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Abstract
Background: GLE1 (GLE1, RNA Export Mediator, OMIM#603371) variants are 
associated with severe autosomal recessive motor neuron diseases, that are lethal 
congenital contracture syndrome 1 (LCCS1, OMIM#253310) and congenital arthro-
gryposis with anterior horn cell disease (CAAHD, OMIM#611890).
The clinical spectrum of GLE1-related disorders has been expanding these past years, 
including with adult-onset amyotrophic lateral sclerosis (ALS) GLE1-related forms, 
especially through the new molecular diagnosis strategies associated with the emer-
gence of next-generation sequencing (NGS) technologies. However, despite this 
phenotypic variability, reported congenital or ALS adult-onset forms remain severe, 
leading to premature death.
Methods: Through multidisciplinary interactions between our Neuropediatric and 
Medical Genetics departments, we were able to diagnose two siblings presenting with 
congenital disorder, using an NGS approach accordingly to the novel French national 
recommendations.
Results: Two siblings with very similar clinical features, meaning neuromuscular 
disorder of neonatal onset with progressive improvement, were examined in our 
Neuropediatrics department. The clinical presentation evoked initially congenital 
myopathy with autosomal recessive inheritance. However, additional symptoms such 
as mild dysmorphic features including high anterior hairline, downslanted palpebral 
fissures, anteverted nares, smooth philtrum with thin upper-lip, narrow mouth and 
microretrognathia or delayed expressive language and postnatal growth retardation 
were suggestive of a more complex clinical presentation and molecular diagnosis. 
Our NGS approach revealed an unexpected molecular diagnosis for these two sib-
lings, meaning the presence of the homozygous c.1808G>T GLE1 variant.
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1  |   INTRODUCTION

GLE1 (GLE1, RNA Export Mediator, OMIM#603371) vari-
ants are associated with severe autosomal recessive motor 
neuron diseases, that are lethal congenital contracture syn-
drome 1 (LCCS1, OMIM#253310) and lethal arthrogrypo-
sis with anterior horn cell disease (LAAHD) (Mäkelä-Bengs 
et al., 1998; Nousiainen et al., 2008).

The clinical spectrum of GLE1-related disorders has been 
expanding these past years, considering new molecular diag-
nosis strategies related to the emergence of next-generation 
sequencing (NGS) technologies.

Indeed, description of cases with survival beyond the 
perinatal period broaden the clinical spectrum and led to 
the nomenclature modification of LAAHD to congenital 
arthrogryposis with anterior horn cell disease (CAAHD, 
OMIM#611890) (Paakkola et al., 2018; Said et al., 2017; 
Smith et al., 2017; Tan et al., 2017). Therefore, it appears 
more accurate to define GLE1-related disorders under a 
larger designation of arthrogryposis multiplex congenita 
(AMC) (Smith et al., 2017).

Interestingly, the clinical spectrum of GLE1-related vari-
ants is not only congenital but also associated with adult-on-
set amyotrophic lateral sclerosis (ALS) (Aditi, Glass, 
Dawson, & Wente,  2016; Kaneb et  al.,  2015). This is not 
surprising as the GLE1 codes for two isoforms (hGLE1A 
and hGLE1B) with multiple independent roles, from nu-
clear export mRNA regulation to initiation and termination 
of translation (Alcázar-Román, Bolger, & Wente, 2010; 
Bolger, Folkmann, Tran, & Wente, 2008; Bolger & Wente, 
2011; Folkmann et al., 2013; Kaneb et al., 2015; Murphy & 
Wente, 1996).

Indeed, GLE1 plays an essential role in RNA-dependent 
DEAD-box ATPases modulations implicated in messenger 
ribonucleoprotein (mRNP) complexes regulation, thus hav-
ing a critical effect in mRNA’s processing (Jarmoskaite & 
Russell, 2014). Over the past years, numerous genes encoding 
mRNP components and regulators were associated with ALS 
such as TAR DNA-binding protein (TARDBP) (Sreedharan 
et  al.,  2008), Fused in Sarcoma (FUS) (Kwiatkowski 

et  al.,  2009; Vance et  al.,  2009), hnRNPA1 and hnRNPA2 
(Kim et al., 2013).

Therefore, it is comprehensible that variants of such 
genes, by playing a direct or indirect upstream role in mRNA 
expression, may have an impact on several underlying patho-
physiological mechanisms logically displaying phenotypic 
heterogeneity.

GLE1 variants seem to make no exception to this rule with 
variable effects on motor neurons resulting in a large pheno-
typical spectrum.

Nevertheless, despite this phenotypic variability, re-
ported congenital or ALS adult-onset forms remain severe, 
leading to premature death. Here, we describe two siblings 
with a much milder and atypical GLE1-associated pheno-
type, combining moderate cognitive impairment and neu-
romuscular impairment (initially considered as a congenital 
myopathy).

2  |   METHODS

Through multidisciplinary interactions between the 
Neuropediatric and Genetics departments we included DNA 
of two affected siblings for genetic analysis, using NGS ap-
proach accordingly to the novel French national recommen-
dations (Krahn et al., 2019).

This family gave informed consent, according to the 
Declaration of Helsinki, for molecular diagnosis of all four 
individuals explored (the two asymptomatic parents and two 
affected siblings). We also obtained consent for medical pub-
lication (including pictures of the siblings).

Genetic analysis consisted in clinical exome sequencing 
using the ClearSeq Inherited Disease Panel (Agilent technol-
ogies, CA, USA) on an Ion Proton platform (ThermoFisher 
Scientific, CA, USA). Sequencing data interpretation was 
initially focused on 44 genes associated with neuromuscu-
lar disorders (Supporting Information) (Kaplan & Hamroun, 
2013), before extending analysis to other lists of genes fol-
lowing the novel French national recommendations (Krahn 
et al., 2019).

European Community Seventh Framework 
Programme Grant FP7/2007–2013 
(NEUROMICS; Grant No. 2012–305121).

Conclusions: We here report the mildest phenotype ever described, in two siblings 
carrying the homozygous c.1808G>T GLE1 variant, further widening the clinical 
spectrum of GLE1-related diseases. Moreover, by reflecting current medical prac-
tice, this case report confirms the importance of establishing regular multidisciplinary 
meetings, essential for discussing such difficult clinical presentations to finally en-
able molecular diagnosis, especially when NGS technologies are used.
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NGS findings were systematically confirmed, as well 
as variant familial segregation analysis performed by tar-
geted Sanger sequencing on a 3500XL Genetic Analyzer® 
(ThermoFisher Scientific).

For the sequence variant nomenclature, we followed the 
Human Genome Variation Society (HGVS) recommendations 
and used the GLE1 transcript reference NM_001003722.1.

3  |   RESULTS

The two affected siblings are born from healthy Caucasian 
(with Flemish origin) consanguineous parents (second cous-
ins). Patient II.1 (Figure 1a,b) was born at 41 week of ges-
tation with normal birth parameters: weight: 3,590 g (50th 
centile), length: 54  cm (95th centile) and head circumfer-
ence: 36.5cm (81st centile). Neonatal adaptation was normal 
(APGAR score: 10–10). He had clenched fists with adductus 
thumbs and hypomobility and slow spontaneous movement. 
Within the first month of life, he presented feeding difficul-
ties that improved with thickened food. In the first year of 
life, flexion contractures of his upper and lower limbs were 
noticed. He could stand at 12 months and was able to walk at 
3 years old. Expressive language was also delayed as he said 
only few words at 3 years of age.

At the last examination, he was 6 years and 10 months old. 
He weighed 16.4 kg and was 102.7 cm tall (both < −2 stan-
dard deviation). He had postnatal growth retardation that has 
started since he was 15 months old. He had no microcephaly: 
his head circumference was 51 cm (−1 standard deviation). 
He had mild dysmorphic features including high anterior 
hairline, downslanted palpebral fissures, anteverted nares, 
smooth philtrum with thin upper-lip, narrow mouth, and mi-
croretrognathia. He walked with triple lower limb joints con-
tracture but sometimes fell. He had peroneal muscle atrophy, 

patellar hyperreflexia, and hyperlordosis. He was able to say 
short sentences. He wore glasses for hypermetropia.

Many complementary investigations were performed. 
He had normal brain MRI scan with spectroscopy at 2 years 
old. Electroneuromyography (EMG) at 2.5  years showed 
rich EMG signals reflecting a myogenic pattern but also 
associated with a neurogenic component (decreased nerve 
conduction velocity and amplitude, especially for pero-
neal nerves). Creatine kinase level was normal (79 UI/L). 
Specific assays for diagnosis of mucopolysaccharidoses 
were normal including skeletal X-ray that has been done be-
cause of hepatomegaly (which disappeared spontaneously 
after 3 years old). Skeletal muscle biopsy at 3.5 years old 
evidenced no specific abnormalities: few fibers with vacu-
olation on electron microscopy and mild increase of PAS 
positive material. Other analyses were normal, in particular 
immunohistochemistry. Peripheral blood karyotyping was 
normal.

Patient II.2 (Figure 1a,c), the younger sister of the prop-
ositus, was born at 39 weeks of gestation, after uneventful 
pregnancy, with normal birth parameters: weight 2,730  g 
(11st centile), length 50 cm (68th centile) and head circum-
ference 35cm (75th centile). Neonatal adaptation was normal 
(APGAR score: 10–10). During neonatal period, nystagmus 
and vertical talus feet have been observed with improvement 
after few weeks. At 13 months old, she had thoracolumbar 
kyphosis, preserved deep tendon reflexes and hips movement 
disability. Two short respiratory arrests have been reported 
at 6 months and 12 months old due to swallowing disorders. 
She quickly recovered and improved with swallow therapy.

At last examination, she was 4  years old. She weighed 
12 kg (< −2 standard deviation) and was 92.6 cm tall (< −2 
standard deviation). She had no microcephaly: her head cir-
cumference was 48.5 cm (normal). She was able to walk on 
all fours, to stand and to walk with support. She could say 

F I G U R E  1   (a) Pedigree and familial 
segregation analysis of c.1808G>T 
[p.(Arg603Leu)] GLE1 variant. (+) 
indicates non mutated allele and (-) 
indicates mutated allele for the c.1808G>T 
[p.(Arg603Leu)] GLE1 variant. (b) Pictures 
face and profile of patient II.1 at 30 months 
old. (c) Pictures face and profile of patient 
II.2 at 10 months old. The two siblings have 
mild shared dysmorphic features including 
high anterior hairline, downslanted palpebral 
fissures, anteverted nares, smooth philtrum 
with thin upper-lip, narrow mouth and 
microretrognathia.

(a)

(b) (c)
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small sentences with good vocabulary. She also wore glasses 
for hypermetropia.

Her clinical presentation was similar to her brother re-
garding lower limb: triple lower limb joints contracture, 
patellar hyperreflexia but no Achilles tendon reflexes and 
kyphosis aspect. She also had dysmorphic features similar 
to her brother (Figure 1b,c). Cardiac ultrasound and exam-
ination were normal. Array-CGH was performed and did not 
evidence any anomaly. Fewer investigations have been per-
formed on patient II.2 as exhaustive analyses have been done 
for patient II.1.

In summary, the two siblings had very similar clinical 
features: neuromuscular disorder of neonatal onset with pro-
gressive improvement. This clinical presentation evoked con-
genital myopathy with autosomal recessive inheritance.

After the first genetic testings (karyotype and array-CGH), 
we performed targeted sequencing of 44 genes associated 
with neuromuscular disorders (Kaplan & Hamroun, 2013) 
in patient II.1 (propositus), following our diagnosis strategy 
(Supporting information). This analysis did not reveal any 
convincing molecular diagnosis.

However, considering the atypical clinical presentation, 
we decided in agreement with the clinicians to broaden the 
molecular analysis. This strategy follows the recent and 
novel NGS strategy recommendations (Krahn et al., 2019). 
A multidisciplinary team meeting allowed discussing the 
clinical presentation and regular follow-up data of the two 
siblings: diagnosis of arthrogryposis was evoked. Indeed, 
patients were both born with some arthrogryposis features 
as clenched fists with adductus thumbs, hypomobility and/or 
vertical talus feet. Therefore, by focusing on the appropriate 
genes list, that is the "Fœtal and Neonatal Arthrogryposes 
- Unique exhaustive genes list" (Krahn et  al.,  2019), we 
identified an homozygous GLE1 variant, c.1808G>T [p.(Ar-
g603Leu)], located in exon 13, for patient II.1. Segregation 
analysis showed that it is inherited from healthy heterozy-
gous parents and that patient II.2 also carries this homozy-
gous variant (Figure 1a). To our knowledge, this variant has 
never been reported at homozygous status in individuals. It 
has a very low frequency in the general population (allele 
frequency  =  3.98e-6; GnomAD, http://gnomad.broad​insti​
tute.org/, 30 June 2019) and it is predicted to be damag-
ing by several bioinformatics tools [PolyPhen2 (Adzhubei 
et al., 2010), Mutation Taster (Schwarz, Cooper, Schuelke, 
& Seelow, 2014) and UMD-predictor (Salgado et al., 2016)].

According to the ACMG classification, it is a likely patho-
genic (class 4) variant (Richards et al., 2015). Interestingly, 
this specific c.1808G>T GLE1 variant has been reported 
as pathogenic once in patients database [Clinvar (Landrum 
et al., 2018)] and recently in the literature, associated with 
another likely pathogenic GLE1 variant on the second al-
lele (compound heterozygous status) (Tan et al., 2017). The 
phenotype associated with this initial description is also a 

moderate clinical presentation but not as mild as the one we 
report for these two siblings (Table 1).

4  |   DISCUSSION

We here describe a relatively moderate congenital phenotype 
associated with the homozygous c.1808G>T [p.(Arg603Leu)] 
GLE1 genotype, for two siblings. To date, only nine patients 
have been reported in the literature for GLE1-associated con-
genital disorders.

The phenotype associated with this c.1808G>T homozy-
gous GLE1 genotype, could even be considered as the mild-
est described to date, based on literature reports (Table  1) 
(Paakkola et al., 2018; Said et al., 2017; Smith et al., 2017).

Indeed, GLE1 variants were initially associated with se-
vere autosomal recessive motor neuron diseases either for le-
thal congenital forms (Mäkelä-Bengs et al., 1998; Nousiainen 
et al., 2008) or later-onset ALS forms (Aditi, Glass, Dawson, & 
Wente, 2016; Kaneb et al., 2015), leading in both cases to pre-
mature death. Even if the recently expanding GLE1 phenotype 
spectrum includes less severe clinical presentations, the case 
we report here, associated with a c.1808G>T [p.(Arg603Leu)] 
GLE1 homozygous genotype, constitutes the mildest phenotype 
reported to date, in comparison with previously reported con-
genital moderate phenotypes (Table 1) (Paakkola et al., 2018; 
Said et al., 2017; Smith et al., 2017; Tan et al., 2017).

Interestingly, this c.1808G>T GLE1 variant has already 
been described in a compound heterozygous association with 
the c.1997G>T [p.(Gly666Val)] variant with a milder pheno-
type as usually observed for GLE1 variants (Tan et al., 2017).

Tan and colleagues reasonably hypothesized that the 
c.1997G>T [p.(Gly666Val)] GLE1 variant could be respon-
sible for this milder phenotype as the p.Gly666 residue is 
present only in the hGLE1B isoform. However, we report 
here a milder phenotype than the one described by Tan and 
colleagues for two siblings with the homozygous c.1808G>T 
GLE1 variant. Our report confirms that the c.1808G>T 
[p.(Arg603Leu)] GLE1 variant seems also associated with a 
moderate pathogenic effect leading to a milder phenotype. 
This p.(Arg603Leu) variant is located near the carboxy-ter-
minus end of the protein, in the region of the GLE1 protein 
implicated in inositol hexakisphosphate (IP6) binding do-
main. Therefore, future research should focus on the possi-
ble impact of this specific GLE1 variant on the interaction 
with IP6 and the potential consequences on mRNA export 
and translation termination (Alcázar-Román, Bolger, & 
Wente, 2010; Alcázar-Román, Tran, Guo, & Wente, 2006).

Furthermore, this case report also emphasizes the utility 
of NGS technologies to elucidate atypical and/or overlapping 
phenotypes.

Indeed, as this clinical case demonstrates, a well-estab-
lished gene panel NGS approach associated with a sequential 

http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
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gene filtering clinically oriented strategy can be sufficient to 
resolve these types of complex diagnosis (Krahn et al., 2019).

Moreover, by reflecting current medical practice, this case 
report confirms the importance of establishing regular multi-
disciplinary meetings, essential for discussing such difficult 
clinical presentations to finally enable molecular diagnosis. 
Thus, leading sometimes to the reassessment of the initial 
clinical indication, as in our context the widening of GLE1-
associated phenotypical indication to congenital slowly pro-
gressing muscle disease, as previously suggested by Tan and 
colleagues (Tan et al., 2017).

This description also reveals the importance of taking into 
account the mutational GLE1 combination to better compre-
hend clinical presentation as well as the severity and evo-
lution of the disease. In the present case, the homozygous 
c.1808G>C GLE1 genotype seems to be associated with a 
milder phenotype, thus further expanding the GLE1 clinical 
spectrum.

Finally, to complete Smith and colleagues’ hypothesis of 
a single entity for AMC (Smith et al., 2017), involving the 
GLE1 mutational combination evaluation, we believe that the 
influence of possible modifier genes should also be consid-
ered to explain the GLE1-associated phenotypical heteroge-
neity, from extremely severe lethal forms to milder clinical 
presentations such as the one described here.
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