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Abstract

Cigarette smoking, a powerful mixture of chemical oxidants, is the strongest environmental risk 

factor for developing age-related macular degeneration (AMD), the most common cause of 

blindness among the elderly in western societies. Despite intensive study, the full impact of 

smoking on the retinal pigment epithelium (RPE), a central cell type involved in AMD 

pathobiology, remains unknown. The relative contribution of the known dysfunctional pathways to 

AMD, at what stage they are most pathogenic, or whether other processes are relevant, is poorly 

understood, and furthermore, whether smoking activates them, is unknown. We performed global 

RNA-sequencing of the RPE from C57BL/6J mice exposed to chronic cigarette smoke for 6 

months to identify potential pathogenic and cytoprotective pathways. The RPE transcriptome 

induced by chronic cigarette smoking exhibited a mixed response of marked suppression of the 

innate immune response including type I and II interferons and upregulation of cell differentiation 

and morphogenic gene clusters, suggesting an attempt by the RPE to maintain its differentiated 

state despite smoke-induced injury. Given that mice exposed to chronic smoke develop early 

features of AMD, these novel findings are potentially relevant to the transition from aging to 

AMD.
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Introduction

It is perplexing that people choose to smoke cigarettes, given that it contains nearly 5000 

chemical oxidants and toxins[1], and more than 16 million Americans are afflicted with a 

smoking-induced disease such as cancer, heart disease, stroke, chronic obstructive 

pulmonary disease, diabetes, and/or age-related macular degeneration (AMD)[2]. The total 

economic cost of smoking is over $300 billion per year to cover direct medical care and lost 

work productivity[2]. AMD is the world’s leading cause of blindness among the elderly, 

with 196 million people currently afflicted worldwide, and with the aging population, this 

number is predicted to expand to 288 million in 2040[3]. In the US alone, 11 million people 

have AMD, a number similar to those with all invasive cancers combined, and more than 

double those with Alzheimer’s disease[4].

The National Eye Institute’s AMD Pathobiology group recently concluded that identifying 

all of the pathogenic signals, prioritizing their contribution relative to one another, and 

establishing the disease stage when the predominant signals initiate the disease process, will 

enable effective treatment design for each stage of AMD[5]. The AREDS2 formulation 

slows intermediate AMD progression, and anti-VEGF therapies have transformed treatment 

of exudative AMD[6-8]. Since preventing or curing early/intermediate AMD would 

eliminate the burdens of advanced AMD and reduce the accompanying financial cost, 

understanding the pathogenic signals that induce the transition from aging to early AMD 

will enable targeted treatment for this disease stage. In addition to advanced age and genetic 

susceptibility[9-11], smoking is a major risk factor for age-related macular degeneration 

(AMD)[12]. Retinal pigment epithelial (RPE) cell atrophy is a hallmark feature of early 

AMD, and the RPE, in particular, appears to be a target of cigarette smoke in AMD[13, 14]. 

Most studies have characterized the acute response to cigarette smoke by the RPE, and these 

studies have focused on a specific pathway. While valuable, a broad perspective of the most 
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relevant pathogenic and cytoprotective responses by the RPE to chronic cigarette smoke 

exposure is still poorly understood.

Rod photoreceptor dysfunction and death in association with RPE morphologic derangement 

and the appearance of binucleated nuclei in the perifoveal macula are among the earliest 

changes in AMD[15-18]. With a similar RPE and rod/cone density as the human 

perifovea[19], mice are a reasonable model for studying early AMD changes. Our lab and 

others have previously reported that when mice are exposed to cigarette smoke for 6 months, 

the RPE developed marked ultrastructural derangement with increased apoptosis that is 

reminiscent of early AMD[20-22]. How the RPE atrophies, what pathogenic pathways are 

activated, and what cytoprotective responses fail as a consequence of cigarette smoking are 

not well characterized. Each cell’s function is dictated in large part, by its transcriptional 

program. To identify the key pathogenic pathways and cytoprotective responses by the RPE 

to chronic cigarette smoke, we exposed C57BL/6J mice to cigarette smoke for a period of 6 

months, and evaluated their transcriptomic response by RNA-sequencing.

Materials and Methods

Animals and treatments

All experimental protocols used in this study were in accordance with National Institute 

Health (NIH) guidelines and were approved by the Johns Hopkins University Animal Care 

and Use Committee. Briefly, an equal number of 2-month female and male C57BL/6J mice 

(RD8 negative) were placed in a smoking chamber for 2.5 hours per day, 5 days per week 

for 6 months, as described previously[20], or raised in a filtered air environment for 6 

months.

Tissue preparation

After mice were sacrificed and eyes were enucleated, one eye was dissected to remove the 

RPE/choroid, which was prepared for RNA or protein extraction. The other eye was fixed in 

2.5% glutaraldehyde and 1% paraformaldehyde in 0.08 M cacodylate buffer for transmission 

electron microscopy (TEM). The central 2x2 mm tissue temporal to the optic nerve was 

postfixed with 1% osmium tetroxide, dehydrated, and embedded in Poly/Bed 812 resin 

(Polysciences, Inc., Warrington, PA).

Ultrastructural analysis

Ultrathin sections were stained with uranyl acetate and lead citrate and examined with a 

JEM-100 CX electron microscope (JEOL, Tokyo, Japan).

RNA extraction and Library Preparation

Total RNA from mouse RPE/choroid using triplicate biological replicates for air or smoking 

were isolated using RNeasy Mini Kit (Qiagen, Valencia, CA), with on-column DNA 

digestion by RNase-free DNase, following the manufacturer's instructions. RNA integrity 

was verified using Agilent 4200 TapeStation (Agilent, Santa Clara, CA). Stranded RNA-seq 

library construction was carried out using 100 ng of RNA with the TruSeq Stranded mRNA 
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Sample Preparation Kit (Illumina, San Diego, CA). Libraries were paired-end sequenced to 

126 bases using a HiSeq 2500 Sequencing System (Illumina, San Diego, CA).

RNA-Sequencing Analysis

The analysis pipeline has been described previously[23, 24] and was performed using mouse 

genome GRCm38.p6 with Ensembl v98 annotation. The gene-level differential expression 

analysis was performed between control (Air) and cigarette smoking (CS) treatment using 

the exact test from the edgeR v3.26.6[25] package in R (https://r-project.org). Genes were 

kept for analysis if all replicates of either group expressed at 1.0 count per million (CPM) or 

higher. Genes were defined as significantly differentially expressed (DEG) between Air and 

CS, if the absolute fold change exceeded 1.5 and had a Benjamini-Hochberg false discovery 

rate (FDR) of less than 5%. Functional gene enrichment was performed using gProfileR 

v0.6.7[26] with Gene Ontology (GO) Biological Process[27] gene sets. Reduced redundancy 

representation was performed using the most child term of any significant (less than 1% 

FDR) group of terms. Gene Set Enrichment Analysis (GSEA) was performed using the 

Hallmark Pathways from the GSEA database [28] using the fgsea v1.10.0 [https://doi.org/

10.1101/060012] package in R. Potential protein–protein interactions of differentially 

expressed genes was analyzed using the STRING database (version 11.0) [29, 30]. The 

resulting dataframe object was modified to be plotted as enrichment plot with R package 

DOSE[31].

Cell culture

The established human ARPE-19 cell line[32] was maintained in Dulbecco's Modified Eagle 

Medium:F12 50/50 mix, supplemented with 10% inactivated fetal bovine serum and 2 mM 

L-glutamine, at 37 °C in a humidified atmosphere containing 5% CO2. Cells were seeded at 

50,000 cells/cm2 in 12-well plates for 2 days followed by 1 day of serum starvation. Cells 

were treated with cigarette smoke extract (CSE) for up to 24 hr, and RNA was isolated for 

RT-qPCR, or protein was extracted for immunoblotting.

RT-PCR

RT-qPCR was performed as previously described[33](Applied Biosystems, Foster City, CA) 

on a StepOne-Plus Real-Time PCR system (Applied Biosystems) using Primer sequences 

(Applied Biosystems). Data were analyzed by the comparative threshold cycle method, with 

Cyclophilin A as an internal control.

Immunoblot analysis

Western blot analysis was performed as previously described[33]. Briefly, RPE/choroid, 

whole cell lysates, or supernatant were prepared using RIPA buffer (Sigma, Inc., St. Louis, 

MO). Proteins were separated by 4–12% Bis-Tris sodium dodecyl sulphate polyacrylamide 

gel electrophoresis, transferred to nitrocellulose, and probed with primary antibodies and 

then secondary antibodies (Table S5).
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Statistical analysis

Statistical analysis was carried out using the unpaired t-test, with GraphPad software 

(GraphPad Software, Inc., San Diego, CA). Significance is indicated by *p<0.05, **p<0.01, 

and ***p<0.001. Each experiment was repeated at least three times. Blots are selected as the 

representative one of specific group of experiments, and graphs represent the mean ± SEM 

of at least three independent experiments.

Results

The RPE undergoes morphologic and ultrastructural derangement with chronic cigarette 
smoke exposure

Mice exposed to chronic cigarette smoke develop significant oxidative injury and 

morphologic derangement to the RPE, as observed in early AMD[20-22]. To verify that our 

model reproduced these essential changes, 2-month old C57BL/6J mice were exposed to 

either cigarette smoke (CS) or air for 6 months, and the RPE/choroid was examined by 

TEM. Figure 1 shows the marked ultrastructural derangement to the RPE that includes 

mesenchymal cell shape, loss of apical microvilli and basal infoldings, and development of 

intracellular vacuoles, all of which are seen in human AMD[34-37].

Global transcriptional response by the RPE/choroid to chronic cigarette smoke

To gain an understanding of the prominent cellular pathways that are impacted by chronic 

smoke exposure, we performed RNA-seq of the RPE/choroid from mice exposed to either 

CS or air for 6 months. Samples were sequenced to a mean depth of 15.1 ± 1.1 million 

fragments per sample, of which 86.1 ± 1.2 million fragments aligned to known gene 

annotations that were used for quantitation (Figure S1A).

Gene expression values (CPM) were examined by principal component analysis (PCA) to 

evaluate replication of samples within the two groups (Figure S1B). Sample air.3 was 

determined to have a high level of retina contamination (Figure S1C) and was eliminated 

from the analysis (Figure 2A). As an initial characterization of the molecular alterations 

induced by chronic smoke exposure, we identified 558 differently expressed genes (DEGs) 

in the RPE/choroid between the CS and air treated groups, as represented by the Volcano 

plot (Figure 2B). The complete DEG results are listed in Table S1.

A number of pathologic pathways are impaired with smoking; these include oxidative stress 

response, mitochondrial function, innate immune response, and extracellular matrix 

regulation[5]. Many of the significant DEGs are associated with these pathways. For 

example, Cyp1a1 is induced by chronic smoking and likely represents a protective response 

to smoking since it is involved in xenobiotic metabolism, specifically degrades nicotine[38], 

and is linked to Aryl Hydrocarbon Receptor Signaling, which is also associated with 

xenobiotic metabolism and detoxification[39]. Nnt couples the hydride transfer between 

NAD(H) and NADP(+) to proton translocation across the inner mitochondrial membrane, 

using energy from the mitochondrial proton gradient to produce high concentrations of 

NADPH that is used for free radical neutralization[40]. Adamts4, which was increased 4.0-

fold by smoking relative to air, is a metalloproteinase that specifically degrades extracellular 
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matrix proteins Aggrecan and Bcan, which were also increased 3.4 fold [41]. Interestingly, 

mice with an Adamts4 mutation exhibit RPE dedifferentiation with reduced pigmentation 

and RPE-specific gene expression[42].

Several of the most downregulated genes from chronic smoking are related to the immune 

response. For example, Ngp, a cystatin superfamily member, regulates inflammatory 

responses through TLR-4 and phagocytosis[43]. Npsr1 induces the production of pro-

inflammatory cytokines TNF-α and interferon-γ[44]. Crhbp activates NF-kB activation to 

promote the inflammatory response[45]. Lcn2, an adipokine, and S100A8, a calcium 

binding protein of the S100 family, are both elevated during acute inflammation as a 

protective response, and recruit leukocytes and pro-inflammatory cytokines[46, 47]. The 

downregulation of these genes could contribute to an impaired protective immune response 

following chronic smoke exposure.

Gene enrichment analysis reveals impaired innate immune and induction of differentiation 
response after chronic smoking

To define how the RPE responds to chronic cigarette smoke exposure, an unbiased 

evaluation of the transcriptome was performed using gene ontology and gene set enrichment 

analysis to identify specific biological processes that were over-represented in DEGs (Figure 

2C, D). The top suppressed processes are associated with defense response, including the 

anti-viral response from type I and II interferon (IFN). The specific genes in these categories 

are listed in Table S2. On the other hand, the top activated processes include morphogenesis, 

differentiation, and development genes. The over-representation of these genes is indicative 

of a transcriptional response by the RPE/choroid to recover essential functions that were 

impaired by chronic smoke exposure.

We recently reported that in early AMD, some RPE cells have entered epithelial 

mesenchymal transition (EMT), an adaptive transcriptional process that allows cells to 

survive a harsh microenvironment[48-51]. The transcriptional responses related to cell 

proliferation, cell migration, cell-cell adhesion in response to chronic smoking suggest 

prompted us to assess whether the RPE are entering EMT. The DEGs were ranked by their 

degree of differential expression in smoke relative to air control, and compared to the EMT 

gene set from GSEA database[28]. As illustrated in Figure 3, a set of DEGs was 

significantly related to the EMT gene signature, with a majority of these genes 

downregulated by chronic smoking (normalized enrichment score (NES) =−1.68, FDR = 

0.0178). However, the expression pattern induced by smoking was for the most part, 

indicative of MET rather than EMT (Table S3). This expression pattern compliments the 

upregulation of genes related to differentiation and suggests that the RPE is attempting to 

maintain its epithelial state.

String analysis reveals the influence of multiple signaling pathways after chronic smoking

To identify signaling transduction pathways involved in the major processes identified by 

GO analysis, we performed String analysis of DEGs followed by enrichment analysis, 

selected terms with the keyword “pathway”, and identified the corresponding genes. Next, 

selecting the keyword “pathway” to find corresponding genes, which were intersected with 
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the first neighborhood genes, performed enrichment analysis. Figure 4 shows the over-

represented DEGs and their probability of being assigned to the specific signaling pathway. 

The cell surface receptor signaling, enzyme linked receptor protein signaling, 

transmembrane receptor protein tyrosine kinase signaling, regulation of apoptotic signaling, 

and the Wnt signaling pathway were the top five most likely signaling pathways involved 

after chronic smoke exposure.

The top suppressed responses to chronic smoking, as noted above, included type I and II 

interferons (IFN), which are among the cell surface receptor signaling DEGs. Type I IFN 

responses can dampen type II IFN responses, and type II can reduce type I IFN immunity 

through STAT1 and STAT3 signaling[52, 53]. STAT1 and STAT3 have a reciprocal 

relationship in neurodegenerative diseases and tumor metastasis[54-56]. For example, 

STAT1 causes cell death signals, while STAT3 induces protective responses[54-56]. Because 

of the influence of STAT1 and STAT3 on IFN responses, we conducted String analysis to 

identify any potential functional interactions between these two pathways. Of the 1203 

downregulated genes that were submitted for String analysis, 13 genes have close 

connectivity (combined probability score >0.7) and 31 genes have medium connectivity 

(combined probability score <0.7 but >0.4) with STAT1[57] (Figure 5A). The most 

connected genes, with their annotated gene function, are listed in Table S4.

Unlike STAT1, STAT3 mRNA levels in the RPE/choroid did not change after chronic smoke 

exposure. However, ontology enrichment analysis showed that a number of genes 

downstream of STAT3, such as extracellular matrix molecules, and known STAT3 inhibitors 

including SOCS1 and TMF1, were up regulated. We then performed String analysis of 

STAT3 with the 942 genes upregulated with smoke exposure. Of the 556 genes that were 

identified in the String database, 20 genes show strong (combined probability score >0.8) 

and 17 genes weak connection (combined probability score <0.5) with STAT3 (Figure 5B). 

The 20 most connected genes, with their annotated gene function, are listed in Table S4. Of 

these 20 genes, EGFR and PDGFRA are upstream of STAT3, suggesting that STAT3 

signaling could be triggered by different cytokines (EGF/PDGF vs. IFNs) during smoking, 

and could activate downstream targets such as MMP2, MMP3, and MMP14[58, 59]. 

Furthermore, MITF, a transcription factor that cooperatively induces cellular transformation 

with STAT3[60, 61], was upregulated 1.85 fold in the RPE/choroid of mice exposed to 

chronic smoking. In addition, SOX10 and PAX3, which synergistically activate MITF, were 

also upregulated by smoking 1.5-fold and 2.0-fold, respectively. While STAT3 itself was not 

differentially expressed in the RPE/choroid with smoking, this transcriptional pattern 

suggests that a PDGFR/EGFR-STAT3 signaling pathway was activated, and this could be 

enhanced by MITF, SOX10, and PAX3. Taken together, the RNA-Seq data suggest that 

STAT1 signaling is suppressed while STAT3 signaling is increased.

STAT1 and STAT3 are reciprocally activated in the RPE/choroid after smoking

We next determined whether STAT1 and STAT3 signaling were indeed activated by 

measuring their phosphorylated forms. Following the trend of STAT1 mRNA, both STAT1 

and pSTAT1 were reduced in the RPE/choroid of mice exposed to 6 months of smoking 

(Figure 6A). Likewise, STAT3 in the RPE was unchanged. However, pSTAT3 was increased 
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in the RPE/choroid of mice with chronic smoking (Figure 6B), suggesting that STAT3 

activity is increased and likely post-translationally regulated. To further assess activation of 

STAT3 signaling, we examined the downstream production of the ECM molecules MMP2 

and MMP14 and detected their upregulation in the RPE/choroid of mice after 6 months of 

smoking (Figure 6C).

STAT1 and STAT3 signaling responses were also similar in human RPE cells treated with 

cigarette smoke extract (CSE). Basal STAT1 activity is low in RPE cells and was enhanced 

with 100 ng/ml IFNα. Under these conditions, STAT1 signaling was reduced by CSE 

relative to controls (Figure 7A).

As in the RPE/choroid from mice exposed to chronic smoke, STAT3 was unchanged, and 

pSTAT3 was increased with CSE treatment compared to vehicle controls (Figure 7B). The 

pSTAT3 increase by CSE induced MMP3 and MMP14 production compared to vehicle 

control cells. This induction could be abrogated by silencing of STAT3 with either an siRNA 

against STAT3 (Figure 7C) or 1 uM of the STAT3 inhibitor Stattic (Figure 7D).

Discussion

The relative contribution of the dysfunctional pathways that are influenced by smoking to 

early AMD is not clear. Here, we report the global expression profile of the RPE/choroid 

from mice exposed to chronic smoking, which develop features of early AMD. We show that 

the overall RPE transcriptome after smoking exhibits marked suppression of the innate 

immune response including the antiviral response with type I and II interferons and an 

upregulation of cell differentiation and morphogenesis gene clusters, which indicates an 

attempt by the RPE to maintain its function despite smoke-induced injury. These novel 

changes are distinct from the previously acknowledged pathways involved in AMD 

pathobiology, such as mitochondrial dysfunction, autophagy, antioxidant response, and 

complement activation, and may represent events preceding the onset of established 

dysfunctions. These transcriptome changes are relevant because they are both in response to 

chronic smoking, and in a model that simulates RPE changes seen in early AMD. Since 

mice have a similar RPE and rod/cone density as the human perifovea[19], a site of early 

AMD changes, these alterations may be relevant to the perifovea.

Smoking induces the formation of danger associated molecular patterns (DAMPS), 

including oxidation-specific epitopes (OSEs), or oxidatively modified nucleic acids, 

proteins, and lipids that form when antioxidant systems inadequately neutralize reactive 

oxygen species[62]. DAMPS are recognized by pattern recognition receptors (PRRs) that 

activate the innate immune response. Relevant to AMD, we previously identified 

complement factor H and lipoprotein(a) as PRRs that bind to malondialdehyde and oxidized 

phospholipids, respectively, to induce an innate immune response[63, 64]. PRRs can activate 

type I and II IFNs in order to neutralize these potentially disease-causing molecules[65, 66]. 

The suppressed response by the RPE/choroid suggests that the immune response to DAMPs 

that are generated from smoking was inadequate and could lead to RPE dysfunction. The 

correlation of this impaired IFN response with an early AMD phenotype suggests that this 

failed arm of the innate immune response might be an early event in AMD pathobiology. A 
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suppressed immune response is in contrast to work suggesting an overactive innate immune 

response, especially complement and the inflammasome. We note that our findings are from 

a model of early AMD, whereas the genetic link of complement factors with AMD risk was 

conducted in patients with advanced AMD[67-70]. In addition, our findings are at the 

transcriptional level. Since a pathogenic role for complement is best studied by determining 

both its activity and the extent that this enhanced activity damages tissue, we are not able to 

rule out a role for complement despite minimal transcriptional changes. Likewise, we note 

that the best evidence of a role for the inflammasome is in late disease, such as in geographic 

atrophy or neovascular AMD[71, 72]. The innate immune response is complex, cell type 

specific, and situational. The AMD stage and the specific arm of immunity are fundamental 

requirements needed in any study design to fully decipher the role of innate immunity on 

AMD pathobiology. Future investigations will focus on the IFN response on RPE function 

and the degree of tissue injury induced by smoking induced suppression of this response in 

early AMD.

The over-representation of upregulated genes involved in morphogenesis, differentiation, 

and development suggest a transcriptional response by the RPE intended to maintain or re-

establish its epithelial state to compensate for injury caused by chronic smoke exposure. We 

had previously observed that some RPE cells enter EMT in human AMD samples[51]. Our 

RNA-seq analysis uncovered DEGs related to EMT, but the expression pattern was 

indicative of mesenchymal epithelial transition, which is consistent with the cell’s attempt to 

differentiate. The RPE has a heterogeneous morphology with a spectrum of normal 

appearing RPE to marked mesenchymal morphology in both AMD and this model as 

suggested in Fig. 1[20-22, 73, 74]. It is likely that each RPE cell’s attempt to recover from 

smoking related injury is mosaic. Future studies might benefit from single cell RNA-

sequencing to enable characterization of the RPE’s heterogeneous response to smoking.

STAT1 and STAT3 are essential signaling components of type I and II IFN responses, which 

was verified by String analysis. In response to cigarette smoke, STAT1 was decreased while 

STAT3 was increased. Smoking is known to suppress type I and II IFN responses through 

several mechanisms. Upon interaction of IFNα with its IFN receptor, JAK1 and TYK2 are 

phosphorylated, which then phosphorylate STAT1 and STAT2 to enable heterodimerization. 

The heterodimer translocates into the nucleus and binds with nuclear p48/IRF-9 proteins to 

form the ISGF-3 complex, which binds to interferon stimulated response element in the 

promoters of IFNα-stimulated genes to induce their expression[75-77]. Cigarette smoke can 

up-regulate the catalytic activity of serine/threonine phosphatases[78], inhibit IRF-3[79], or 

reduce STAT1 phosphorylation[80]. With type II IFN signaling, smoking can decrease the 

expression of IFN-γR, which decreases STAT1 phosphorylation[81].

In contrast, STAT3 is induced by cigarette smoke as a protective response. In the lung, 

STAT3 is activated by cigarette smoke to regulate key inflammatory, proteolytic and 

apoptotic responses. At the same time, STAT3 modulates the anti-inflammatory response by 

increasing SOCS3 and IL-10 expression to prevent tissue injury[82]. When STAT3 is 

lacking, as in Stat3−/− mice, smoke exposure enhances inflammatory, proteolytic, and 

apoptotic responses, but with a deficient anti-inflammatory response that results in tissue 

injury. Likewise, STAT3 suppression by siRNA severely damages DNA to induce cell death 
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after cigarette smoke exposure[83]. Consistent with these studies, the STAT3 induction is a 

protective response.

We identified ECM regulation by STAT3 signaling, and that smoking induced MMPs. The 

RPE is attached to Bruch’s membrane, a pentalaminar matrix. Normally, Bruch’s membrane 

undergoes constant remodeling by MMPs that are modulated by TIMPs, which are in part, 

produced by the RPE[84-86]. With aging, Bruch’s membrane thickens due to matrix protein 

accumulation, lipid deposition, and oxidative modification including advanced glycation end 

product formation that decreases hydraulic conductivity and nutrient transport across 

Bruch’s membrane[74, 87-92]. These changes can enable the accumulation of cellular 

fragments, lipoproteins, and inflammatory debris during the formation of basal deposits and 

drusen, hallmark lesions of AMD. As an early event, altered MMP activity by the RPE may 

contribute to age-related Bruch’s membrane thickening[86, 93]. The induction of MMPs 

through STAT3 by smoking both in vitro and in vivo suggests that the normal remodeling 

function of MMPs is intact. With further smoke exposure, it is possible that this process fails 

and could contribute to basal deposit formation.

Some limitations of this study are recognized. The transcriptomes that we identified were 

from bulk RNA-seq. While the physiological impact may be similar, we acknowledge that 

some of the expression profiles could originate from choroidal cells. Single cell RNA-seq 

would be a valuable approach to separate the transcriptional response of the RPE from 

choroidal cells. ARPE-19 cells were chosen to study the effects in human cells and did 

confirm the findings of our mouse studies. However, ARPE-19 cells have their 

shortcomings, and do other in vitro systems such as human fetal RPE cells or RPE cells 

from donor globes.

Conclusions

The unbiased global RNA-seq analysis of the RPE/choroid after chronic smoking uncovered 

an unexpected decline in the innate immune response that coincided with a transcriptional 

attempt to maintain its epithelial state in a model that simulates early AMD. This work 

provides insight into the early events caused by smoking that could lead to the conversion to 

early AMD. While valuable, the RPE response is unlikely to be uniform given its known 

heterogeneity in AMD. The role of the processes identified in this investigation might be 

enhanced by implementing single cell RNA-sequencing to identify the subgroups of RPE 

that may be expressing these potentially pathogenic and protective signals identified in this 

investigation. Future investigations to evaluate the relationship of smoking-induced 

transcriptional changes in RPE (reported here) to epigenomic alterations in aging (Corso 

Diaz et al. Cell Reports in press) and AMD-associated expression quantitative trait loci from 

human retina and RPE[94, 95] will be helpful in formulating a coherent and comprehensive 

platform for analyses of interactions among distinct susceptibility factors leading to AMD 

pathology.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Chronic smoking suppressed the immune response including interferons in 

the RPE

• Cell differentiation genes were also upregulated as a compensatory response

• STAT1 and STAT3 were reciprocally activated to regulate the extracellular 

matrix

• Matrix alterations to Bruch’s membrane are early events in AMD

• The transcriptome to smoke is complex with both impaired and compensatory 

responses
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Figure 1. 
Ultrastructural changes to the RPE after chronic smoking. A. Normal morphology and 

ultrastructure of the RPE from a C57BL6J mouse raised in air. Apical microvilli (MV) 

surround photoreceptor outer segments (POS). The basolateral (BL) RPE has normal 

infoldings (arrowheads). A variety of ultrastructural changes are seen in the RPE from 

C57BL6J mice exposed to smoke for 6 months. B. The microvilli are shortened, multiple 

vacuoles (V) are seen within the cell body, and the basal infoldings are shortened and 

widened (arrowheads). C. More severe mesenchymal shape to the RPE cell with similar 

changes to the microvilli and basal infoldings as in (B). Undigested POS (arrows) are seen in 

the basal region of the cell. D. Vacuoles with membranous debris are seen. BrM, Bruch’s 

membrane, CC, choriocapillaris. Bar = 5 μm.
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Figure 2. 
Overview of differentially expressed genes. A. Principle Component Analysis for all 

expressed genes, totaling 15,559 genes. The samples clustered into two distinct groups of 

mice exposed to chronic cigarette smoking (CS) and air. B. Volcano plot of DEGs shows 

separation between air and CS treated mice. C. Gene Ontology enrichment of biological 

processes (BP) with chronic smoking exposure. Down-regulated genes from smoking are 

pooled in cluster1, and up-regulated genes in cluster2. The ratio of genes changed in each 

BP is reflected by the dot size. p-value is reflected by dot color, with red as the most 

confident change. D. Gene set enrichment analysis using the Hallmark Pathways. Pathways 

enriched in the down-regulated genes are indicated with a negative net enrichment score 

(light blue) and those enriched in the up-regulated genes have a positive enrichment score 

(red). Size indicates the number of genes in the pathway.
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Figure 3. 
Enrichment plot of differentially expressed genes (DEGs) induced by chronic smoking in the 

RPE that are related to Epithelial mesenchymal transition. DEGs were ranked from positive 

to negative fold change and compared to the Broad Institute’s GSEA EMT 184 gene set. The 

enrichment score is plotted, which shows that the majority of DEGs were downregulated.
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Figure 4. 
Signal transduction pathways involved in the major processes were identified by GO 

analysis and then String analysis, enrichment analysis by selecting the keyword “pathway” 

to identify the involved genes that were altered by chronic smoking. The signaling pathways 

with the strongest likelihood of involvement are indicated by the p values. The number of 

genes that were differentially expressed is also shown.
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Figure 5. 
String analysis of STAT1 and STAT3 signaling after chronic smoking in the RPE/choroid. 

The network was built based on high confidence evidence from both experimental protein-

protein interaction and curated databases. The thickness of the lines that represent 

interactions is proportional to the STRING combined probability score. A. 44 genes are 

connected to Stat1 with chronic smoking. B. 25 genes are connected to Stat3 with chronic 

smoking.
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Figure 6. 
Reciprocal STAT1 and STAT3 signaling in the RPE/choroid after chronic smoking. A. 
Western blots of STAT1 and pSTAT1 from the RPE/choroid of air and smoke exposed mice. 

STAT1 and p-STAT1 were plotted as fold change of smoke to air treated mice. B. Western 

blots of STAT3 and pSTAT3 from the RPE/choroid of air and smoke exposed mice. STAT3 

and p-STAT3 were plotted as fold change of smoke to air treated mice. C. Western blots of 

MMP3 and MMP14 from the RPE/choroid of air and smoke exposed mice. MMP3 and 

MMP14 were plotted as fold change of smoke to air treated mice. Data were normalized to 

β-actin. *p<0.05. **p<0.01, ***p<0.001.
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Figure 7. 
STAT1 is decreased by cigarette smoke extract (CSE). A. RPE cells were treated with 

DMSO or 125 μg/ml CSE in the presence of 100 ng/ml IFN- α for 6 hrs. Western blots of 

STAT1 and pSTAT1 and their abundances were plotted as fold change. B. Cells were treated 

with DMSO or CSE for 24 hrs. Western blots of STAT3 and pSTAT3, and their abundances 

were plotted as fold change. *p<0.05. STAT3 silencing abrogates CSE-induced MMP14 

production and MMP2 secretion. C. ARPE-19 cells were transfected with STAT3 siRNA 

and treated with 125 μg/ml CSE for 24 h. Western blot shows total STAT3, p-STAT3, and 

MMP14, and their abundances were plotted as fold change relative to DMSO-treated control 

siRNA treated cells. Data were normalized to β-actin. D. RPE cells were transfected with 

STAT3 siRNA, and treated with 125 μg/ml CSE for 24 h. Western blot shows total STAT3, 

p-STAT3, and MMP14 from cell lysates and MMP2 from the supernatant, and their 

abundances were plotted as fold change relative to DMSO-treated control siRNA treated 

cells. Data were normalized to β-actin. *p<0.05; **p<0.01.
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