arrival of the infectious outbreak to Mexico be-

ween March 20 and March 30, 2020. Other models for predicting

he evolution of COVID-19 outbreak in Mexico have been proposed

n Alvarez et al. [5] , Acuña Zegarra et al. [6] . 

In this paper, we modify the SIR epidemic model with a novel

EIARD epidemic model. We included a subpopulation of asymp-

omatic individuals, the so-called hidden cases. Even though in

he case of Mexico, there have not been a characterization of the

symptomatic cases, we believe the proportion of this subpopu-

ation is roughly 0.14 based on the estimation of a mathematical

odel applied in Tang et al. [7] . 

Compartmental models like the one used in this paper have

een used for studying the spread of the COVID-19 pandemic in

everal countries, such as China [8–10] , Italy [11,12] and other parts

f the world [13–15] . In this study, we use a compartmental math-

matical model to try to understand the outbreak of COVID-19 in

exico, and we evaluate the heterogeneity of COVID-19 through-

ut Mexican territory considering two important regions: the Mex-

co Valley and the Yucatan Peninsula. 

The rest of the paper is structured as follows. We formulate the

athematical model, compute the basic reproduction number and

erform a sensibility analysis in Section 2 . In Section 3 , we cali-

rate our mathematical model using a sum of squared errors ap-

roach using daily cumulative of infected, death and recovered in-

https://doi.org/10.1016/j.chaos.2020.110165
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110165&domain=pdf
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Fig. 1. Flow diagram of our mathematical model to evaluate the behavior of the 

spread of nCoV-2019 in Mexico. S : susceptible, E : exposed, I : infected with symp- 

toms, A : infected but without symptoms (asymptomatic), R I : recovered from symp- 

tomatic infection, R A : recovered from asymptomatic infection, D : dead. 
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dividuals published daily by the Ministry of Health in Mexico. We

used the data until July 2, 2020. In Section 4 , we explore the simu-

lations of the cases in Mexico and compare how different the out-

break is in the two regions. Lastly, we provide some concluding

remarks in Section 5 . 

2. Mathematical model with asymptomatic individuals 

In this work, we will use a compartmental differential equation

model for the spread of COVID-19 in Mexico. The model monitors

the dynamics of six subpopulations, which are: susceptible ( S ( t )),

exposed ( E ( t )), infected ( I ( t )), asymptomatic ( A ( t )), recovered ( R ( t ))

and dead ( D ( t )). 

The model simulations will be carried out with the following

assumptions: 

a) The susceptible and infected individuals are homogeneous in

the population. 

b) At first, no interventions were applied to stop the spread of

COVID-19. 

c) No births are allowed in the population, and we only take into

account the fatalities associated to COVID-19. 

Fig. 1 shows a diagram of the flow through the compartmental

subpopulations. 

Susceptible population S ( t ) : This subpopulation cannot in-

crease, because we are not considering any natural recruitments

(births) or deaths that are not related to COVID-19. The susceptible

population will only decrease after an infection, an acquired char-

acteristic due to the interaction with an infected person or asymp-

tomatic one. The transmission coefficients will be βI and βA . The

rate of change of the susceptible population is expressed in the

following equation: 

d S 

d t 
= −βS 

(
I + A 

N − D 

)
. (1)

Exposed population E ( t ) : Because we are modeling an infec-

tious disease caused by a virus, we included the exposed popula-

tion to mimic the latent period, which is the period between the

infection with the virus and the moment when the host is able

to transmit the pathogen to susceptible individuals. The exposed

subpopulation consists of individuals that are infected but not in-

fectious, i.e., they cannot infect others. This population decreases

at a rate w to become infectious with or without symptoms. The

parameter 1/ w denotes the average length of the latent period;

hence, after 1/ w time units, an exposed individual becomes symp-

tomatically infectious with a probability p or asymptomatically in-

fectious with a probability 1 − p. Consequently, 

d E 

d t 
= βS 

(
I + A 

N − D 

)
− wE = βS 

(
I + A 

N − D 

)
− pwE − (1 − p) wE. (2)
Infected population I ( t ) : Infected (symptomatic) individuals

re generated at a proportion p ∈ (0, 1) from the exposed class.

hey recover at a rate γ and die at a rate δ. This is the only pop-

lation that acknowledges death. Thus, 

d I 

d t 
= pwE − (δ + γ ) I. (3)

Asymptomatic population A ( t ) : This population is considered

n infected population, but the individuals do not develop the

ommon symptoms of COVID-19. Asymptomatic individuals are

mportant to model because they have the ability to spread the

irus without knowing; they are produced at a proportion 1 − p

rom the exposed class and recover at a rate γ . Consequently, 

d A 

d t 
= (1 − p) wE − γ A. (4)

Recovered populations R I ( t ) and R A ( t ) : All individuals infected

ith symptoms or not will recover at a rate γ . We subdivide the

ecovered population in two compartments: individuals who re-

over after having symptoms ( R I ) and individuals who recover from

symptomatic infection ( R A ). Hence, 

d R I 

d t 
= γ I, 

d R A 

d t 
= γ A. (5)

Dead population D ( t ) : Infected individuals with symptoms die

t a rate δ, that is, 

d D 

d t 
= δI. (6)

Hence, the system of differential equations that will model the

ynamics of coronavirus spread in Mexico is: 

d S 

d t 
= −βS 

(
I+ A 
N−D 

)
, 

d E 

d t 
= βS 

(
I+ A 
N−D 

)
− wE, 

d I 

d t 
= pwE − (δ + γ ) I, 

d A 

d t 
= (1 − p) wE − γ A, 

d R I 

d t 
= γ I, 

d R A 

d t 
= γ A, 

d D 

d t 
= δI. 

(7)

We also observe that N := S + E + I + A + R I + R A + D is con-

tant, where N is the size of the population modeled. 

.1. Basic reproduction number with a disease-free equilibrium 

There exists a disease-free equilibrium, which is given by S = N,

 = I = A = R I = R A = D = 0 , and we will denote it by x 0 . We calcu-

ate the basic reproduction number R 0 based on this steady state.

y applying the next-generation matrix method to find R 0 , we

ust solve the equation R 0 = ρ(F V −1 ) , where F and V are the

erivatives of the new infections matrix F and the transition ma-

rix V, respectively, evaluated at the disease-free equilibrium, and

denotes the spectral radius. Then 

 = 

⎡ 

⎣ 

βS 
(

I+ A 
N−D 

)
0 

0 

⎤ 

⎦ 
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m 0  
he derivative of F at x 0 is: 

 = 

[ 

0 β β
0 0 0 

0 0 0 

] 

. 

The transition matrix is 

 = 

[ 

wE 
−pwE + (δ + γ ) I 
−(1 − p) wE + γ A 

] 

. 

he derivative of V at x 0 is 

 = 

[ 

w 0 0 

−pw δ + γ 0 

−(1 − p) w 0 γ

] 

. 

he inverse of V is 

 

−1 = 

⎡ 

⎣ 

1 
w 

0 0 

p 
δ+ γ

1 
δ+ γ 0 

1 −p 
γ 0 

1 
γ

⎤ 

⎦ . 

hen 

 V 

−1 = 

⎡ 

⎣ 

βp 
δ+ γ + 

β(1 −p) 
γ

β
δ+ γ

β
γ

0 0 0 

0 0 0 

⎤ 

⎦ . 

We need to find the eigenvalues of F V −1 , which are λ1 = 

βp 
δ+ γ +

β(1 −p) 
γ , λ2 = 0 and λ3 = 0 . Then, the basic reproduction number is

iven by the dominant eigenvalue, that is, 

 0 = 

βp 

δ + γ
+ 

β(1 − p) 

γ
. (8) 

he basic reproduction number formulated above has two compo-

ents that have a biological interpretation. The first term of (8) is

ssociated with symptomatic individuals: during the time of recov-

ry 1/ γ they can infect susceptible individuals at a rate β , and

hese infected individuals may die after a mean time 1/ δ. Hence,

 S = 

β

δ + γ
(9) 

epresents the contribution of symptomatic infectious individuals

o new infections. The same derivation is for the second term of

8) , only this represents the contribution of asymptomatic infec-

ious individuals, which is given by 

 A = 

β

γ
. (10) 

he functionality of the basic reproduction number is associated

ith the force of infection of both symptomatic and asymptomatic

ndividuals. Thus, (8) can be expressed by the following equation:

 0 = pF S + (1 − p) F A . (11)

The stability of our disease-free equilibrium can be explained

y the following theorem, mentioned in Nadim et al. [16] : the

isease-free equilibrium NC = (N, 0 , 0 , 0 , 0 , 0 , 0 ) of our system of

ifferential equations is locally asymptomatically stable if R 0 < 1

nd unstable if R 0 > 1. 

We calculate the Jacobian matrix of our system of differential

quations at the disease-free equilibrium, which is given by 

 NC = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 −β −β 0 0 0 

0 −w β β 0 0 0 

0 pw −(δ + γ ) 0 0 0 0 

0 (1 − p) w 0 −γ 0 0 0 

0 0 γ 0 0 0 0 

0 0 0 γ 0 0 0 

0 0 δ 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 
et λ be the eigenvalue of the matrix J NC . Then the characteristic

quation is given by det (J NC − λI) = 0 , that is, 

δwλ4 + βγ wλ4 − δγ wλ4 − γ 2 wλ4 − βδpwλ4 − δγ λ5 

−γ 2 λ5 + βwλ5 − δwλ5 − 2 γ wλ5 − δλ6 − 2 γ λ6 

−wλ6 − λ7 = 0 . 

(12) 

o solve (12) , we can factorize with λ4 . Thus, (12) can be rewritten

s 

λ4 
[

− βδw − βγ w + δγ w + γ 2 w + βδpw + (δγ + γ 2 

−βw + δw + 2 γ w ) λ + (δ + 2 γ + w ) λ2 + λ3 
]

= 0 . 

o determine the stability of the disease-free equilibrium, we must

olve the cubic equation 

3 + a 1 λ
2 + a 2 λ + a 3 = 0 , (13)

here the coefficients are 

 1 = δ + 2 γ + w, a 2 = δγ + γ 2 + δw + 2 γ w − βw, 

 3 = δγ w + γ 2 w + βδpw − βδw − βγ w. 

he Routh–Hurwitz criterion tells us that a necessary and suf-

cient condition for all roots of (13) to have negative real part

s that a 3 > 0 and a 1 a 2 − a 3 > 0 . In order to check these condi-

ions, we rewrite a 3 in terms of the basic reproduction number as

 3 = γ w (δ + γ )(1 − R 0 ) . From this, it is clear that a 3 is positive

henever R 0 < 1. Therefore, we can conclude the following result:

heorem 1. The disease-free equilibrium of model (7) is stable if and

nly if 

 0 < 1 and 

(δ + 2 γ + w )(δγ + γ 2 + δw + 2 γ w − βw ) 

−(δγ w + γ 2 w + βδpw − βδw − βγ w ) > 0 . 

.2. Sensitivity analysis of the basic reproduction number 

Using the formula (8) for the basic reproduction number, we

an perform a sensitivity analysis for R 0 to determine how impor-

ant each parameter is for disease transmission. Sensitivity indices

llow us to measure the relative change in a variable, in this case

 0 , when a parameter varies. This can be used to determine the ro-

ustness of model predictions to parameter values, and to discover

arameters that have a very high impact on R 0 [17] . Hence, we use

he following definition. 

efinition 1. If R 0 is differentiable with respect to a given param-

ter θ , the normalized forward sensitivity index of R 0 is defined

y 

R 0 
θ

= 

θ

R 0 

· ∂R 0 

∂θ
. 

We will calculate the sensitivity index for R 0 with respect to

he parameters β , p, δ and γ as follows (notice that R 0 does not

epend on w , so �
R 0 
w 

= 0 ). 

R 0 
β

= 

β
R 0 

(
p 

δ+ γ + 

1 −p 
γ

)
= 1 , 

R 0 
p = 

p 
R 0 

(
β

δ+ γ − β
γ

)
= 

p 
R 0 

· βγ −β(δ+ γ ) 
(δ+ γ ) γ

= − βδp 
(δ+ γ ) γ R 0 

, 

R 0 
δ

= 

δ
R 0 

· −βp 

(δ+ γ ) 2 
= − βδp 

(δ+ γ ) 2 R 0 
, 

R 0 
γ = 

γ
R 0 

[ 
−βp 

(δ+ γ ) 2 
+ 

−β(1 −p) 
γ 2 

] 
= − β

R 0 

[ 
γ p 

(δ+ γ ) 2 
+ 

1 −p 
γ

] 
. 

rom this, we can see that �
R 0 
β

> 0 , while �
R 0 
p , �

R 0 
δ

, �
R 0 
γ < 0 , which

eans that an increment in the contact rate β will cause R to
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p  
increase, while an increment in the symptomatic case proportion

p , the death rate δ or the recovery rate γ will cause R 0 to decrease.

Also, we can see that ∣∣�R 0 
δ

∣∣ = 

βδp 

(δ + γ ) 2 R 0 

< 

βδp 

(δ + γ ) γ R 0 

= 

∣∣�R 0 
p 

∣∣, 
which implies that a perturbation in the parameter p produces a

relatively larger change in R 0 than a perturbation in δ. 

Since �
R 0 
β

= 1 , we can see that increasing the contact rate β by

a given percentage always increases R 0 by that same percentage.

Moreover, 1 
δ+ γ > 

γ
(δ+ γ ) 2 

, so 

∣∣∣�R 0 
β

∣∣∣ = 

β

R 0 

(
p 

δ + γ
+ 

1 − p 

γ

)
> 

β

R 0 

[
γ p 

(δ + γ ) 2 
+ 

1 − p 

γ

]
= 

∣∣�R 0 
γ

∣∣. 
Hence, the parameters with the largest normalized forward sensi-

tivity index are β and p . 

3. Implementation to estimate the parameters 

To describe the evolution of the epidemic in Mexico taking into

account the social distancing measures taken by the government,

we will assume that the infection rate, recovery rate and death

rate are time-dependent functions, similar to those used in Cac-

cavo [12] . 

To model the effect of epidemic control measures, which cause

the number of contacts per person per unit time to decrease as the

epidemic progresses, we describe the infection rate by the func-

tion 

β(t) = β0 exp 

(
− t 

τβ

)
+ β1 , 

where β0 + β1 is the initial infection rate. This rate decreases ex-

ponentially to the value β1 with a characteristic time of decrease

τβ . 

The time of recovery for patients may also vary with time due

to the medical staff improving their therapeutic procedures. Hence,

we will assume that the recovery rate is modeled by the function 

γ (t) = γ0 + 

γ1 

1 + exp (−t + τγ ) 
, 

where γ 0 is the recovery rate at time zero, and γ0 + γ1 is the re-

covery rate at a later time, which is reached after τ γ days of adap-

tation. 

Lastly, the death rate may decrease with time due to the adap-

tation of the pathogen or the development of more advanced treat-

ments. Hence, we can model this with the function 

δ(t) = δ0 exp 

(
− t 

τδ

)
+ δ1 , 

where δ0 + δ1 is the initial death rate, which decreases to the value

δ1 with a characteristic time τ δ . 

If we replace the constant parameters β , δ and γ in Eq. (8) with

the aforementioned time-dependent functions, we can define 

R d (t) = pF S (t) + (1 − p) F A (t) . (14)

As we derived before, F S and F A are represented by β , δ and γ .

R d ( t ) is the effective daily reproduction ratio, which measures the

number of new infections produced by a single infected individ-

ual per day, taking into account the evolving public health inter-

ventions and available resources [18] . Due to the fact that we are

modeling a disease that is spreading in a population, the effective

daily reproduction ratio is more suitable to use. R d will diminish as

time passes as a result of two reasons: the susceptible population

becoming infected or the use of interventions (we call it “Jornada
acional de Sana Distancia” in Mexico) to stop the spread. To even-

ually stop the spread of SARS-CoV-2, R d should be reduced until

t becomes lower than one. 

The set of differential equations was solved using Matlab 2016b

ith the ode45 solver, which is based on an explicit Runge-Kutta

4,5) formula. Our model was calibrated using the cases of COVID-

9 in Mexico. The data were collected in the period since the first

ay after Mexico declared phase 2 of the pandemic (March 12) un-

il July 2, 2020, from the open source repository of the Ministry of

ealth in Mexico [19] . 

The optimization of parameters to describe the outbreak of

OVID-19 in Mexico was fitted in two steps. First, we minimized

he Sum of Squared Errors (SSE), in such a way that the solutions

or D ( t ) and R I ( t ) obtained by the model approximate the reported

umulative numbers of fatalities and recovered cases, respectively,

hile the sum I(t) + R I (t) + D (t) approximates the reported cumu-

ative number of infected cases with symptoms. Since the Mexi-

an government does not keep a record of the number of asymp-

omatic cases, we assume that the asymptomatic infected popula-

ion is about nine times larger than the population with symptoms,

ased on government estimations. We applied three searches to

inimize the SSE function: a gradient-based method, a gradient-

ree algorithm, and finally, a gradient-based method. This method

as necessary to obtain the global minimum. For this step, we

dapted the code from Caccavo [12] to our mathematical model. 

Secondly, we used the set of parameters obtained by minimiz-

ng the SSE as the initial value of a Markov Chain Monte Carlo

MCMC) approach, similar to the one used in Zu et al. [20] , where

e set the iteration number to 80 0 0 and the first 60 0 0 itera-

ions as burn-in periods. Then, we computed the solutions of the

odel for each set of parameters obtained after the burn-in pe-

iod and computed the mean and standard deviation for these so-

utions and for the effective daily reproduction ratio. Finally, we

lotted the 95% confidence intervals for R d ( t ) and for the D ( t ), I ( t )

nd R I ( t ) components of the solutions. The code and the data will

e available in the following github: https://github.com/UgoAvila/

OVD- 19- in- Mexico- and- State- Level- Forecast . 

. Evolution of the outbreak of COVID-19 

.1. Evolution of the outbreak of COVID-19 in mainland Mexico 

The predicted evolution of the outbreak for COVID-19 in Mexico

an be seen in Fig. 2 . The parameters of the mathematical model

ere fitted with the experimental data provided by a daily update

rom the Mexican Ministry of Health. By adjusting the data from

he period from March 12, 2020 to July 2, 2020, we simulated the

aily new COVID-19 cases in Mexico until November 2020. Fig. 3

hows the variation of the infection rate β( t ), recovery rate γ ( t )

nd death rate δ( t ) with respect to time. The infection rate de-

reases at a good pace with respect to time, taking roughly 70

ays from March 12 to an infection rate per day of 0.3. At 200

ays past March 12, the infection rate will be between 0.25 and

.2, this means that in Mexico, there will be new cases of COVID-

9 developing in a new normality of living with the virus. The re-

overy rate in Mexico at ten days past March 12 is increasing, and

ast the 10th day the recovery rate becomes constant with respect

o time. This type of behavior may be explained by the fact that,

t first, there were only mild cases in Mexico. Then, by March 22

here were much more severe cases, which are associated with a

eath rate that remains roughly constant at a rate of 0.04 per day.

The values of the best fit parameters are given in Table 1 . We

lso include there the lower and upper bounds of the 95% con-

dence intervals obtained after the MCMC approach. Using these

alues for the parameters, we can calculate the effective daily re-

roduction ratio R ( t ) for each day (see Fig. 4 ). As we can see in
d 

https://github.com/UgoAvila/COVD-19-in-Mexico-and-State-Level-Forecast
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Fig. 2. Graphs for the spread of COVID-19 in Mexico. The dotted red line represents 

infected individuals, the solid black line represents the fatalities by the disease, the 

dash-dot green line represents recovered individuals, finally, the dashed blue line 

represents infected individuals but without any type of symptoms. (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 3. Best fit values of the infection, recovery and death rates as functions of time. 

Dotted red line is the death rate, dash-dot green line the recovery rate and the 

solid blue line the infection rate. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Model parameters obtained from the best fit optimization for Mexico. 

Parameter Best fit value for Mexico 95% CI Unit 

β0 0.4646 (0.4192, 0.5100) 1/day 

β1 0.2514 (0.2403, 0.2625) 1/day 

τβ 29.0893 (27.2078, 30.9709) day 

γ 0 0.0895 (0.0222, 0.1567) 1/day 

γ 1 0.1539 (0.0937, 0.2140) 1/day 

τ γ 7.7042 (5.4516, 9.9568) day 

δ0 0.0097 (0.0051, 0.0144) 1/day 

δ1 0.0355 (0.0329, 0.0381) 1/day 

τ δ 6.4256 (4.6097, 8.2415) day 

w 0.2805 (0.2676, 0.2934) 1/day 

p 0.1185 (0.1112, 0.1258) –

Fig. 4. Variation of the effective daily reproduction number through time. The solid 

black line represents the value of the reproduction number; the red dotted and 

green dash-dot lines are the 95% confidence interval upper and lower bounds, re- 

spectively. The blue dashed line represents the value one. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 5. Cumulative number of symptomatic infected individuals ( I(t) + R I (t) + D (t) ) 

predicted by the model, 95% confidence interval and reported cases. 
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b  
ig. 4 , during March R d ( t ) decreases exponentially to a value of 2,

lthough there is a large uncertainty about its exact value in the

rst days, then it decreases from 2 to 1 during the months of April,

ay and June. The decrease from the first period is very helpful

nd Mexico will be entering a declared phase two of the pandemic

ith a relatively low reproduction number. We believe this decay

ay have occurred because the Ministry of Health applied the “Jor-

ada Nacional de Sana Distancia” before Mexico declared to be in

hase two. Our simulation shows that R d ( t ) will become 1 by the

onth of July, and it will maintain this value until past October

020. In Figs. 5–9 , we carried out the simulation with the best fit

arameters and confidence intervals. We show a comparison of the

umulative number of infections ( Fig. 5 ), deaths ( Fig. 6 ) and recov-

red cases ( Fig. 7 ) with the reported data. We also plot the num-

er of active symptomatic infections and asymptomatic infections
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Fig. 6. Death toll ( D ( t )) predicted by the model, 95% confidence interval and re- 

ported number of fatalities. 

Fig. 7. Number of recovered cases ( R I ( t )) predicted by the model, 95% confidence 

interval and reported number of recoveries. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Number of infected cases ( I ( t )) predicted by the model, 95% confidence in- 

terval and number of active infections computed from the reported data. 

Fig. 9. Number of asymptomatic cases ( A ( t )) predicted by the model and 95% con- 

fidence interval. 
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in Figs. 8 and 9 , respectively. Our simulations show that the peak

of the infection will most likely occur between July and September

2020. 

4.2. Heterogeneity of the outbreak of COVID-19 in two regions in 

Mexico 

We evaluated the heterogeneity of the spread of COVID-19 in

Mexico. We applied our SEIARD model for two important regions

in Mexico: the Mexico Valley (Mexico City, State of Mexico and

Morelos) and the Yucatan Peninsula (Campeche, Quintana Roo and

Yucatan). 

4.2.1. Mexico Valley 

First, we modeled the evolution of the outbreak of COVID-19 in

the Valley of Mexico, which is shown in Fig. 10 . We adjusted the

data provided by the Mexican Ministry of Health from March 12 to

July 2 and simulated the daily cumulative cases for each state until

November 2020. The outbreak in the Mexico Valley will be slightly
ifferent from the national perspective, and each state will behave

ifferently. 

Mexico City outbreak is different from the other states, even

hough it had the largest number of infections: the curve for the

nfected population there (red line in Fig. 10 a) increased in a con-

rolled way, reaching its peak in early July and starting to descend

rom July to November. State of Mexico ( Fig. 10 b) has the same be-

avior as Mexico City, the only difference is the number of infected

ndividuals. Morelos ( Fig. 10 c) had a different cycle of the pan-

emic: the infected individuals increased exponentially by early

ay, reaching its peak in mid-May; then, the number of infected

ndividuals decays at a good pace from June to November. The dif-

erence in the peak may be due to the separation of the capital of

orelos from Mexico City (86.6 km). Also, the connection between

hese states was cut off due to the confinement declared by the

inistry, which may be a reason for the difference between the

utbreak of the infection in these states. 

Fig. 11 shows the variation of the infection, recovery rate and

eath rate for the Mexico Valley. The rates between these states

re different: Mexico City (the capital of Mexico, which has one of
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Fig. 10. Graphs for the spread of COVID-19 in the Valley of Mexico. Dotted red lines represent infected individuals, solid black lines represent the fatalities by the disease, 

dash-dot green lines represent recovered individuals, finally, dashed blue lines represent infected individuals but without any type of symptoms. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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he two more important airports of the country) has the lowest in-

ection rate in the initial days of the simulation, being only a little

bove 0.6. At 60 days past March 12, the infection rate becomes

oughly 0.1 and decays as time passes. The recovery rate in Mexico

ity starts with severe cases at the early days of the outbreak, and

t will eventually remain constant, having not only severe cases but

ild ones as well. The death rate at the initial days of the outbreak

as 0.03, which is associated with only having severe cases during

he early days, but then the death rate decayed and remained con-

tant with a value of 0.01. The infection rate in the State of Mex-

co is higher than in Mexico City being around 0.9, but it decays

apidly as time passes with a value of 0.3 at 60 days past March

2; the State of Mexico will have a similar behavior for the infec-

ion rate as the national perspective: it will be around 0.25 at 200

ays past March 12. The recovery rate remains constant through-

ut the outbreak, by having at first severe cases, then developing

ild cases as well. There has been data indicating that most of the

evere cases from the State of Mexico were treated by the hospitals

n Mexico City. The death rate has the same behavior as in Mexico

ity, the only difference is that at early days many patients died at

 rate of 0.15. Morelos was the state with a higher infection rate

rom the Mexico Valley with a value of 1.2, which can be seen in
ig. 10 c as the infected population increased exponentially, but it

ecayed rapidly to 0.2 at 30 days past March 12 and has remained

onstant since then. The recovery rate at first was very low, this

eans that there were severe cases at the initial days of the out-

reak; at 50 days past March 12, the recovery rate increased due to

he presence of milder cases. The death rate for Morelos remained

onstant at a value of 0.05. 

The daily reproduction ratio for Mexico City ( Fig. 12 a) behaved

ifferently than the other states. At first, it had a value higher than

; from May to July, the value decayed exponentially until becom-

ng equal to 1. By August the value will be lower than one, but we

elieve this city should be treated differently to the other states

n the Mexico Valley since Mexico City has a much higher influ-

nce of transients daily. This is due to citizens from the surround-

ng areas coming to this city to work, creating a larger population

hat comprises not only people living in Mexico City, but citizens

rom the State of Mexico and Morelos as well. The State of Mex-

co has the same behavior for the daily reproduction ratio as Mex-

co City. The behavior for Morelos is by far different: in the month

f April its value was higher than 8, which was associated with

n increase of the infected population, and by mid-May, its value

ecayed rapidly to be lower than one, and it has been the same
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Fig. 11. Best fit parameters of the infection, death and recovery rates as functions of time for the Valley of Mexico. Dotted red line is the death rate, dash-dot green line the 

recovery rate and the solid blue line the infection rate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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value since. The lockdown measures in this state were strength-

ened when the infected cases increased rapidly, and those actions

are viewed in the daily reproduction ratio. 

In Figs. 13–17 , we carried out the simulation with the best fit

parameters and confidence intervals. We show a comparison of

the cumulative number of infections: as we can see, Mexico City

( Fig. 13 a) will have the greatest number of infections within the

pandemic of COVID-19, the State of Mexico ( Fig. 13 b) will be the

second state with most infections. Mexico City will have most of

the fatalities caused by the virus, followed by the State of Mexico,

which has the cities with higher population than the rest of the

states ( Fig. 14 ) with the reported data. We also plot the number of

recovered cases in Fig. 15 and the number of active symptomatic

infections and asymptomatic infections in Figs. 16 and 17 , respec-

tively. Asymptomatic individuals are of great importance as they

present a much higher number with respect to symptomatic indi-

viduals, by activating the “Jornada Nacional de Sana Distancia”, the

number of symptomatic infections has been reduced and the curve

of these individuals has been flattened as well. 

4.2.2. Yucatan Peninsula 

Now, we evaluate the outbreak in the Yucatan Peninsula. We

reviewed Campeche, Yucatan and Quintana Roo; the outbreaks are

depicted in Fig. 18 . Campeche is the only state that has reached a

peak, and it was around mid-June. For the states of Yucatan and
uintana Roo, the cases are still increasing, which means that the

ycle in these regions is far from over. 

Campeche has a similar infection rate as Yucatan with a value

f 0.72 at the initial stage of the outbreak ( Fig. 19 a). It decayed

apidly by day 50 of the outbreak, when it has a rate of 0.25 and

hen remains constant. Its recovery rate was the highest from the

ucatan Peninsula, at first a lot of severe cases developed and few

ild cases; 100 days must pass for its recovery rate could increase.

hen we wrote this manuscript, Campeche was a state of great

oncern because it had a death rate much higher than the rest of

he states in the Yucatan Peninsula, its death rate started around

.1 per day, but as time passed, the death rate decayed, becoming

ower than 0.05. Quintana Roo has the highest infection rate of the

eninsula with a value equal to 1.1 at the beginning of the simu-

ation ( Fig. 19 b), but it decays rapidly around 30 days from March

2; the infection rate will be around 0.1 by May 2020. The recov-

ry rate for Quintana Roo starts very low with severe cases, and as

ays pass, the recovery rate increases with in theory a higher num-

er of mild cases. The death rate at the initial days was higher in

uintana Roo with a value of 0.035;as the days pass, the rate de-

reases, indicating that severe and mild cases are recovering more

ften. Finally, in the state of Yucatan, the infection rate started

round 0.71; at 50 days past March 12, it remains constant at a

alue slightly lower than 0.2. The recovery rate for Yucatan has

 similar behavior to the rest of the states but with different dy-



U. Avila-Ponce de León, Á.G.C. Pérez and E. Avila-Vales / Chaos, Solitons and Fractals 140 (2020) 110165 9 

Fig. 12. Variation of the effective daily reproduction number through time for the Mexico Valley. The solid black line represents the value of the reproduction number; the 

red dotted and green dash-dot lines are the 95% confidence interval upper and lower bounds, respectively. The blue dashed line represents the value one. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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amics. At first, there were a lot of severe cases where the recov-

ry may last longer; 40 days later, the recovery rate began to in-

rease, which meant that more individuals recovered from COVID-

9. Lastly, the death rate for Yucatan remained constant with a

alue lower than 0.02. 

Regarding the daily reproduction ratio, Campeche is the state

hose value is the smallest from the Yucatan Peninsula: it started

ith a value of 4 ( Fig. 20 a), they will enter Phase 2 with a value

maller than 2. From the last week of June to November, its value

ill be around one, which means that the disease is decaying in

he number of new infections with respect to the previous months.

or the state of Quintana Roo ( Fig. 20 b), it started with a very

igh value but descended rapidly by mid-April, becoming less than

. By June, the daily reproduction ratio remains constant with a

alue between 1 and 2, this means that the disease is increasing

t a very low rate. Yucatan has a similar behavior as Quintana Roo

 Fig. 20 c), starting with a value greater than 8; by the month of
ay the value of the R d ( t ) decayed exponentially to a value be-

ween one and 2, then it remains constant throughout the out-

reak. 

Quintana Roo and Yucatan are states of great importance for

his Peninsula, because the cycle of the pandemic is still active, and

t is slightly increasing since the month of June. We thought Quin-

ana Roo ( Fig. 21 b) was going to have a higher number of infected

ndividuals, but Yucatan will have much more than the other states

 Fig. 21 c). Importantly, the cumulative number of symptomatic

ases in these states is still increasing and thus is not showing any

ype of descend. Campeche will have between 40 0 0 and 90 0 0 in-

ected individuals ( Fig. 21 a). The death toll will be higher in Yu-

atan ( Fig. 22 c), and then Quintana Roo ( Fig. 22 b). We also plot

he number of recovered cases in Fig. 23 and the number of active

ymptomatic infections in Fig. 24 . Finally, we can see in Fig. 25 the

imulation of the asymptomatic cases, which shows that in the Yu-

atan Peninsula the cycle of the pandemic is far from over. 
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Fig. 13. Cumulative number of symptomatic infected individuals C(t) = I(t) + R I (t) + D (t) predicted by the model, 95% confidence intervals and reported cases for the Mexico 

Valley. 



U. Avila-Ponce de León, Á.G.C. Pérez and E. Avila-Vales / Chaos, Solitons and Fractals 140 (2020) 110165 11 

Fig. 14. Death toll ( D ( t )) predicted by the model, 95% confidence intervals and reported number of fatalities for the Mexico Valley. 
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Fig. 15. Number of recovered cases ( R I ( t )) predicted by the model of the Mexico Valley, 95% confidence intervals and reported number of recoveries. 
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Fig. 16. Number of infected cases ( I ( t )) predicted by the model of the Mexico Valley, 95% confidence intervals and number of active infections computed from the reported 

data. 
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Fig. 17. Number of asymptomatic cases ( A ( t )) predicted by our model for the Mexico Valley and 95% confidence intervals. 
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Fig. 18. Graphs for the spread of COVID-19 in the Yucatan Peninsula. Dotted red lines represent infected individuals, solid black lines represent the fatalities by the disease, 

dash-dot green lines represent recovered individuals, finally, dashed blue lines represent infected individuals but without any type of symptoms. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 19. Best fit parameters of the infection, death and recovery rates as functions of time for the Yucatan Peninsula. Dotted red line is the death rate, dash-dot green line 

the recovery rate and the solid blue line the infection rate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 20. Variation of the effective daily reproduction number throughout time for the Yucatan Peninsula. The solid black line represents the value of the reproduction 

number; the red dotted and green dash-dot lines are the 95% confidence interval upper and lower bounds, respectively. The blue dashed line represents the value one. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 21. Cumulative number of symptomatic infected individuals C(t) = I(t) + R I (t) + D (t) predicted by the model, 95% confidence intervals and reported cases for the 

Yucatan Peninsula. 
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Fig. 22. Death toll ( D ( t )) predicted by the model, 95% confidence intervals and reported number of fatalities for the Yucatan Peninsula. 
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Fig. 23. Number of recovered cases ( R I ( t )) predicted by the model of the Yucatan Peninsula, 95% confidence intervals and reported number of recoveries. 
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Fig. 24. Number of infected cases ( I ( t )) predicted by the model of the Yucatan Peninsula, 95% confidence intervals and number of active infections computed from the 

reported data. 
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Fig. 25. Number of asymptomatic cases ( A ( t )) predicted by our model for the Yucatan Peninsula and 95% confidence intervals. 
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5. Discussion 

During the outbreak of a pandemic where the transmission is

from infected individuals to healthy individuals, the use of math-

ematical models as a forecast is of great importance. By this ap-

proach, authorities can plan a health care program and control

the spread even with limited resources. In this work, we formu-

lated and analyzed a compartmental mathematic epidemic model

to simulate the outbreak of the virus in mainland Mexico and im-

portant regions of said country. 

Our mathematical model was a data driven analysis, using pub-

licly available data from our Ministry of Health, which are updated

daily. Our model incorporates two compartments that are of the

utmost importance: exposed and asymptomatic. By incorporating

the exposed subpopulation, we are modeling the latency period,

and the asymptomatic subpopulation incorporates the individuals

that do not present any type of symptoms but have the ability to

spread the virus and infect more individuals. Both tools are impor-

tant to understand the size and time of the outbreak. 

The results of our numerical solutions would let us compare

how different the outbreak will be in the two studied regions. For

overall Mexico, we used the cumulative infections for all 32 states.

The Valley of Mexico will be the region with most infected individ-

uals and deaths, because this region concentrates 22% of the Mexi-

can population. Nevertheless, there is still heterogeneity in the Val-
 M  
ey of Mexico: Mexico City and the State of Mexico present a simi-

ar behavior, but in Mexico City they will be more infected individ-

als with or without symptoms. Even though control measures like

ocial distancing were applied and the curve of infected individu-

ls is flattened, there will be a high number of infected individuals

ith symptoms. This being said, Mexico should focus their effort in

pplying hospital interconnection and have sufficient resources to

elp all individuals who will develop severe respiratory symptoms.

On June 1, the “Jornada Nacional de Sana Distancia" came to an

nd, by this day Mexico entered in a new normality governed by a

ystem very similar to a traffic light system. The traffic light color

s determined following 4 criteria: 

• Hospital occupation. 
• Evolution of the daily effective number R t . 
• The tendency of the hospitalized cases. 
• The shift of the suspected cases. 

Based on these criteria, the economic reactivation was deter-

ined with the epidemic risk with 4 colors (red, orange, yellow

nd green), the federal government established the measures that

ach state should implement in the midst of the pandemic. This

trategy is focused on releasing the optimal number of individuals

rom quarantine, without jeopardizing the hospital occupation. As

e can see, the effective daily reproduction ratio for the Valley of

exico is below one for the three states evaluated, which means
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hat these states are implementing the measures to try to prevent

he spread of the virus in this new normality. It is important to

ention that the Mexico Valley entered in orange traffic light in

he last week of June, by the time we modeled our data we didn’t

ee any increase in the number of active cases. 

For the Yucatan Peninsula, Quintana Roo and Yucatan have a

ery different behavior from Campeche. Regarding the effective

eproduction number, Campeche is the only state that reaches a

alue below or equal to one, hence the disease is decreasing in that

tate. Yucatan and Quintana Roo are states where Mexico should

ocus their actions in supplying medical stock, because these re-

ions are having an increase in the number of infected individuals.

ucatan has an alarming behavior, during the “Jornada Nacional de

ana Distancia”, the number of active cases (hospitalized or iso-

ated in their houses) increased in the two weeks following the

eopening of non-essential activities. We recommend that Yucatan

nd Quintana Roo go back to the red color of the traffic light sys-

em, because the health measures implemented were not enough

nd it is possible that a saturation of the hospital capacity to treat

evere COVID-19 cases occurs. 
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