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Osteoarthritis (OA) is the most common form of arthritis, 
diagnosed by clinical joint symptoms and radiographic 

findings (1,2). It is a major cause of physical disability in 
the elderly. In the United States, 14 million people aged 
25 years and older have symptomatic knee OA (3), and 
more than half diagnosed will undergo primary total knee 
replacement (TKR) before death, with over 600 000 TKRs 
performed each year (3,4).

Clinical OA symptoms include joint pain, stiffness, 
and decreased range of motion. Radiographic OA is di-
agnosed by using a grading system such as the Kellgren-
Lawrence (KL) grade (1) or OA Research Society Inter-
national (OARSI) atlas (5) on the basis of the assessment 
of osteophytes and joint space narrowing. The presence of 
definite osteophytes with possible joint space narrowing 
(ie, KL grade  2) defines the radiographic knee OA in 
KL system. In the OARSI atlas, the radiographic knee 

OA is defined by any one of the following three separate 
criteria: joint space narrowing grade 2 or greater, sum of 
osteophyte grades 2 or greater, or joint space narrowing 
grade 1 and osteophyte grade 1. However, radiographic 
knee OA grading systems have multiple versions with no 
uniform agreement (6).

Automated methods for diagnosing knee OA from 
radiographs include a distance-based active shape model 
that calculates the geometric parameters between the 
tibia and femur (7). Transfer learning applied to a con-
volutional neural network pretrained on ImageNet (8) 
demonstrated state-of-the-art multiclass accuracy of ap-
proximately 67% in predicting KL grade from radio-
graphs (9,10). In addition, for structural OA progression, 
Lazzarini et al (11) achieved a maximum area under the 
receiver operating characteristic curve (AUC) of 0.790 in 
predicting 30-month incidence of knee OA in a cohort 
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Background:  The methods for assessing knee osteoarthritis (OA) do not provide enough comprehensive information to make robust 
and accurate outcome predictions.

Purpose:  To develop a deep learning (DL) prediction model for risk of OA progression by using knee radiographs in patients who 
underwent total knee replacement (TKR) and matched control patients who did not undergo TKR.

Materials and Methods:  In this retrospective analysis that used data from the OA Initiative, a DL model on knee radiographs was devel-
oped to predict both the likelihood of a patient undergoing TKR within 9 years and Kellgren-Lawrence (KL) grade. Study partici-
pants included a case-control matched subcohort between 45 and 79 years. Patients were matched to control patients according to 
age, sex, ethnicity, and body mass index. The proposed model used a transfer learning approach based on the ResNet34 architecture 
with sevenfold nested cross-validation. Receiver operating characteristic curve analysis and conditional logistic regression assessed 
model performance for predicting probability and risk of TKR compared with clinical observations and two binary outcome pre-
diction models on the basis of radiographic readings: KL grade and OA Research Society International (OARSI) grade.

Results:  Evaluated were 728 participants including 324 patients (mean age, 64 years 6 8 [standard deviation]; 222 women) and 
324 control patients (mean age, 64 years 6 8; 222 women). The prediction model based on DL achieved an area under the receiver 
operating characteristic curve (AUC) of 0.87 (95% confidence interval [CI]: 0.85, 0.90), outperforming a baseline prediction 
model by using KL grade with an AUC of 0.74 (95% CI: 0.71, 0.77; P , .001). The risk for TKR increased with probability that 
a person will undergo TKR from the DL model (odds ratio [OR], 7.7; 95% CI: 2.3, 25; P , .001), KL grade (OR, 1.92; 95% CI: 
1.17, 3.13; P = .009), and OARSI grade (OR, 1.20; 95% CI: 0.41, 3.50; P = .73).

Conclusion:  The proposed deep learning model better predicted risk of total knee replacement in osteoarthritis than did binary out-
come models by using standard grading systems.
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of overweight middle-aged women by using a random forest 
algorithm on clinical variables and baseline KL grade.

Our study investigated the use of convolutional neural net-
works on baseline bilateral posteroanterior fixed-flexion knee 
radiographs to automatically predict structural OA progression 
and simultaneously diagnose radiographic OA. The likelihood 
of a patient undergoing a TKR within 9 years and KL grade 
was used for predicting the OA progression and diagnosing 
radiographic OA, respectively. The purpose of our study was 
to develop a deep learning (DL) prediction model for risk of 
OA progression by using knee radiographs from patients who 
underwent TKR and matched control patients who did not 
undergo TKR.

Materials and Methods

Data Collection
This retrospective study used data from the Osteoarthritis Ini-
tiative (OAI), which is a multicenter, longitudinal, prospec-
tive observational study of knee OA (12). OAI recruited 4796 
participants for collecting clinical, imaging, and biospecimen 
data to study OA. The observational OAI study was performed 
between February 2004 and October 2015. Baseline West-
ern Ontario and McMaster Universities Osteoarthritis Index 
(WOMAC) (13) pain score and knee-related Quality of Life 
from Knee Injury and OA Outcome Score (14) provide the 
clinical observations used in our study. WOMAC pain score 
and Quality of Life from Knee Injury and Osteoarthritis Out-
come Score are associated with TKR (15). WOMAC is a health 
status questionnaire that is used to assess the condition of pa-
tients (knee pain, stiffness, and knee-related physical function). 
The Knee Injury and Osteoarthritis Outcome Score is used to 
assess the opinion from patients about their knee and associ-
ated problems. In OAI, the Knee Injury and Osteoarthritis  

Outcome Score was administered separately to assess knee 
symptoms and function with different activity conditions 
(eg, during sports and recreation) than are evaluated by the 
WOMAC. Known clinical risk factors (16,17) included 
Heberden nodes (bony enlargement of 1+ distal interphalan-
geal joint in both hands), family history (a TKR for OA in a 
biologic parent or sibling), history of knee injury (difficulty 
walking for at least a week), and contralateral WOMAC pain 
score. The OAI data set excludes patients with MRI contrain-
dications, inflammatory arthropathies, bilateral TKR, positive 
pregnancy test, and comorbid conditions that might interfere 
with the ability to participate in the study.

The OAI data set includes bilateral posteroanterior fixed-
flexion knee radiographs from patients collected for 8 years and 
the knee replacement outcomes data collected during 9 years. 
Semiquantitative KL and OARSI grades (in ordinal scales) and 
quantitative minimum joint space width (in millimeters) in the 
medial compartment were assessed by auxiliary radiography 
studies. KL and OARSI grades were obtained from project 15 
from file kxr_sq_bu00 version 0.8 (18) and minimum joint 
space width measurements were obtained from project 16 from 
file kxr_qjsw_duryea00 version 0.8 (19). The images were cen-
trally graded by two expert readers who were blinded to each 
other’s readings and to clinical data from the patient (see Ap-
pendix D of reference 15 for the flowchart of the reading pro-
cess). The test-retest reliability of these readings was good, with 
k coefficient values of 0.70–0.80 for KL grades, 0.75–0.88 for 
joint space narrowing variables, and 0.69–0.82 for osteophyte 
variables (20). The reliability of minimum joint space width 
measurements was high (intraclass correlation coefficient, 0.984) 
(21). Semiquantitative radiographic readings were available for 
the matched subcohort in the OAI data set. Participants were 
recruited at four clinical sites, and the Health Insurance Porta-
bility and Accountability Act–complaint study was approved by 
the institutional review board at each of the sites. All participants 
gave written informed consent.

Cohort Selection
A balanced case-control cohort was selected by matching pa-
tients and control patients by using the baseline confounding 
variables: age, body mass index (BMI), sex, and ethnicity. We 
defined patients as individuals who underwent a TKR in either 
knee after the baseline enrollment date and control patients 
as individuals who appeared at the 108-month follow-up visit 
and did not undergo a TKR in either knee. Each patient was 
matched to a control patient (without replacement) who was 
the same sex, ethnicity, and age, and with an additional con-
straint on the baseline BMI within a 10% tolerance. The data 
set from case-control pairs contained either the left or right 
knee radiographs from each patient and control patient. If a 
patient underwent TKR in both knees during OAI data col-
lection, we included the knee that first underwent TKR. The 
inclusion criterion was to be enrolled in the OAI study. Exclu-
sion criteria were the presence of a knee replacement at the 
baseline visit, missing 108-month follow-up visit and baseline 
demographics, partial knee replacement during the OAI study, 
and not to match a patient or a control.

Abbreviations
AUC = area under the receiver operating characteristic curve, BMI = 
body mass index, CI = confidence interval, DL = deep learning, KL = 
Kellgren-Lawrence, OA = osteoarthritis, OAI = OA Initiative, OARSI = 
OA Research Society International, OR = odds ratio, TKR = total knee 
replacement, WOMAC = Western Ontario and McMaster Universities 
OA Index

Summary
A multitask deep learning model based on knee radiographs accu-
rately classified patients with osteoarthritis at high risk of total knee 
replacement compared with binary outcome models that used stan-
dard grading systems.

Key Results
	n A multitask deep learning model accurately predicted osteoarthri-

tis progression in patients who would require a total knee replace-
ment within 9 years (odd ratio, 7.7; 95% confidence interval: 2.3, 
25; P , .001).

	n The model also predicted Kellgren-Lawrence grade at levels accept-
able compared with human graders (k coefficient, 0.78).

	n Our model outperformed an outcome model that used Kellgren-
Lawrence grade (area under the receiver operating characteristic 
curve, 0.87 vs 0.74; P , .001).
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ing software (R version 3.6.0.; r-project.org). P values less than 
.01 indicated statistical significance.

Results

Participant Characteristics
Our one-to-one case-control matching approach resulted in a 
study cohort of 728 participants. Figure 1 provides a flowchart 
of our method to select the case-control pairs. We excluded 63, 
33, and 12 patients because they had a knee replacement at 
the baseline visit, underwent a partial knee replacement dur-
ing the OAI study, and did not match with control patients, 
respectively. We excluded 1341 patients because they missed 
the 108-month follow-up visit, four patients were excluded be-
cause they did not have baseline demographics, and 2615 con-
trol patients were excluded because they did not match with 
patients. There were no differences between patient and con-
trol groups regarding age (P . .99), height (P = .91), weight 
(P = .20), and BMI (P = .20). Mean patient age was 64 years 
6 8 (standard deviation). Patients were predominantly women 
(444 of 728; 61%) and were predominantly overweight (BMI, 
29.8 kg/m 6 4.6). Study cohort characteristics are in Table 1.

KL grades for the study matched subcohort were as follows: 
grade 0, 155 knees; grade 1, 89 knees; grade 2, 186 knees; grade 
3, 187 knees; and grade 4, 111 knees. From the baseline visit, 
the case-defining TKR date was within 12 months for 20 knees 
(20 of 364; 5.5%), 24 months for 35 knees (35 of 364; 9.6%), 
36 months for 38 knees (38 of 364; 10.4%), 48 months for 50 
knees (50 of 364; 13.7%), 60 months for 52 knees (52 of 364; 
14.3%), 72 months for 47 knees (47 of 364; 12.9%), 84 months 
for 42 knees (42 of 364; 11.5%), 96 months for 41 knees (41 of 
364; 11.3%), and 108 months for 39 knees (39 of 364; 10.7%).

Regarding the WOMAC pain score (range, 0–20), patients 
differed from control patients (4.8 6 3.8 vs 2.0 6 2.8, respec-
tively; P , .001). Similarly, patients had lower Quality of Life 
from Knee Injury and Osteoarthritis Outcome Score (range, 
0–100) than did control patients (52.4 6 20.8 vs 71.5 6 20.1, 
respectively; P , .001). The distribution of WOMAC pain and 
Quality of Life from Knee Injury and Osteoarthritis Outcome 
scores per KL grade is in Table 2.

Convolutional Neural Network Model
Receiver operating characteristic curve analysis of DL models 
is in Table 3 and Figure 2. The multitask DL model trained 
with transfer learning outperformed other image-based TKR 
outcome prediction models with an AUC of 0.87 (95% CI: 
0.85, 0.90), which was a higher AUC compared with the KL 
model, which had an AUC of 0.74 (95% CI: 0.71, 0.77; P , 
.001). The KL model underperformed single-task DL models 
(AUCs, 0.84 [95% CI: 0.81, 0.86] and 0.86 [95% CI: 0.84, 
0.89]; P , .001). Comparing DL-based models, the multi-
task DL model trained with transfer learning had a higher 
AUC than single-task DL model trained by using random 
weight initialization (P , .001) and single-task DL model 
trained with transfer learning (P = .17). The OARSI model 
showed an AUC of 0.75 (95% CI: 0.72, 0.78; P = .35). The 
KL model had the highest sensitivity (334 of 364; 91%) and 

DL Model Development and Evaluation
We used a multiple-task (hereafter, referred to as multitask) 
learning on a DL model for predicting simultaneously the 
TKR outcome of the patients and control patients, and KL 
grade of the radiographs. Multitask learning improves the gen-
eralization of a single-learning task (22). The output of the 
proposed multitask DL model trained with transfer learning 
provided both the prediction of TKR outcome and KL grade. 
We used a publicly available ResNet with 34 layers (ResNet34) 
model (23) with PyTorch (version 1.0.1; pytorch.org). We com-
pared multitask DL model trained with transfer learning with 
single-task DL models trained either with transfer learning or 
by using random weight initialization. Details of the DL mod-
els, training with nested cross-validation, and regions of visu-
alization are in Appendix E1 (online). The source code for this 
study is available at https://github.com/denizlab/oai-xray-tkr-klg.

We compared the performance of DL models with two bi-
nary outcome prediction models on the basis of radiographic 
readings: KL grade and OARSI grade. By using a KL grade 
threshold of 2, we defined patients more likely to undergo a 
TKR with probability 1 if the KL grade is 2 or greater and 0 
otherwise (referred to as KL model). We developed a binary 
OARSI model by defining the patients more likely to receive a 
TKR with probability 1 if they met OARSI atlas radiographic 
knee OA definition criterion and 0 otherwise.

We computed five AUCs for the five classes in our learning 
task for KL grade prediction, each time treating one of the five 
KL grade classes as a positive finding and the remaining four as 
negative findings. In addition to individual AUCs, the macro 
average of the five AUCs measured KL grade prediction task. 
Cohen k coefficient assessed the agreement between predictions 
of the multitask DL model trained with transfer learning and 
expert annotations provided in the OAI data set.

Statistical Analysis
The output of the multitask DL model trained with trans-
fer learning was combined with clinical risk factors in 
each patient to develop an outcome prediction model for 
knee OA. Conditional logistic regression was used to as-
sess the risk of TKR related to the several clinical observa-
tions and radiographic readings (ie, risk factors) by using 
clogit function (R package version 3.1–8; https://CRAN.R-
project.org/package=survival) with “exact” method. Each risk  
factor was examined separately with univariable and multivariable 
analyses. Crude and adjusted odds ratios (ORs) of TKR were 
calculated for each risk factor. Crude OR assesses the effect of 
a given factor when it is used as the only predictor of outcome. 
Adjusted OR assesses the effect of the given factor adjusted 
for the effects of all other factors included in a multivariable 
model to predict the outcome. Paired t tests assessed differences 
in WOMAC pain score and Quality of Life from Knee Injury 
and Osteoarthritis Outcome Score between patients and con-
trol patients. The DeLong test (24) was used to assess signifi-
cance (at 5% level) of the AUC difference between the baseline 
KL model and other models (pROC package version 1.15.3). 
Confidence intervals (CIs) were computed across 5000 boot-
strap samples. All statistical calculations were performed by us-
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Table 1: Summary Statistics for Demographic Variables in Matched Case-Control Cohort

Parameter

Men Women

Patients Control Patients P Value Patients Control Patients P Value
No. of patients 142 142 222 222
Mean age (y) 64 6 8 64 6 8 ..99 64 6 8 64 6 8 ..99
Mean height (m) 1.76 6 0.06 1.77 6 0.06 .73 1.62 6 0.06 1.62 6 0.06 .53
Mean weight (kg) 93.5 6 14.0 92.1 6 12.6 .40 79.0 6 15.0 77.3 6 13.8 .24
Mean BMI (kg/m2) 29.9 6 3.8 29.4 6 3.4 .31 30.1 6 5.4 29.7 6 4.8 .37
Ethnicity*
  White 129 129 182 182
  African American 11 11 35 35
  Asian 0 0 2 2
  Other nonwhite 2 2 3 3
Kellgren-Lawrence grade*
  0 4 67 8 76
  1 11 26 11 41
  2 24 28 55 79
  3 44 19 102 22
  4 59 2 46 4

Note.—Mean data are 6 standard deviation. P value compares the difference in means between the case and control groups for each con-
founding variable. BMI = body mass index.
* Number of patients are shown.

Figure 1:  Flowchart for case-control matching method. Solid arrows represent patients included in our case-control 
cohort, whereas dashed arrows and circular nodes represent patients excluded from our case-control cohort. One-to-one 
case-control matching uses a combination of propensity score and exact matching on the baseline clinical variables of age, 
body mass index, sex, and ethnicity to create the final cohort. KR = knee replacement, OAI = Osteoarthritis Initiative, PKR = 
partial knee replacement, TKR = total knee replacement.
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Receiver operating characteristic curve analysis of KL grade 
predictions by using the multitask DL model trained with trans-
fer learning is in Table 4. The model achieved the best identifica-
tion of the radiographs with KL grade 4 (AUC, 0.99; 95% CI: 
0.97, 1.00). The most challenging identification of KL grade was 
for KL grade 1 radiographs (AUC, 0.80; 95% CI: 0.76, 0.83). 
The macro average of the five AUCs for the KL grade prediction 
task was 0.91. The average multiclass accuracy was 72.7% (529 
of 724). The weighted Cohen k coefficient and mean square er-
ror for multiclass prediction were 0.78 (95% CI: 0.75, 0.81) and 
0.47, respectively. The confusion matrix is in Figure E1 (online).

Receiver operating characteristic curve analysis of individual 
test sets is in Table 5 for multitask DL model trained with trans-
fer learning and KL model. The multitask DL model trained 
with transfer learning achieved AUCs ranging from 0.85 to 
0.90 and outperformed the KL model (AUC, 0.74–0.81). At 
univariable analysis, the multitask DL model trained with trans-
fer learning yielded a stronger association with the risk of TKR 
(OR, 48–130; P , .001) compared with the KL model (OR, 
2.9–8.9; P , .001).

Association of Risk Factors with TKR
Table 6 shows ORs of TKR for risk factors in the matched 
subcohort of 728 patients and control patients. The output 
of multitask DL model trained with transfer learning yielded 

the lowest specificity (210 of 364; 58%). The single-task DL 
model trained with transfer learning had the highest specific-
ity (311 of 364; 85%) and the single-task DL model trained 
by using random weight initialization had the lowest sensi-
tivity (256 of 364; 70%). Unlike conventional image-based 
models (ie, the KL and OARSI models), DL models balance 
sensitivity and specificity. Figure 3 shows a zombie plot (26) 
to depict the performance of five outcome prediction models. 
All models are within the boomerang-shaped area formed by 
white and light-gray zones in the upper left corner of receiver 
operating characteristic plot, defining an acceptable efficacy 
for each prediction model. Specifically, DL models trained 
with transfer learning are mostly within the optimal zone 
(white zone in the upper left corner of the receiver operating 
characteristic plot), and they are credible predictors for the 
TKR outcome in patients and control patients.

Figure 4 shows regions with high impact on the decision of 
the multitask DL model trained with transfer learning. The ex-
amples provided in Figure 4 are the control patients with KL 
grade 0 [p (y|x) < 0.001], the patient with KL grade 2 [p (y|x) 
= 0.991], and the control with KL grade 2 [p (y|x) = 0.004]. 
The multitask DL model trained with transfer learning focused 
on regions near the knee joint space, which suggests that our 
network learned features related to the knee joint and bones to 
classify samples between the two groups.

Table 2: Distribution of Western Ontario and McMaster Universities Osteoarthritis Index Pain and Quality of Life from Knee  
Injury and Osteoarthritis Outcome Score Scores per Kellgren-Lawrence Grade

KL Grade

WOMAC Pain KOOS QoL

Patients Control Patients P Value Patients Control Patients P Value
0 0.1 6 0.3 1.4 6 2.1 ,.001 77.6 6 20.2 75.4 6 18.8 .72
1 3.6 6 4.5 1.4 6 2.3 .04 58.0 6 22.2 73.2 6 19.6 .007
2 4.6 6 4.0 2.5 6 3.4 ,.001 52.9 6 21.5 68.1 6 20.0 ,.001
3 4.9 6 3.5 3.4 6 3.3 .02 53.0 6 20.5 64.9 6 23.4 .005
4 5.8 6 3.5 3.0 6 3.8 .13 47.1 6 17.9 67.7 6 16.5 .03

Note.—Mean data are 6 standard deviation. P values indicate difference in means between the case and control groups for Western On-
tario and McMaster Universities Osteoarthritis Index pain and Knee-related Quality of Life from Knee injury and Osteoarthritis Outcome 
scores grouped by Kellgren-Lawrence grade. KL = Kellgren-Lawrence, KOOS QoL = Knee-related Quality of Life from Knee Injury and 
Osteoarthritis Outcome Score, WOMAC = Western Ontario and McMaster Universities Osteoarthritis Index.

Table 3: Comparison of Image-based Total Knee Replacement Prediction Models

Model AUC P Value Specificity (%) Sensitivity (%)
Kellgren-Lawrence 0.74 (0.71, 0.77) … 58 (52, 63) 91 (87, 93)
OARSI 0.75 (0.72, 0.78) .35 59 (54, 64) 90 (87, 93)
DL 0.84 (0.81, 0.86) ,.001 85 (80, 88) 70 (65, 75)
DL-TL 0.86 (0.84, 0.89) ,.001 85 (81, 89) 77 (73, 82)
DL-TL-MT 0.87 (0.85, 0.90) ,.001 77 (72, 81) 83 (78, 86)

Note.—Data in parentheses are 95% confidence intervals. The P value of the difference between areas 
under the receiver operating characteristic curve from each model to the baseline Kellgren-Lawrence model 
was calculated by using the DeLong test (24), and it was adjusted by using the Holm correction (25) for 
multiple comparisons. Because we used one-to-one matching between patients and control patients, the 
sample sizes in patients and control groups do not reflect the real prevalence of the disease. Therefore, 
positive and negative predicted values cannot be estimated accurately, and they are not presented. AUC 
= area under the receiver operating characteristic curve, DL = deep learning, MT = multitask, OARSI = 
Osteoarthritis Research Society International, TL = transfer learning.
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respectively. At multivariable analysis, the TKR association with 
the risk factors from contralateral knee was attenuated: KL grade, 
OARSI grade, and WOMAC pain score with ORs of 1.1 (P = 
.79), 1.1 (P = .80), and 1.01 (P = .86), respectively. As shown 
in Table 7, patients with previous injury exhibited a higher risk 
for TKR compared with patients without a previous injury (P = 
.03). Similarly, at a univariable analysis, minimum joint space 
width yielded an association with the risk of TKR (P , .001) 
but not at multivariable analysis (P = .60). The family history 
and Heberden node yielded ORs of 1.90 (P = .15) and 1.15 (P 
= .27), respectively.

Discussion
In the United States, knee osteoarthritis (OA) affects nearly 
27 million Americans, and there is a growing need for dis-
ease-modifying therapies that prevent or delay the need for 
total knee replacement (TKR). However, the methods for 
assessing knee OA do not provide enough comprehensive 
information to make robust and accurate outcome predic-
tions (28). We developed a deep learning (DL) model on the 
basis of convolutional neural networks for the prediction 
of OA progression leading to TKR within 9 years by using 
baseline radiographs from a matched case-control subcohort 
of 728 patients. Learning for Kellgren-Lawrence (KL) grade 
prediction and TKR outcome prediction tasks jointly im-
proved the performance of a DL model aimed at predicting 
only the TKR outcome. Our proposed model resulted in a 
higher area under the receiver operating characteristic curve 
(AUC, 0.87; 95% confidence interval [CI]: 0.85, 0.90) 
compared with a baseline binary outcome model on the ba-
sis of radiography readings of KL grade (AUC, 0.74; 95% 

the highest OR in both univariable and multivariable analysis 
compared with other risk factors with an OR of 82 (95% CI: 
34, 194) and 7.7 (95% CI: 2.3, 25), respectively. The addition 
of predicting KL grade task into the DL model by a multitask 
learning approach improved the quality of TKR predictions as 
depicted by the attenuated odds of TKR from single-task DL 
model trained with transfer learning (crude and adjusted OR, 
55 and 6.0, respectively).

Multivariable and Univariable Analyses
At multivariable analysis, the odds of TKR increased with an 
increase on the output (ie, the probability of TKR within 9 
years) of the multitask DL model trained with transfer learning 
(OR, 7.7; P , .001), KL grade (OR, 1.9; P = .009), BMI (OR, 
1.4; P = .04), and a decrease on the Quality of Life from Knee 
Injury and Osteoarthritis Outcome Score (OR, 0.98; P = .02). 
The order of risk association with TKR from strongest to the 
weakest was multitask DL model trained with transfer learn-
ing, KL grade, BMI, and Quality of Life from Knee Injury and 
Osteoarthritis Outcome Score.

The univariable analysis of OARSI-grade yielded an associa-
tion with the risk of TKR (P , .001) but not at multivariable 
analysis (P = .73). Similarly, at univariable analysis, WOMAC 
pain score was associated with the risk of TKR (P , .001) but 
not at multivariable analysis (P = .26). The risk factors derived 
from the contralateral knee were associated with TKR sepa-
rately: KL grade, OARSI grade, and WOMAC pain score with 
ORs of 1.8 (P , .001), 3.6 (P , .001), and 1.12 (P , .001), 

Figure 2:   Receiver operating characteristic curves for image-based binary out-
come prediction models. Outcome is defined as undergoing a total knee replace-
ment (TKR) within 9 years or not. Area under the receiver operating characteristic 
curve (AUC) values are for the outcome of predicting TKR. Kellgren-Lawrence (KL) 
model provides a baseline model for assessing the significant differences between 
prediction models by using Delong test (24) with Holm correction (25) for multiple 
comparisons. DL = deep learning, MT = multitask, OARSI = Osteoarthritis Research 
Society International, TL = transfer learning.

Figure 3:  Combined zombie plot (ie, receiver operating characteristic plot 
divided into zones of mostly bad imaging efficacy) for image-based outcome 
prediction methods: Kellgren-Lawrence (KL), Osteoarthritis Research Society Inter-
national (OARSI), deep learning (DL) model, DL-transfer learning (TL) model, and 
DL-TL-multitask (MT) model.
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Previous approaches of DL for knee OA assessment focused 
on the prediction of KL grade directly from knee radiographs 
(9,10). However, we developed a model to predict OA pro-
gression outcomes directly from baseline radiographs with an 
additional KL grade prediction task. Our model, on the basis 
of multitask DL, provided the prediction of TKR and radio-
graphic KL grade readings from each radiograph simultane-
ously. Our KL grade prediction results are comparable with 
previous approaches that focused only on diagnosing knee 
OA (9,10). Moreover, unlike previous methods of applying 
DL models to assess knee OA by predicting KL grade, our ap-
proach used image-based features to achieve higher outcome 
prediction accuracy of undergoing TKR.

Numerous clinical, laboratory, and imaging assessments 
aimed to identify prognostic risk factors for prediction of knee 
OA progression (29). Multiple definitions of OA progression 
exist, including a clinically important outcome of undergoing 
TKR. Many prediction models for OA progression risk use lo-
gistic regression (16,30). Three Nottingham knee OA risk pre-
diction models developed by Zhang et al (16) used an internal  
retrospective cohort of 424 patients. These models were tested 
on a subset of the OAI data set containing 1489 people, of 
whom 162 were diagnosed as having a radiographic knee 
OA at 3rd-year follow-up. These models resulted in AUCs 
of 0.60, 0.60, and 0.52 in discriminating the risk of knee 
OA for incidence of radiographic OA (KL  2), incidence of 

CI: 0.71, 0.77; P , .001). In our analysis of risk factors, 
we found that the DL model predicted TKR more strongly 
than other risk factors (odds radio [OR], 7.7; P , .001) ver-
sus KL grade (OR, 1.9; P = .009) and OA Research Society 
International grade (OR, 1.2; P = .73).

Figure 4:  Knee radiographs overlaid with the heatmaps obtained by using the Grad-CAM method (27) (Appendix E1 [online]) show regions af-
fecting the prediction of the multitask deep learning (DL) model trained with transfer learning. Colored regions show areas where multitask DL model 
trained with transfer learning focuses on decisions regarding the probability of total knee replacement in the patient within 9 years. Each column 
represents radiographs and heatmaps from a 75-year-old male control patient with Kellgren-Lawrence (KL) grade 0 (top and bottom left; body mass 
index [BMI], 26.0 kg/m2), a 76-year-old female control patient with KL grade 2 (top and bottom middle; BMI, 28.4 kg/m2), and a 70-year-old 
male patient with KL grade 2 (top and bottom middle; BMI, 27.6 kg/m2). Patients underwent total knee replacement and control patients did not 
undergo total knee replacement within 9 years.

Table 4: AUC for the Kellgren-Lawrence Grade Prediction 
from Multitask Deep Learning Model Trained with Transfer 
Learning

KL Grade AUC P Value
0 0.93 (0.91, 0.95) …
1 0.80 (0.76, 0.83) ,.001
2 0.88 (0.85, 0.91) .007
3 0.96 (0.95, 0.97) .03
4 0.99 (0.97, 1.00) ,.001

Note.—Data in parenthesis are 95% confidence intervals. The 
P value of the difference between receiver operating character-
istic curves from each KL grade prediction to the Kl grade 0 
prediction was calculated using the DeLong test (24), and it was 
adjusted using the Holm correction (25) for multiple compari-
sons. Each AUC treated the KL grade class as a positive and the 
remaining four as negative. AUC values are for the outcome of 
predicting the KL grade. AUC = area under the receiver operat-
ing characteristic curve, KL = Kellgren-Lawrence.
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grade, previous injury, and measurements from MRI (whole-
organ MRI score and mean cartilage T2 in the medial tibia 
and medial femur) (AUC, 0.72). Kerkhof et al (31) used a 
data set from Rotterdam study I (32) to develop a prediction 
model for radiographic knee OA incidence (defined as KL , 
2 at baseline and KL  2 at follow-up of 9.4 years 6 2.2). 
The prediction model was tested on Rotterdam study II data 
set of 69 patients with incident knee OA and 856 control 
patients by using a follow-up time of 4.1 years 6 0.6. The 
study population of Rotterdam study II was similar in age 
and slightly lighter in BMI compared with our cohort. The 
risk prediction model resulted in an AUC of 0.86 (95% CI: 
0.82, 0.90) by using sex, age, BMI, knee pain (defined as pain 

symptomatic knee OA (KL  2 and current pain in the same 
knee), and progression of knee OA models (KL increased one 
grade or more), respectively. The study population of Not-
tingham data was slightly younger and lighter in BMI com-
pared with our cohort. In another study, Joseph et al (30) 
developed models for OA risk predictions by using a subset 
of the OAI data set with 641 patients with KL 2 or less and 
WOMAC pain score of 1 or less. The study population was 
slightly younger and lighter in BMI compared with our co-
hort. A baseline risk prediction model resulted in an AUC of 
0.60 by using age, sex, and BMI. Adding KL grade and previ-
ous injury to the baseline model improved the AUC to 0.67. 
The model with highest AUC included age, sex, BMI, KL 

Table 5: Areas Under the Receiver Operating Characteristic Curve of Total Knee Replacement Prediction Models and Crude Odds 
Ratios

Model Test Set No. 1 Test Set No. 2 Test Set No. 3 Test Set No. 4 Test Set No. 5 Test Set No. 6 Test Set No. 7
DL-TL-MT 
  AUC 0.90 (0.84, 0.96) 0.88 (0.81, 0.94) 0.85 (0.77, 0.92) 0.86 (0.78, 0.93) 0.88 (0.81, 0.94) 0.84 (0.76, 0.91) 0.87 (0.79, 0.93)
  Crude OR 67 (8, 579) 51 (8, 345) 48 (6, 366) 60 (7, 498) 130 (9, 1729) 87 (7, 1012) 114 (9, 1418)
KL 
  AUC 0.80 (0.72, 0.88) 0.80 (0.73, 0.87) 0.74 (0.66, 0.82) 0.77 (0.68, 0.85) 0.77 (0.68, 0.85 0.78 (0.70, 0.86) 0.81 (0.73, 0.88)
  Crude OR 8.9 (2.3, 34) 4.0 (1.9, 8.3) 3.5 (1.9, 6.6) 7.3 (2.4, 22) 2.9 (1.6, 5.1) 3.3 (1.7, 6.3) 3.8 (1.8, 7.7)

Note.—Data in parentheses are 95% confidence intervals. Analysis of the performance of outcome prediction models used seven disjoint 
groups defined for nested cross validation. In nested cross validation, stratified random sampling was used to partition the 728 patients and 
control patients in the matched subcohort into seven disjoint groups and each group consisted of 52 patients with total knee replacement 
and 52 control patients. Each of the seven groups served as a test set to assess the performance of a prediction model (outer loop) and test 
set number specifies which disjoint group was used to analyze the performance of outcome prediction models (Appendix E1 [online]). Each 
test set was not used for either training or validation of the DL models. Test sets did not contribute data to the derivation of the best-fit 
model, and the test data were independent of the data used to fit the model. Model fit was achieved by using the remaining 312 patients 
and 312 control patients. All P values for the crude odds ratios are less than .001. AUC = area under the receiver operating characteristic 
curve, DL = deep learning, KL = Kellgren-Lawrence, MT = multitask, OR = odds ratio, TL = transfer learning.

Table 6: Odds Ratios of Total Knee Replacement for Clinical Risk Factors and Radiographic Readings

Parameter Crude Odds Ratio Adjusted Odds Ratio P Value*
DL-TL† 55 (26, 119) 6.0 (2.1, 17) ,.001
DL-TL-MT 82 (34, 194) 7.7 (2.3, 25) ,.001
Kellgren-Lawrence 4.0 (3.0, 5.3) 1.9 (1.2, 3.1) .009
Body mass index 1.7 (1.4, 2.2) 1.4 (1.0, 1.9) .04
OARSI 19 (10, 36) 1.2 (0.4, 3.5) .73
KOOS QoL 0.96 (0.95, 0.97) 0.98 (0.96, 0.997) .02
WOMAC 1.31 (1.23, 1.39) 1.06 (0.96, 1.18) .26
Contralateral knee
  Kellgren-Lawrence 1.8 (1.5, 2.1) 1.1 (0.7, 1.7) .79
  OARSI 3.6 (2.6, 5.1) 1.1 (0.4, 3.2) .80
  WOMAC 1.12 (1.06, 1.18) 1.01 (0.92, 1.11) .87

Note.—Data in parenthesis are 95% confidence intervals. Multivariable analysis was performed by using risk 
factors from 364 patients and 364 control patients. P values are for adjusted odds ratios. All P values for the 
crude odds ratios are ,.001 for the risk factors in the table. DL = deep learning, KOOS QoL = Knee-related 
Quality of Life from Knee injury and Osteoarthritis Outcome Score, MT = multitask, OARSI = Osteoar-
thritis Research Society International, TL = transfer learning, WOMAC = Western Ontario and McMaster 
Universities Osteoarthritis Index.
* Wald test was used to assess the significance levels of individual risk factors.
† DL-TL model is used to demonstrate the effect of addition of Kellgren-Lawrence-grade task into the total 
knee replacement prediction model only. Adjusted odds ratios presented after the first row are calculated from 
a multivariable analysis of risk factors and DL-TL-MT model.
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clinical practice, training on image data sets with varying quality 
is a characteristic of a real-world scenario.

In addition to knee radiographs, the OAI data set included 
knee MRI. We used radiographs and radiographic readings be-
cause they are used for clinical diagnosis of radiographic OA. 
However, the use of DL models to predict the progression of 
knee OA and to score or grade automatically is not limited to 
radiographs. Models with three-dimensional MRI can be devel-
oped by using an extension of two-dimensional convolutional 
neural network approaches to three-dimensional data or by us-
ing three-dimensional convolutional neural network approaches 
directly. In the future, MRI-based DL approaches may predict 
knee OA progression.

Our study had limitations. First, the data set size was limited 
for training a DL model from scratch. Our case-control cohort 
included 728 patients and control patients and baseline images 
from them. There were more than 3000 patients in the OAI 
data set who did not meet our cohort selection criteria. Because 
of limited data set size, the experiments were performed by us-
ing transfer learning and sevenfold nested cross-validation. Sec-
ond, the outcome variable was defined as undergoing a TKR 
within 9 years. Even though the TKR outcome was preferable 
as a single clinical outcome measure, the decision to undergo a 
TKR can be affected by the constraints regarding comorbidi-
ties, insurance status, and other factors (34,35). Third, we de-
fined the TKR outcome as a binary variable by neglecting the 
association of the time from baseline to time of TKR. This defi-
nition of outcome variable enabled us to train the DL model 
as a balanced binary classification problem on a matched case-
control subcohort. Reformulating the TKR prediction training 
as a regression problem would enable predicting the time for 
TKR from baseline, and it could improve the TKR risk pre-
diction. However, the small sample size of patients with TKR 
could impede the generalization accuracy of the DL models, 
resulting in suboptimal prediction of the time to TKR. Fourth, 
we viewed the regions where a DL model focuses to predict the 
TKR outcome of patients. However, we did not identify the 
parameters extracted from radiographs. Fifth, we analyzed the 
effect of clinical measurements and radiographic assessments 
available in the OAI data set. These clinical risk factors were 
selected on the basis of their association with the knee OA pro-
gression as identified by previous publications that analyzed 
the risk of knee OA progression (15,16,30). Finally, we applied 

during the last month during most of the days) and baseline 
KL score of 0 or 1. The performance of our model cannot be 
directly compared with previous models because of changes 
in the outcome definition, cohort selection, and inclusion of 
different risk factors.

The use of convolutional neural networks to predict the KL 
grade automatically from radiographs was proposed by Antony 
et al (9). Performing transfer learning on the OAI data set re-
sulted in a multiclass classification accuracy of 59.6%. Tiulpin 
et al (10) proposed a siamese convolutional neural network to 
predict KL grade and tested the developed model on the OAI 
data set. This approach yielded an average multiclass accuracy 
of 66.71%, weighted k coefficient of 0.83, and mean square er-
ror of 0.48. Our multitask learning approach provided improved 
KL grade prediction performance regarding average multiclass 
accuracy and mean square error. It provided a slight reduced per-
formance for weighted k coefficient but performed at acceptable 
levels compared with human raters (33) (weighted k, 0.56; 95% 
CI: 0.38, 0.73).

We used only baseline patient information to predict the risk 
of TKR. However, the OAI data set includes radiographs, clini-
cal observations, and radiographic readings collected multiple 
times within 8 years. Changes in clinical observations and/or ra-
diographic readings over subsequent years may affect a patient’s 
decision to undergo a TKR. This type of information could be 
used to improve the predictive capability of DL models.

In the development of DL models, we used bilateral pos-
teroanterior fixed-flexion knee radiographs used by radiolo-
gists to grade radiographs with KL grading scheme to diag-
nose radiographic OA. However, other types of radiographs 
could identify the progression of the knee OA. Our devel-
oped models could not be directly applied to other type of 
radiographs for predicting TKR outcome. However, they can 
provide a baseline model to benefit from transfer learning ap-
proach by facilitating the use of limited data set size and/or 
improving the predictive performance.

Radiographic data as part of the OAI are obtained by using 
standardized methods across sites and are regularly reviewed for 
quality by the OAI Quality Assurance Center. Variation in image 
quality still exists and would affect the training of the DL mod-
els. However, this variation in image quality would make it more 
challenging for training the DL model to perform accurately in 
the test data set. In addition, if the model is to be deployed in 

Table 7: Odds Ratios of Total Knee Replacement for Clinical Risk Factors and Radiographic Readings from a Subset of the Study 
Cohort

Risk Factor No. of Patients No. of Control Patients Crude OR Crude P Value Adjusted OR* Adjusted P Value
Family history 359 353 1.49 (0.99, 2.23) .06 1.90 (0.79, 4.57) .15
Previous injury 360 364 1.40 (1.04, 1.90) .03 0.47 (0.24, 0.93) .03
Heberden node 363 363 1.01 (0.90, 1.13) .88 1.15 (0.90, 1.46) .27
Minimum JSW 355 257 0.70 (0.62, 0.78) ,.001 1.06 (0.86 1.30) .61

Note.—Data in parenthesis are 95% confidence intervals. Analysis of family history, previous injury, Heberden node and minimum joint 
space width was performed on a subset of the study cohort because of missing observations. Wald test was used to assess the significance 
levels of individual risk factors. JSW = joint space width, OR = odds ratio.
* Adjusted odds ratio from multivariable analysis uses clinical risk factors and radiographic readings from Table 5 from 345 patients and 
257 control patients.
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the DL model to predict the risk of TKR. The output of the 
DL model is the probability that a person will undergo TKR 
and our goal was to identify predictive biomarkers and models 
for OA. In the future, it would also be of interest to apply 
survival or hazard analysis to the OAI data set to predict not 
only the risk of TKR, but the actual time to TKR, which would 
provide useful additional information to clinicians.

In summary, we developed a deep learning (DL) model to 
predict both the probability of total knee replacement (TKR) 
within 9 years and the Kellgren-Lawrence grade by using base-
line radiographs. Our proposed DL model better predicted risk 
of TKR in osteoarthritis than did binary outcome models with 
standard grading systems.
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