TABLE 3.
Layer | Feature source | Hyper-parameters | Value |
CNN | Signal input | Kernel size | 1 × 3 |
Number of filters | 8 | ||
Stride | 1 | ||
Activation function | ReLUa | ||
Bi-LSTM | Read input | State size | 16 |
Activation function | tanhb | ||
Bi-LSTM | Concatenated input | State size | 64 |
Activation function | tanhb | ||
Dropout | Concatenated input | Dropout rate | 0.2 |
Center loss | Concatenated input | Proportion | 0.2 |
Adam optimizer | Initial learning rate | 0.002 | |
Decay rate | 0.05 | ||
Beta_1 | 0.9 | ||
Beta_2 | 0.999 |
aReLU is one of the commonly used activation functions in CNN layer. btanh is the default activation function in LSTM layer.