Table 1: “What happened?”.
Lineage | Cell Type | Transgenic Mouse | Reference | Start | End |
---|---|---|---|---|---|
TBX4 | Myofibroblast | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2016) (Kumar et al., 2014) (Zhang et al., 2013) |
E9.25 | E15.5 |
Smooth Muscle Cell | Tbx4LME-CreER JAX # N/A (Kumar et al., 2014) | (Kumar et al., 2014) | E10.5 | E13.5 | |
Pericyte | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2016) | E9.25 | E15.5 | |
Endothelium | Tbx4LME -Cre JAX # 033331 (Greif et al., 2012) Tbx4-rtTA/TetO-Cre JAX # N/A (Zhang et al., 2013) |
(Xie et al., 2016) (Zhang et al., 2013) |
E9.25 | E15.5 | |
(Zhang et al., 2013) | E11.5 | E15.5 | |||
Mesothelium | Tbx4LME-CreER JAX # N/A (Kumar et al., 2014) | (Kumar et al., 2014) | E10.5 | E13.5 | |
Lipofibroblast | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2016) | E9.25 | E15.5 | |
GLI1 | Myofibroblast | Gli1-CreERt2 JAX #007913 (Ahn and Joyner, 2004) | (Li et al., 2015) | E10.5–11.5 | E18.5 |
P5–6 |
P11 P14 |
||||
(Kugler et al., 2017) | P1 | P6, P10 | |||
Mesenchymal Stem Cell | Gli1-CreERt2 JAX #007913 (Ahn and Joyner, 2004) | (Kramann et al., 2015) | 8-Week- | Two days | |
Pericyte | Gli1-CreERt2 JAX #007913 (Ahn and Joyner, 2004) | (Li et al., 2015) | P5–6 | Adult | |
Smooth Muscle Cell | Gli1-CreERt2JAX #007913 (Ahn and Joyner, 2004) | (Li et al., 2015) | E10.5–11.5 | E12.5, P11 | |
(Li et al., 2015) | P5–6 | P11 | |||
(Kugler et al., 2017) | P1 |
P6 P10 |
|||
Mesothelium | Gli1-CreERt2 JAX #007913 (Ahn and Joyner, 2004) | (Li et al., 2015) | E10.5–11.5 |
P11 P14 |
|
(Li et al., 2015) | P5–6 |
P11 P14 |
|||
(Kugler et al., 2017) | P1 |
P6, P10 |
|||
PDGFRa | Myofibroblast | C57/BL6 | (Bostrom et al., 2002; Bostrom et al., 1996) | N/A | E15.5 |
PdgfrartTA;tetO-cre JAX # N/A (Li et al., 2018) | (Li et al., 2018) | E9.5–P7 | P7 | ||
P0–P7 | P7 | ||||
P1–P20 | P40 | ||||
Pdgfra-creER™ JAX # 018280 (De Biase et al., 2011) | (Ntokou et al., 2015) | E9.5 |
E18.5, P5 P7 |
||
P2 P5 |
P7 P9 P14 |
||||
PDGFRαEGFP JAX # 007669 (Hamilton et al., 2003) | (Endale et al., 2017) | N/A |
E16.5 E18.5 P7 |
||
Matrix fibroblast | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2018) | E9.25 | Adult | |
PDGFRαEGFP JAX # 007669 (Hamilton et al., 2003) | (Endale et al., 2017) (Green et al., 2016) | PNX | Adult | ||
Lipofibroblast | PdgfrartTA;tetO-cre JAX # N/A (Li et al., 2018) | (Li et al., 2018) | E9.5–P7 | P7 | |
P0–P7 | P7 | ||||
P1–P20 | P40 | ||||
Pdgfra-creER™ JAX # 018280 (De Biase et al., 2011) | (Ntokou et al., 2015) |
E9.5 P2 P5 |
E18.5 P5 P7 P7 to P14 |
||
Smooth muscle cell | PDGFRαEGFP JAX # 007669 (Hamilton et al., 2003) | (Ntokou et al., 2015) (El Agha et al., 2017) |
E9.5 | E14.5 to P3 | |
FGF18 | Myofibroblast | FGF18CreERT2 JAX # N/A (Hagan et al., 2019a) Gli1LacZ JAX # 008211 (Bai et al., 2002) Gli1CreERT2 JAX # 007913 (Ahn and Joyner, 2004) |
(Hagan et al., 2019b) | PN5–8 | PN9, PN21 |
PN1 |
PN2, PN7,
PN21 |
||||
Gli1CreERT2 JAX # 007913 (Ahn and Joyner, 2004) Gli1LacZ JAX # 008211 (Bai et al., 2002) |
(Hagan et al., 2019b) | PN5–8 | PN9, PN21 | ||
Lipofibroblast | FGF18CreERT2 JAX # N/A (Hagan et al., 2019a) Gli1LacZ JAX # 008211 (Bai et al., 2002) Gli1CreERT2 JAX # 007913 (Ahn and Joyner, 2004) |
(Hagan et al., 2019b) | PN5–8 | PN9, PN21 | |
PN1 | PN2, PN7, PN21 | ||||
Gli1CreERT2 JAX # 007913 (Ahn and Joyner, 2004) Gli1LacZ JAX # 008211 (Bai et al., 2002) |
(Hagan et al., 2019b) | PN5–8 | PN9, PN21 | ||
Mesothelium | FGF18CreERT2 JAX # N/A (Hagan et al., 2019a) Gli1LacZ JAX # 008211 (Bai et al., 2002) |
(Hagan et al., 2019b) | PN5–8 | PN9, PN21 | |
THY1 | Lipofibroblast | C57/B6; Thy1−/− JAX # N/A (Dr. Koger Morris, King’s College, London, UK) | (Varisco et al., 2012) | N/A | E18.5 to Adult |
Mesenchymal Stem Cell | C57BL/6 | (McQualter et al., 2009) | Adult | Adult | |
FGF10 | Lipofibroblast | Fgf10iCre JAX # 033807 (El Agha et al., 2012) | (El Agha et al., 2014) |
E11.5 E15.5 |
E15.5 E18.5 |
Myofibroblast | Fgf10iCre JAX # 033807 (El Agha et al., 2012) | (El Agha et al., 2017) | Bleo Injury | Adult | |
Smooth Muscle Cell | Fgf10iCre JAX # 033807 (El Agha et al., 2012) (Fgf10)-lacZ MGI:3629660 (Kelly et al., 2001) | (El Agha et al., 2014) | E11.5 | E13.5 to E18.5 | |
(Mailleux et al., 2005) | E10.5 | E11.5 to E14.5 | |||
Mesenchymal Stem Cell | Fgf10iCre JAX # 033807 (El Agha et al., 2012) | (El Agha et al., 2014) | E11.5 |
P30 Adult |
|
TCF21 | Lipofibroblast | TCF21-creERT2 JAX # N/A (Park et al., 2019) | (Park et al., 2019) |
E9.5 11.5 15.5 |
E18.5 |
Matrix Fibroblast | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2018) | E9.25 | Adult | |
Myofibroblast | TCF21-creERT2 JAX # N/A (Park et al., 2019) | (Park et al., 2019) | P2 | P7 | |
Smooth Muscle Cell | TCF21-creERT2 JAX # N/A (Park et al., 2019) | (Park et al., 2019) |
E9.5 11.5 |
E18.5 | |
PDGFKb | Pericyte | PDGFKb−/+ JAX # 007846 (Soriano, 1994) | (Greif et al., 2012; Hellstrom et al., 1999) | E11.5 |
E13.5, E18.5 |
Smooth Muscle Cell | PDGFR-β-Cre JAX # N/A (Foo et al., 2006) | (Greif et al., 2012) | E11.5 | E13.5, E18.5 | |
Lipofibroblast | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2018) | Adult | Adult After Injury | |
Myofibroblast | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2018) | E9.25 | Adult After Injury | |
(Henderson et al., 2013) | Adult | Adult After Injury | |||
NG2 (CSPG4) | Pericyte | NG2-CreEK™ JAX # 008538 (Zhu et al., 2011) | (Rock et al., 2011) | Adult | Adult after injury |
Myofibroblast | NG2-CreEK™ JAX # 008538 (Zhu et al., 2011) | (Rock et al., 2011) | Adult | Adult after injury | |
Lipofibroblast | NG2-CreEK™ JAX # 008538 (Zhu et al., 2011) | (Rock et al., 2011) | Adult | Adult after injury | |
FOXD1 | Pericyte | Foxd1+/GFPCreER JAX # 012464 (Humphreys et al., 2010) | (Hung et al., 2013) | E11.5 | E14.5, Adult |
Myofibroblast | Foxd1+/GFPCreER JAX # 012464 (Humphreys et al., 2010) | (Hung et al., 2013) | Adult | Adult 7 days after injury | |
Lipofibroblast | Foxd1-Cre JAX # 012463 (Humphreys et al., 2010) | (Hung et al., 2013) | E11.5 | Adult | |
COL13A1 | Matrix Fibroblast | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2018) | E9.25 | E16.5-Adult |
Myofibroblast | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2018) | E9.25 | E16.5-Adult | |
Lipofibroblast | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2018) | E9.25 | E16.5-Adult | |
COL14A1 | Matrix Fibroblast | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2018) | E9.25 | E16.5-Adult |
Myofibroblast | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2018) | E9.25 | E16.5-Adult | |
Lipofibroblast | Tbx4LME-Cre JAX # 033331 (Greif et al., 2012) | (Xie et al., 2018) | E9.25 | E16.5-Adult | |
SCA-1 | Mesenchymal Stem Cell | Ly6aCre (Sca-1Cre) JAX #032621 (Vagnozzi et al., 2018) | (McQualter et al., 2009) | E18.5 | Adult |
Myofibroblast | C57/BL6 | (Cao et al., 2018) | Adult | In Vitro After Injury | |
Lipofibroblast | Ly6aCre (Sca-1Cre) JAX #032621 (Vagnozzi et al., 2018) | (McQualter et al., 2009) | E18.5 | Adult | |
(Xie et al., 2018) | Adult | Adult | |||
Matrix Fibroblast | PDGFRαEGFP JAX # 007669 (Hamilton et al., 2003) | (Green et al., 2016) | Adult | Adult after PNX | |
(Xie et al., 2018) | Adult | Adult | |||
Pericyte | Ly6aCre (Sca-1Cre) JAX #032621 (Vagnozzi et al., 2018) | (McQualter et al., 2009) | E18.5 | Adult | |
Smooth Muscle Cell | Ly6aCre (Sca-1Cre) JAX #032621 (Vagnozzi et al., 2018) | (McQualter et al., 2009) | E18.5 | Adult | |
ABCG2 | Mesenchymal Stem Cell | Abcg2CreERT2 JAX # 021961 (Fatima et al., 2012) | (Gaskill et al., 2017) | Adult | Adult |
Pericyte | Abcg2CreERT2 JAX # 021961 (Fatima et al., 2012) | (Gaskill et al., 2017) | Adult | Adult, Adult after injury | |
LGR5 | Alveolar Niche Cell | Lgr5EGFP-IRES-creERT2 JAX # 008875 (Barker et al., 2007) | (Lee et al., 2017) | Adult | Adult |
Myofibroblast | Lgr5EGFP-IRES-creERT2 JAX # 008875 (Barker et al., 2007) | (Lee et al., 2017) | Adult | Adult, Adult After Injury | |
AXIN2/WNT2 | Alveolar Niche Cell | Axin2CreERT2 JAX # 018867 (van Amerongen et al., 2012) Wnt2CreERT2 JAX # N/A (Peng et al., 2013) PDGFRαEGFP JAX # 007669 (Hamilton et al., 2003) |
(Zepp et al., 2017) | Adult | Adult |
Myofibroblast | Axin2CreERT2 JAX # 018867 (van Amerongen et al., 2012) Wnt2CreERT2 JAX # N/A (Peng et al., 2013) PDGFRαEGFP JAX # 007669 (Hamilton et al., 2003) |
(Zepp et al., 2017) | Adult | Adult, Adult after injury | |
LGR6 | Smooth Muscle Cell | Lgr6GFP-ires-CreERT2 JAX #016934 (Snippert et al., 2010) | (Lee et al., 2017) | Adult | Adult |
Myofibroblast | Lgr6GFP-ires-CreERT2 JAX # 016934 (Snippert et al., 2010) | (Lee et al., 2017) | Adult | Adult | |
WT1 | Mesothelium | Wt1CreERT2 JAX # 010912 (Zhou et al., 2008) | (Que et al., 2008) (Colvin et al., 2001) |
E10.5 | E11.5, E15.5, P10 |
Smooth Muscle Cell | Wt1CreERT2 JAX # 010912 (Zhou et al., 2008) | (Que et al., 2008) | E10.5 | E15.5, P10 | |
Myofibroblast | Wt1CreERT2 JAX # 010912 (Zhou et al., 2008) | (Que et al., 2008) | E10.5 | E15.5, P10 |
Ahn, S., and Joyner, A.L. (2004). Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell 118, 505–516.
Bai, C.B., Auerbach, W., Lee, J.S., Stephen, D., and Joyner, A.L. (2002). Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129, 4753–4761.
Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007.
Bostrom, H., Gritli-Linde, A., and Betsholtz, C. (2002). PDGF-A/PDGF alpha-receptor signaling is required for lung growth and the formation of alveoli but not for early lung branching morphogenesis. Dev Dyn 223, 155–162.
Bostrom, H., Willetts, K., Pekny, M., Leveen, P., Lindahl, P., Hedstrand, H., Pekna, M., Hellstrom, M., Gebre-Medhin, S., Schalling, M., et al. (1996). PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85, 863–873.
Cao, H., Wang, C., Chen, X., Hou, J., Xiang, Z., Shen, Y., and Han, X. (2018). Inhibition of Wnt/beta-catenin signaling suppresses myofibroblast differentiation of lung resident mesenchymal stem cells and pulmonary fibrosis. Sci Rep 8, 13644.
Colvin, J.S., White, A.C., Pratt, S.J., and Ornitz, D.M. (2001). Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 128, 2095–2106.
De Biase, L.M., Kang, S.H., Baxi, E.G., Fukaya, M., Pucak, M.L., Mishina, M., Calabresi, P.A., and Bergles, D.E. (2011). NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J Neurosci 31, 12650–12662.
El Agha, E., Al Alam, D., Carraro, G., MacKenzie, B., Goth, K., De Langhe, S.P., Voswinckel, R., Hajihosseini, M.K., Rehan, V.K., and Bellusci, S. (2012). Characterization of a novel fibroblast growth factor 10 (Fgf10) knock-in mouse line to target mesenchymal progenitors during embryonic development. PLoS One 7, e38452.
El Agha, E., Herold, S., Al Alam, D., Quantius, J., MacKenzie, B., Carraro, G., Moiseenko, A., Chao, C.M., Minoo, P., Seeger, W., et al. (2014). Fgf10-positive cells represent a progenitor cell population during lung development and postnatally. Development 141, 296–306.
El Agha, E., Moiseenko, A., Kheirollahi, V., De Langhe, S., Crnkovic, S., Kwapiszewska, G., Szibor, M., Kosanovic, D., Schwind, F., Schermuly, R.T., et al. (2017). Two-Way Conversion between Lipogenic and Myogenic Fibroblastic Phenotypes Marks the Progression and Resolution of Lung Fibrosis. Cell Stem Cell 20, 571.
Endale, M., Ahlfeld, S., Bao, E., Chen, X., Green, J., Bess, Z., Weirauch, M.T., Xu, Y., and Perl, A.K. (2017). Temporal, spatial, and phenotypical changes of PDGFRalpha expressing fibroblasts during late lung development. Dev Biol 425, 161–175.
Fatima, S., Zhou, S., and Sorrentino, B.P. (2012). Abcg2 expression marks tissue-specific stem cells in multiple organs in a mouse progeny tracking model. Stem Cells 30, 210–221.
Foo, S.S., Turner, C.J., Adams, S., Compagni, A., Aubyn, D., Kogata, N., Lindblom, P., Shani, M., Zicha, D., and Adams, R.H. (2006). Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124, 161–173.
Gaskill, C.F., Carrier, E.J., Kropski, J.A., Bloodworth, N.C., Menon, S., Foronjy, R.F., Taketo, M.M., Hong, C.C., Austin, E.D., West, J.D., et al. (2017). Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction. J Clin Invest 127, 2262–2276.
Green, J., Endale, M., Auer, H., and Perl, A.K. (2016). Diversity of Interstitial Lung Fibroblasts Is Regulated by Platelet-Derived Growth Factor Receptor alpha Kinase Activity. Am J Respir Cell Mol Biol 54, 532–545.
Greif, D.M., Kumar, M., Lighthouse, J.K., Hum, J., An, A., Ding, L., Red-Horse, K., Espinoza, F.H., Olson, L., Offermanns, S., et al. (2012). Radial construction of an arterial wall. Dev Cell 23, 482–493.
Hagan, A.S., Boylan, M., Smith, C., Perez-Santamarina, E., Kowalska, K., Hung, I.H., Lewis, R.M., Hajihosseini, M.K., Lewandoski, M., and Ornitz, D.M. (2019a). Generation and validation of novel conditional flox and inducible Cre alleles targeting fibroblast growth factor 18 (Fgf18). Dev Dyn 248, 882–893.
Hagan, A.S., Zhang, B., and Ornitz, D.M. (2019b). Identification of an FGF18-expressing alveolar myofibroblast that is developmentally cleared during alveologenesis. Development.
Hamilton, T.G., Klinghoffer, R.A., Corrin, P.D., and Soriano, P. (2003). Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol 23, 4013–4025.
Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A., and Betsholtz, C. (1999). Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047–3055.
Henderson, N.C., Arnold, T.D., Katamura, Y., Giacomini, M.M., Rodriguez, J.D., McCarty, J.H., Pellicoro, A., Raschperger, E., Betsholtz, C., Ruminski, P.G., et al. (2013). Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19, 1617–1624.
Humphreys, B.D., Lin, S.L., Kobayashi, A., Hudson, T.E., Nowlin, B.T., Bonventre, J.V., Valerius, M.T., McMahon, A.P., and Duffield, J.S. (2010). Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176, 85–97.
Hung, C., Linn, G., Chow, Y.H., Kobayashi, A., Mittelsteadt, K., Altemeier, W.A., Gharib, S.A., Schnapp, L.M., and Duffield, J.S. (2013). Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 188, 820–830.
Kelly, R.G., Brown, N.A., and Buckingham, M.E. (2001). The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1, 435–440.
Kramann, R., Schneider, R.K., DiRocco, D.P., Machado, F., Fleig, S., Bondzie, P.A., Henderson, J.M., Ebert, B.L., and Humphreys, B.D. (2015). Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16, 51–66.
Kugler, M.C., Loomis, C.A., Zhao, Z., Cushman, J.C., Liu, L., and Munger, J.S. (2017). Sonic Hedgehog Signaling Regulates Myofibroblast Function During Alveolar Septum Formation in Murine Postnatal Lung. Am J Respir Cell Mol Biol.
Kumar, M.E., Bogard, P.E., Espinoza, F.H., Menke, D.B., Kingsley, D.M., and Krasnow, M.A. (2014). Mesenchymal cells. Defining a mesenchymal progenitor niche at single-cell resolution. Science 346, 1258810.
Lee, J.H., Tammela, T., Hofree, M., Choi, J., Marjanovic, N.D., Han, S., Canner, D., Wu, K., Paschini, M., Bhang, D.H., et al. (2017). Anatomically and Functionally Distinct Lung Mesenchymal Populations Marked by Lgr5 and Lgr6. Cell 170, 1149–1163 e1112.
Li, C., Li, M., Li, S., Xing, Y., Yang, C.Y., Li, A., Borok, Z., De Langhe, S., and Minoo, P. (2015). Progenitors of secondary crest myofibroblasts are developmentally committed in early lung mesoderm. Stem Cells 33, 999–1012.
Li, R., Bernau, K., Sandbo, N., Gu, J., Preissl, S., and Sun, X. (2018). Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. Elife 7.
Mailleux, A.A., Kelly, R., Veltmaat, J.M., De Langhe, S.P., Zaffran, S., Thiery, J.P., and Bellusci, S. (2005). Fgf10 expression identifies parabronchial smooth muscle cell progenitors and is required for their entry into the smooth muscle cell lineage. Development 132, 2157–2166.
McQualter, J.L., Brouard, N., Williams, B., Baird, B.N., Sims-Lucas, S., Yuen, K., Nilsson, S.K., Simmons, P.J., and Bertoncello, I. (2009). Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells 27, 623–633.
Ntokou, A., Klein, F., Dontireddy, D., Becker, S., Bellusci, S., Richardson, W.D., Szibor, M., Braun, T., Morty, R.E., Seeger, W., et al. (2015). Characterization of the platelet-derived growth factor receptor-alpha-positive cell lineage during murine late lung development. Am J Physiol Lung Cell Mol Physiol 309, L942–958.
Park, J., Ivey, M.J., Deana, Y., Riggsbee, K.L., Sorensen, E., Schwabl, V., Sjoberg, C., Hjertberg, T., Park, G.Y., Swonger, J.M., et al. (2019). The Tcf21 lineage constitutes the lung lipofibroblast population. Am J Physiol Lung Cell Mol Physiol 316, L872-L885.
Peng, T., Tian, Y., Boogerd, C.J., Lu, M.M., Kadzik, R.S., Stewart, K.M., Evans, S.M., and Morrisey, E.E. (2013). Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature 500, 589–592.
Que, J., Wilm, B., Hasegawa, H., Wang, F., Bader, D., and Hogan, B.L. (2008). Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci U S A 105, 16626–16630.
Rock, J.R., Barkauskas, C.E., Cronce, M.J., Xue, Y., Harris, J.R., Liang, J., Noble, P.W., and Hogan, B.L. (2011). Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108, E1475–1483.
Snippert, H.J., Haegebarth, A., Kasper, M., Jaks, V., van Es, J.H., Barker, N., van de Wetering, M., van den Born, M., Begthel, H., Vries, R.G., et al. (2010). Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385–1389.
Soriano, P. (1994). Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8, 1888–1896.
Vagnozzi, R.J., Sargent, M.A., Lin, S.J., Palpant, N.J., Murry, C.E., and Molkentin, J.D. (2018). Genetic Lineage Tracing of Sca-1(+) Cells Reveals Endothelial but Not Myogenic Contribution to the Murine Heart. Circulation 138, 2931–2939.
van Amerongen, R., Bowman, A.N., and Nusse, R. (2012). Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 11, 387–400.
Varisco, B.M., Ambalavanan, N., Whitsett, J.A., and Hagood, J.S. (2012). Thy-1 signals through PPARgamma to promote lipofibroblast differentiation in the developing lung. Am J Respir Cell Mol Biol 46, 765–772.
Xie, T., Liang, J., Liu, N., Huan, C., Zhang, Y., Liu, W., Kumar, M., Xiao, R., D’Armiento, J., Metzger, D., et al. (2016). Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. J Clin Invest 126, 3626.
Xie, T., Wang, Y., Deng, N., Huang, G., Taghavifar, F., Geng, Y., Liu, N., Kulur, V., Yao, C., Chen, P., et al. (2018). Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. Cell Rep 22, 3625–3640.
Zepp, J.A., Zacharias, W.J., Frank, D.B., Cavanaugh, C.A., Zhou, S., Morley, M.P., and Morrisey, E.E. (2017). Distinct Mesenchymal Lineages and Niches Promote Epithelial Self-Renewal and Myofibrogenesis in the Lung. Cell 170, 1134–1148 e1110.
Zhang, W., Menke, D.B., Jiang, M., Chen, H., Warburton, D., Turcatel, G., Lu, C.H., Xu, W., Luo, Y., and Shi, W. (2013). Spatial-temporal targeting of lung-specific mesenchyme by a Tbx4 enhancer. BMC Biol 11, 111.
Zhou, B., Ma, Q., Rajagopal, S., Wu, S.M., Domian, I., Rivera-Feliciano, J., Jiang, D., von Gise, A., Ikeda, S., Chien, K.R., et al. (2008). Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113.
Zhu, X., Hill, R.A., Dietrich, D., Komitova, M., Suzuki, R., and Nishiyama, A. (2011). Age-dependent fate and lineage restriction of single NG2 cells. Development 138, 745–753.