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Summary
In this paper, the problem of social distancing in the spread of infectious dis-
eases in the human network is extended by optimal control and differential
game approaches. Hear, SEAIR model on simulation network is used. Total costs
for both approaches are formulated as objective functions. SEAIR dynamics for
group k that contacts with k individuals including susceptible, exposed, asymp-
tomatically infected, symptomatically infected and improved or safe individuals
is modeled. A novel random model including the concept of social distancing
and relative risk of infection using Markov process is proposed. For each group,
an aggregate investment is derived and computed using adjoint equations and
maximum principle. Results show that for each group, investments in the differ-
ential game are less than investments in an optimal control approach. Although
individuals’ participation in investment for social distancing causes to reduce
the epidemic cost, the epidemic cost according to the second approach is too
much less than the first approach.
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1 INTRODUCTION

Social distancing is changes in behavior that is applied to prevent the transmission of the disease. The dynamics of infec-
tious disease such as influenza, smallpox, aids, etc. depending on the contact network. Social distancing practices can stop
or reduce the severity of the epidemic. This distancing is applied to allow individuals to change their behavior in order to
reduce the risk of disease. The structure of networks in the prevalence of epidemics such as HIV,1-3 SARS,4,5 influenza,6-9

etc. is important. The basic reproduction number is dependent on the distribution of the contacts that are known as the
distribution of degrees.1,10,11 Primary work focuses on the effects of small cycles.12-16 Most epidemics such as influenza,
HIV, Sars, have expanded.17-19 It is used network theory to study the dynamics of transmission of infectious diseases in
which the nodes represent people, etc.19 There are two topological and structural properties of the grids which cause the
dynamics to spread: Transmissibility19,20 and centrality.13,21 Recovery of infections increases the number of infectious dis-
eases and the mortality rate of the host.22,23 In order to study the best usage of social distancing, we apply control optimal
and differential game approaches at a population scale. In game theory, the differential game is a situation of conflict or
cooperative where players choose strategies over time.
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There are more than one player in the differential game and the payoff to each player depends on the selection paths
by all players. Of course, the control problem can be considered as a special case of differential games in which there is
only one player. In the differential games, players make their moves over time. In this paper, we find the best investment
in social distancing with optimal control and differential game approaches.

Vaccination is considered as one of the most measures to control influenza outbreak. In 2019, Arefin et al24 investigated
two types of vaccines; The traditional trivalent (TIV) flu vaccine and the quadrivalent (QIV) vaccine. They showed that
people can choose QIV or TIV vaccine or they select none. Kabir et al25 presented a model in which a dual social dilemma
situation was exhibited. In this model, the treatment behavior changes on a time scale, and the vaccination uptake evolves
on a time scale. A model that joins evolutionary game theory with epidemiological dynamics is presented by Tanaka
et al.26 In this model, the policies that encourage vaccination are appraised and in order to suppress the overall social cost
of a vaccination program, individual subsidies for vaccinations can be directed to hub agents with priority.

The effect coming from the failure of getting perfect immunity to the individuals who perpetrated vaccination earlier
is studied by Alam et al.27 Their new model slows down the spread of the infectious and also facilitates quicker recovery
time. In order to evaluate the performance of vaccination-subsidizing policies in the face of an epidemic, Kuga et al28 com-
bined evolutionary game theory and mathematical epidemiology. They investigated how the topology of social networks
affects the results. Analyzing the effect of different heterogeneous networks in a population was presented by a two-layer
susceptible-infected-recovered/unaware-aware (SIR-UA) epidemic model. In this study, the random network topologies
are applied to investigate the impact of awareness on the spread of epidemics.29 The check of this point that a disease
transmission network does not necessarily correspond with an information diffusion network was done by Fukuda et al.30

Evolutionary game theory can be in the context of epidemiology. Two approaches, quasi-analytical and multi-agent sim-
ulation, can illuminate how an infectious disease diffuses across a social network, which is affected by the public attitude
toward vaccination.31

Vaccination game and social distancing strategies both aim to control an epidemic and minimize its cost. However
since in this paper, we assumed that, one is in the lack of vaccine, the concept called “social distancing” is considered and
discussed. Therefore in this paper, social distancing is a measure to control an epidemic as long as the vaccine is produced
and is available.

In Section 2, the network dynamic of SEAIR model together with the aggregate investment parameter in social distanc-
ing are proposed. In Section 2.3, the related novel SEAIR objective functional for the best investment in social distancing is
given. In Section 3, the problem for social distancing and its relative risk is solved by using optimal control and differential
game approaches. In Section 4, stability is investigated and in Section 5, results and conclusions are given.

2 MODEL

It is shown that in contrast to classical compartment models like SIR, a model that can consider the epidemics of infectious
diseases on networks is a model that classifying the population as susceptible (S), exposed (E), asymptomatically infected
(A), symptomatically infected (I) and removed (R). Here, we use SEAIR model on networks to obtain the best aggregate
investment, which is the average investment of the corresponding population. In order to determine the best aggregate
investment strategy with social distancing, we use two different approaches; optimal control and differential game.

2.1 SEAIR model

Consider a Susceptible Exposed Asymptomatically infected Symptomatically infected Recovered (SEAIR) epidemic
model with susceptible (X1), exposed (X2), asymptomatically infected (X3), symptomatically infected (X4), and removed
(X5) states. When an individual is infected with an influenza virus, a short time span between the occurrence of a disease
agent and the onset of symptoms, which is called a munition or latency period. This class of individuals who pass through
the infected to stricken are called X2 class. In X2 class, a significant number of individuals do not reveal the symptoms of
illness, but they are capable of transmitting illness. The differential equations describing the SEAIR model are as follows:19

dX1

dt
= −𝜆1X1X3 − 𝜆2X1X4

dX2

dt
= 𝜆1X1X3 + 𝜆2X1X4 − 𝛿X2
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dX3

dt
= 𝛾𝛿X2 − 𝛼1X3

dX4

dt
= (1 − 𝛾)𝛿X2 − 𝛼2X4

dX5

dt
= 𝛼1X3 + 𝛼2X4, (1)

where the parameters are shown in the Table 1 and are estimated in Table 2.
It is assumed that a safe individual will never be susceptible or infected again, and in this study the births and deaths

of natural individuals and migrations will be ignored. In this study, we examine individuals in the network. Each person
is marked with one vertex and we show the contact between two individuals with an edge that connects two vertices to
each other.

It is assumed that the population is divided into n distinct groups of sizes (k= 1,2,… ,n)Nk such that each individual
is in group k, he (she) will have k contacts per day. Let, the size of the population is N (N =N1 +N2 + … +Nn) thus
the probability that an individual has k contacts will be Pk = Nk

N
, which is called the degree distributions of the network.

It is shown in Empirical studies that many real networks have scale-free degree distributions p(k) ≈ k−𝛾 with 2 ≤ 𝛾 ≤ 3
and epidemic threshold is not shown in epidemic model.18 If X1k , X2k , X3k , X4k and represent the number of susceptible,
exposed, asymptomatically infected, symptomatically infected and recovered individuals belonging to group k (where
X1k + X2k + X3k + X4k + X5k = Nk), then the following system of differential equations is presented as follows,:20

dX1k (t)
dt

= −𝜆1kX1k (t)Θ
X3k (t) − 𝜆2kX1k (t)Θ

X4k (t)

dX2k (t)
dt

= 𝜆1kX1k (t)Θ
X3k (t) + 𝜆2kX1k (t)Θ

X4k (t) − 𝛿X2k (t)

dX3k (t)
dt

= 𝛾𝛿X2k (t) − 𝛼1X3k (t)

dX4k (t)
dt

= (1 − 𝛾)𝛿X2k (t) − 𝛼2X4k (t)

dX5k (t)
dt

= 𝛼1X3k (t) + 𝛼2X4k (t), (2)

T A B L E 1 Parameters of the SEAIR model Parameters Description

𝜆1 Transmission coefficient between community Skand Ij

𝜆2 Transmission coefficient between community Sk and Aj

𝛿 Rate of becoming infectious after latency

𝛾 Rate of becoming asymptomatically infected

1 − 𝛾 Rate of becoming symptomatically infected

𝛼1 Recovery rate of asymptomatically infected

𝛼2 Recovery rate of symptomatically infected

T A B L E 2 Parameters estimated from the observed data in China36
Parameters Description

𝜆1 0.01

𝜆2 0.188

𝛿 0.4

𝛾 0.85

1 − 𝛾 0.15

𝛼1 0.141

𝛼2 0.141
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where ΘX4(t) =

n∑
i=1

iX4i

n∑
i=1

iNi

and ΘX3(t) =

n∑
i=1

iX3i

n∑
i=1

iNi

and basic reproduction number R0 = 𝜆2X1(0)( 𝛾

𝛼2
+ 𝜆1(1−𝛾)

𝜆2𝛼1
). Also,

dX1k

dt
+

dX2k

dt
+

dX3k

dt
+

dX4k

dt
+

dX5k

dt
= 0

X1k + X2k + X3k + X4k + X5k = Nk is constant. Also, for system (2), we consider the following boundary conditions:

X1k (0) = X1k0 , X3k (0) = X3k0 , X4k (0) = X4k0 , X2k (0) = X5k (0) = 0

2.2 SEAIR model and the aggregate investment in social distancing

We are going to use the aggregate investment (control) in this network model. csk is defined as the aggregate investment
of susceptible individuals in social distancing belonging to the group k. The overbar notation is used to indicate that the
aggregate investment csk is an average investment aggregated over all people in the population. cI is the daily cost of the
infection. We first apply the following change to the variable:

ck =
csk

cI

As a result, the relative risk for the group k according to ck is defined as:

𝜎k(ck) =
1

1 + mkck
, (3)

mk, is maximum efficiency of social distancing for group k. The maximum efficiency of social distancing will be the
maximum number of susceptible people who separate themselves from the population before the cost of this distancing
increases than the cost of the disease.

The relative risk graph for the different values of mk is given in Figure 1. In order to work with dimensionless equations,
we should take: (let that, 𝜆1 = 𝜆2 = 𝜆, 𝛼1 = 𝛼2 = 𝛼):

Sk = 𝜆

𝛼
X1k , E = 𝜆𝛿

𝛼2 X2k ,Ak = 𝜆

𝛼
X2k , Ik = 𝜆

𝛼
X1k ,

Rk = 𝜆

𝛼
X5k , Θ

A = 𝜆

𝛼
ΘX3 , ΘI = 𝜆

𝛼
ΘX4 , t̂ = 𝛼t.
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F I G U R E 1 The graphs are related to the relative risk of infection. By increasing the maximum efficiency, the relative risk decreases.
The right graph shows the relative risk of infection for each group according to just its investment strategy but the left graph shows the relative
risk of infection for each group according to both its investment strategy and others groups investment. The results show that the relative risk
of infection in the right graph is less than the relative risk of infection in the left graph [Colour figure can be viewed at wileyonlinelibrary.com]
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hereafter, it will drop the hat-notation so the dimensionless parameters will be worked. The dynamics of this network
model for an epidemic with respect to 𝜎k(ck) is as follows:

dSk(t)
dt

= −𝜎k(ck)kSk(t)ΘA(t) − 𝜎k(ck)kSk(t)ΘI(t)

dEk(t)
dt

= 𝜎k(ck)kSk(t)ΘA(t) + 𝜎k(ck)kSk(t)ΘI(t) − 𝜎k(ck)Ek(t)

dAk(t)
dt

= 𝛾𝜎k(ck)Ek(t) − Ak(t)

dIk(t)
dt

= (1 − 𝛾)𝜎k(ck)Ek(t) − Ik(t)

dRk(t)
dt

= Ak(t) + Ik(t). (4)

2.3 Cost functional

Consider the problem of minimizing the performance index J. The whole cost of the epidemic for the community, J, is the
sum of the direct costs together with the indirect costs of any economic repercussions from the epidemic. It is considered
just considered direct costs of the epidemic (the daily costs from infection, daily investments for social distancing, and
the costs for vaccination). Mathematically,32

J = −cV

cI
S(tf )e−htf −

(A(tf ) + I(tf ))e−htf

1 + h

− ∫
tf

0
[(c(S + E) + (A + I))]e−htdt, (5)

where cv is the cost of vaccination per person, and h is the discount rate.
The total cost of the epidemic for group k, Jk,

Jk = −cV

cI
Sk(tf )e−htf −

(Ak(tf ) + Ik(tf ))e−htf

1 + h

− ∫
tf

0
[(ck(Sk + Ek) + (Ak + Ik))]e−htdt. (6)

3 BEST INVESTMENT IN SOCIAL DISTANCING

In order to determine the best strategy of investment in social distancing, we consider two approaches, optimal control
approach and differential game approach. The reason for using an optimal control approach in this work is analyzing the
solution which is obtained from the differential game approach.

3.1 Optimal control approach

According to optimal control approach, we determine the best investment of each group with regardless of the investment
of other groups. The above system is written in the form of the matrix and we have:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

dSk(t)
dt

dEk(t)
dt

dAk(t)
dt

dIk(t)
dt

dRk(t)
dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−𝜎k(ck)kΘA(t) − 𝜎k(ck)kΘI(t) 0 0 0 0
𝜎k(ck)kΘA(t) + 𝜎k(ck)kΘI(t) −𝜎k(ck) 0 0 0

0 𝛾𝜎k(ck) −1 0 0
0 (1 − 𝛾)𝜎k(ck) 0 −1 0
0 0 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Sk(t)
Ek(t)
Ak(t)
Ik(t)
Rk(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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As a result, the transmission rate matrix, Q, is as follows:

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−𝜎k(ck)kΘA(t) − 𝜎k(ck)kΘI(t) 0 0 0 0
𝜎k(ck)kΘA(t) + 𝜎k(ck)kΘI(t) −𝜎k(ck) 0 0 0

0 𝛾𝜎k(ck) −1 0 0
0 (1 − 𝛾)𝜎k(ck) 0 −1 0
0 0 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

Considering the The Markov process, as follows:

Ṗ = Q(t, c)P,

where P(t) is probabilities that people are in which states and c is the daily investment. The expected present values (V)
are calculated (The expected present value is average value one expects after accounting for the probabilities of all future
events, and discounting future costs relative to immediate costs) because of the exact time spent and the precise payoff
are not predicted. As follows:

−V̇ = (QT − h)V − v, (8)

where, h is discount rate and v = (−cS,−cE,−cA,−cI ,−cR). As result, we have for the group k; vk =
(−cSk ,−cEk ,−cAk ,−cIk ,−cRk ). In this problem vk = (−ck,−ck,−ck,−1, 0). Let h= 0.33 As a result,

−
dVSk (t)

dt
= (−𝜎k(ck)kΘA(t) − 𝜎k(ck)kΘI(t))VSk (t)

+ (𝜎k(ck)kΘA(t) + 𝜎k(ck)kΘI(t))VEk (t) − ck

−
dVEk (t)

dt
= −𝜎k(ck)VEk (t) + 𝛾𝜎k(ck)VAk (t) + (1 − 𝛾)𝜎k(ck)VIk (t) − ck

−
dVAk (t)

dt
= −VAk (t) + VRk (t) − ck

−
dVIk (t)

dt
= −VIk (t) + VRk (t) − 1

−
dVRk (t)

dt
= 0. (9)

By solving system (9), we have:

VEk (t) =
−(𝛾ck𝜎(ck) + (1 − 𝛾)𝜎(ck) + ck)

𝜎(ck)
,

VAk (t) = −ck,VIk (t) = −1,VRk (t) = 0.

then

−
dVSk (t)

dt
= −k𝜎k(ck)(ΘA(t) + ΘI(t))(VSk (t)

+ (𝛾ck𝜎(ck) + (1 − 𝛾)𝜎(ck) + ck)
𝜎(ck)

) − ck. (10)

Now, we have reduced following system:

−
dVSk

(t)

dt
= −k𝜎k(ck)(ΘA(t) + ΘI(t))(VSk (t)

+ (𝛾ck𝜎(ck)+(1−𝛾)𝜎(ck)+ck)
𝜎(ck)

) − ck
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dSk(t)
dt

= −𝜎k(ck)kSk(t)ΘA(t) − 𝜎k(ck)kSk(t)ΘI(t)

dEk(t)
dt

= 𝜎k(ck)kSk(t)ΘA(t) + 𝜎k(ck)kSk(t)ΘI(t)

−𝜎k(ck)Ek(t)

dAk(t)
dt

= 𝛾𝜎k(ck)Ek(t) − Ak(t)

dIk(t)
dt

= (1 − 𝛾)𝜎k(ck)Ek(t) − Ik(t).

(11)

Sk(0) = Sk0 , Ik(0) = Ik0 ,Ak(0) = Ak(0),
Ek(0) = Rk(0) = 0,VS(tf ) = 0.

−VSk (0) will be the expected total cost of the epidemic to group k.
A Nash equilibrium strategy for a population game is a one that is the best response, even when other people are

utilizing the same strategy. If Nash equilibrium strategy shows a Nash equilibrium of any subgame of the primary game,
it will be a subgame perfect equilibrium. This means that if we consider any smaller game that consisted of the main
game, players’ behavior would represent a Nash equilibrium of that smaller game. We won solve the problem of ruling
out finite-time blowup of the Hamilton-Jacobi equation and appointing existence and uniqueness of subgame perfect
equilibria. But the analyses support the guess that the strategies calculated are the unique subgame perfect equilibria.The
equilibria can be calculated using the general methods of Isaacs.34 The kernel idea is to use a greedy algorithm, in any
step in the game, find the best investment strategy in social distancing that maximizes V S.

We need only study the reduced system

c∗k = arg max
ck

− k𝜎k(ck)(ΘA(t) + ΘI(t))(VSk (t)

+ (𝛾ck𝜎(ck) + (1 − 𝛾)𝜎(ck) + ck)
𝜎(ck)

) − ck. (12)

As a result, the best investment in social distancing is as follows:

⎧⎪⎪⎨⎪⎪⎩

c∗k = 0 ∶ −k(ΘA(t) + ΘI(t))(𝜎′
k(0)VSk (t)

+𝛾𝜎k(0) + 𝜎′
k(0) + 𝛾𝜎′

k(0) + 1) ≤ 1
−k(ΘA(t) + ΘI(t))(𝜎′

k(c
∗
k)VSk (t) + 𝛾𝜎k(c

∗
k)

+𝜎′
k(c

∗
k) + 𝛾𝜎′

k(c
∗
k) + 1) = 1 ∶ o.w

(13)

c∗k =

⎧⎪⎪⎨⎪⎪⎩

0 ∶ −k(ΘA(t) + ΘI(t))(𝜎′
k(0)VSk (t)

+𝛾𝜎k(0) + 𝜎′
k(0) + 𝛾𝜎′

k(0) + 1) ≤ 1√
k(ΘA (t)+ΘI (t))(mkVSk

(t)+mk (1−𝛾)+𝛾)

1+k(ΘA(t)+ΘI (t))
−1

mk
∶ o.w

(14)

3.2 Differential game approach

We assume that we have n groups and we want to consider a model which makes a game between groups. We find what the
best aggregate investment of the group k with respect to the aggregate investments of other groups is. More precisely, we
find the best aggregate investment of each group with respect to the aggregate investments of other groups. The dynamics
of this network model for an epidemic with respect to relative risk is as follows:

dSk(t)
dt

= −𝜎−k(c−k)𝜎k(ck)kSk(t)ΘA(t)

− 𝜎−k(c−k)𝜎k(ck)kSk(t)ΘI(t)
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dEk(t)
dt

= 𝜎−k(c−k)𝜎k(ck)kSk(t)ΘA(t)

+ 𝜎−k(c−k)𝜎k(ck)kSk(t)ΘI(t) − 𝜎−k(c−k)𝜎k(ck)Ek(t)
dAk(t)

dt
= 𝛾𝜎−k(c−k)𝜎k(ck)Ek(t) − Ak(t)

dIk(t)
dt

= (1 − 𝛾)𝜎−k(c−k)𝜎k(ck)Ek(t) − Ik(t)

dRk(t)
dt

= Ak(t) + Ik(t), (15)

where

𝜎−k(c−k) =
1

1 +
n∑

i = 1
i ≠ k

mici

. (16)

The transmission rate matrix Q, is as follows:

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−𝜎−k(c−k)(𝜎k(ck)kΘA(t) + 𝜎k(ck)kΘI(t)) 0 0 0 0
𝜎−k(c−k)(𝜎k(ck)kΘA(t) + 𝜎k(ck)kΘI(t)) −𝜎−k(c−k)𝜎k(ck) 0 0 0

0 𝛾𝜎−k(c−k)𝜎k(ck) −1 0 0
0 (1 − 𝛾)𝜎−k(c−k)𝜎k(ck) 0 −1 0
0 0 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Now, given the adjoint equations evolving according to the Markov process, we have:

−V̇ = (QT − h)V − v,

where vk = (−ck,−ck,−ck,−1, 0). As a result,

−
dVSk (t)

dt
= (−𝜎−k(c−k)𝜎k(ck)kΘA(t) − 𝜎−k(c−k)𝜎k(ck)kΘI(t))VSk (t)

+(𝜎−k(c−k)𝜎k(ck)kΘA(t) + 𝜎−k(c−k)𝜎k(ck)kΘI(t))VEk (t) − ck

−
dVEk (t)

dt
= −𝜎−k(c−k)𝜎k(ck)VEk (t) + 𝛾𝜎−k(c−k)𝜎k(ck)VAk (t)

+(1 − 𝛾)𝜎−k(c−k)𝜎k(ck)VIk (t) − ck

−
dVAk (t)

dt
= −VAk (t) + VRk (t) − ck

−
dVIk (t)

dt
= −VIk (t) + VRk (t) − 1

−
dVRk (t)

dt
= 0. (17)

Let h= 0. By solving system (17) we have:

VEk (t) =
−(𝛾ck𝜎−k(c−k)𝜎k(ck) + (1 − 𝛾)𝜎−k(c−k)𝜎k(ck) + ck)

𝜎−k(c−k)𝜎k(ck)
,

VAk (t) = −ck,VIk (t) = −1,VRk (t) = 0, (18)
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then

−
dVSk (t)

dt
= −k𝜎k(ck)𝜎−k(c−k)(ΘA(t) + ΘI(t))(VSk (t)

+ (𝛾ck𝜎−k(c−k)𝜎k(ck) + (1 − 𝛾)𝜎−k(c−k)𝜎k(ck) + ck)
𝜎−k(c−k)𝜎k(ck)

) − ck. (19)

Now, we have reduced following system:

−
dVSk (t)

dt
= −k𝜎k(ck)𝜎−k(c−k)(ΘA(t) + ΘI(t))(VSk (t)

+(𝛾ck𝜎−k(c−k)𝜎k(ck) + (1 − 𝛾)𝜎−k(c−k)𝜎(ck) + ck)
𝜎−k(c−k)𝜎(ck)

) − ck

dSk(t)
dt

= −𝜎−k(c−k)𝜎k(ck)kSk(t)ΘA(t) − 𝜎k(ck)kSk(t)ΘI(t)

dEk(t)
dt

= 𝜎−k(c−k)𝜎k(ck)kSk(t)ΘA(t) + 𝜎−k(c−k)𝜎k(ck)kSk(t)ΘI(t)

−𝜎−k(c−k)𝜎k(ck)Ek(t)
dAk(t)

dt
= 𝛾𝜎−k(c−k)𝜎k(ck)Ek(t) − Ak(t)

dIk(t)
dt

= (1 − 𝛾)𝜎−k(c−k)𝜎k(ck)Ek(t) − Ik(t). (20)

Sk(0) = Sk0 , Ik(0) = Ik0 , Ak(0) = Ak(0),Ek(0) = Rk(0) = 0, VS(tf ) = 0

Most of the equilibria we calculate are obtained numerically. First, I(t)= I0e−t, A(t)=A0e−t. Now according to the
maximum principle, we have:

c∗k = arg max
ck

− k𝜎−k(c−k)𝜎k(ck)(ΘA(t) + ΘI(t))(VSk (t)

+(𝛾ck𝜎−k(c−k)𝜎k(ck) + (1 − 𝛾)𝜎−k(c−k)𝜎k(ck) + ck)
𝜎−k(c−k)𝜎(ck)

) − ck. (21)

As a result, the best investment in social distancing is as follows:

⎧⎪⎪⎨⎪⎪⎩

c∗k = 0 ∶ −k(ΘA(t) + ΘI(t))(𝜎−k(c−k)𝜎′
k(0)VSk (t) + 𝛾𝜎−k(c−k)𝜎k(0)

+𝜎−k(c−k)𝜎′
k(0) + 𝛾𝜎−k(c−k)𝜎′

k(0) + 1) ≤ 1
−k(ΘA(t) + ΘI(t))(𝜎−k(c−k)𝜎′

k(0)VSk (t) + 𝛾𝜎−k(c−k)𝜎k(0)
+𝜎−k(c−k)𝜎′

k(0) + 𝛾𝜎−k(c−k)𝜎′
k(0) + 1) = 1 ∶ o.w

(22)

c∗k =

⎧⎪⎪⎨⎪⎪⎩

0 ∶ −k(ΘA(t) + ΘI(t))(𝜎−k(c−k)𝜎′
k(0)VSk (t) + 𝛾𝜎−k(c−k)𝜎k(0)

+𝜎−k(c−k)𝜎′
k(0) + 𝛾𝜎−k(c−k)𝜎′

k(0) + 1) ≤ 1√
k𝜎−k (c−k )(Θ

A (t)+ΘI (t))(mkVSk
(t)+mk (1−𝛾)+𝛾)

1+k(ΘA (t)+ΘI (t))
−1

mk
∶ o.w

4 STABILITY ANALYSIS IN SEAIR MODEL

We consider SEAIR epidemic model and apply the stability analysis theory. In order to know behavior of the system (9)
that is in optimal control, we set in the form of

f1(VSk ,VEk ,VAk ,VIk ,VRk ) = −𝜎k(ck)kΘA(t) − 𝜎k(ck)kΘI(t))VSk (t)
+(𝜎k(ck)kΘA(t) + 𝜎k(ck)kΘI(t))VEk (t) − ck

f2(VSk ,VEk ,VAk ,VIk ,VRk ) = −𝜎k(ck)VEk (t) + 𝛾𝜎k(ck)VAk (t)
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+(1 − 𝛾)𝜎k(ck)VIk (t) − ck

f3(VSk ,VEk ,VAk ,VIk ,VRk ) = −VAk (t) + VRk (t) − ck

f4(VSk ,VEk ,VAk ,VIk ,VRk ) = −VIk (t) + VRk (t) − 1
f5(VSk ,VEk ,VAk ,VIk ,VRk ) = 0.

To investigate the stability, we consider the Jacobian matrix 𝜕(f1,f2,f3,f4,f5)
𝜕(V

Sk
,VEk

,VAk
,VIk

,VRk
)

as follows (let, p = 𝜎k(ck)k(ΘA(t) + ΘI(t))):

𝜕(f1, f2, f3, f4, f5)
𝜕(VSk

,VEk
,VAk

,VIk
,VRk

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−p p 0 0 0
0 −𝜎k(ck) 𝛾𝜎k(ck) (1 − 𝛾)𝜎k(ck) 0
0 0 −1 0 1
0 0 0 −1 1
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The characteristic equation is,

𝜆5 + 𝛼1𝜆
4 + 𝛼2𝜆

3 + 𝛼3𝜆
2 + 𝛼4𝜆 = 0,

where,

𝛼1 = p + 𝜎k(ck) + 2
𝛼2 = p𝜎k(ck) + 2p + 2𝜎k(ck) + 1
𝛼3 = 2p𝜎k(ck) + p + 𝜎k(ck)
𝛼4 = p𝜎k(ck).

For the asymptotic stability we use Samuelson conditions35 and since for different groups the conditions are satisfied, by
Samuelson conditions the system (9) in optimal control approach is asymptotically stable.

Now, we investigate the stability in differential game approach and consider the system (17) and have

g1(VSk ,VEk ,VAk ,VIk ,VRk ) = −𝜎−k(c−k)𝜎k(ck)k(ΘA(t) + ΘI(t)))VSk (t)
+𝜎−k(c−k)𝜎k(ck)k(ΘA(t) + ΘI(t)))VEk (t) − ck

g2(VSk ,VEk ,VAk ,VIk ,VRk ) = −𝜎−k(c−k)𝜎k(ck)VEk (t) + 𝛾𝜎−k(c−k)𝜎k(ck)VAk (t)
+(1 − 𝛾)𝜎−k(c−k)𝜎k(ck)VIk (t) − ck

g3(VSk ,VEk ,VAk ,VIk ,VRk ) = −VAk (t) + VRk (t) − ck

g4(VSk ,VEk ,VAk ,VIk ,VRk ) = −VIk (t) + VRk (t) − 1
g5(VSk ,VEk ,VAk ,VIk ,VRk ) = 0.

The Jacobian matrix is as follows: (let, q = 𝜎−k(c−k)𝜎k(ck)k(ΘA(t) + ΘI(t)))

𝜕(g1, g2, g3, g4, g5)
𝜕(VSk

,VEk
,VAk

,VIk
,VRk

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−q q 0 0 0
0 −𝜎−k(c−k)𝜎k(ck) 𝛾𝜎−k(c−k)𝜎k(ck) (1 − 𝛾)𝜎−k(c−k)𝜎k(ck) 0
0 0 −1 0 1
0 0 0 −1 1
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,
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thus, the characteristic equation is,

𝜆5 + 𝛽1𝜆
4 + 𝛽2𝜆

3 + 𝛽3𝜆
2 + 𝛽4𝜆 = 0,

where,

𝛽1 = q + 𝜎−k(c−k)𝜎k(ck) + 2
𝛽2 = q𝜎−k(c−k)𝜎k(ck) + 2q + 2𝜎−k(c−k)𝜎k(ck) + 1
𝛽3 = 2q𝜎−k(c−k)𝜎k(ck) + q + 𝜎−k(c−k)𝜎k(ck)
𝛽4 = q𝜎−k(c−k)𝜎k(ck),

since for different groups the conditions are satisfied, by Samuelson conditions35 the system (17) in differential game is
asymptotically stable.

5 RESULTS AND DISCUSSION

In the lack of vaccine (for the real-world example see coronaviruses epidemic and the current pandemic of covid-19)
it makes sense that social distancing considers in mathematical simulations. More specifically, the SEAIR model is
used on simulation network and the optimal control approach is used to determine the best investment in each
group regardless of other groups. The differential game approach shows a Nash equilibrium of any subgame of
the primary game. The average investment in social distancing will decrease when the investments that are calcu-
lated on average will have fewer values, it will occur when much more people want to make the investment. As a
result, if the number of susceptible individuals that they distance in the network increases, their average investment
reduce.

According to Figure 1, the results have shown that by increasing the aggregate investment in social distancing, the
relative risk decreases. These investments are made by individuals who are susceptible, so there should be an incentive for
these individuals to make these investments. Also, this figure shows by increasing the number of susceptible individuals
that they are distancing (m), the relative risk decreases. So these individuals want to know what the best investment is
that they not to get infected. The two approaches are considered here. In the first approach, which is the optimal control
approach, the aggregate investment of each group is obtained regardless of the investment of other groups. In the second
approach, which is the game theory approach, the investment of each group in social distancing is obtained with respect
to the investment of other groups. Figures 2 and 3 show that social distancing reduces the peak and prolongs the epidemic
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F I G U R E 2 The graphs are related to the states of the system with and without social distancing with optimal control approach,
S0 = 100, m= 60. It is understood that social distancing reduces the peak and prolongs the epidemic by comparing two graphs [Colour figure
can be viewed at wileyonlinelibrary.com]
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F I G U R E 3 The graphs are related to the states of the system with and without social distancing with differential game approach,
S0 = 100, m= 60. It is understood that social distancing reduces the peak and prolongs the epidemic by comparing two graphs [Colour figure
can be viewed at wileyonlinelibrary.com]
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F I G U R E 4 The graphs are related to the best investment for different groups with optimal control approach. According to the graphs,
by increasing the maximum efficiency m, the best investment is decreased [Colour figure can be viewed at wileyonlinelibrary.com]

by comparing two graphs. According to analyses done in the above figures, it can be seen by increasing the number of
contacts, the aggregate investment in social distancing increases. These analyses also show that the maximum efficiency
of social distancing (m) plays an important role in the best investment. In Figures 4 and 5 observe that as m increases,
the investment in social distancing decreases. If the number of infected individuals increases then the best investment,
in both approaches is increased too (see Figures 6 and 7). Figures 8 and 9shows that with going on the duration of the
epidemic, the optimal investment is reduced. A remarkable point which is seen in above figures is that with regard to
the two approaches, the aggregate optimal investments for each group in the second approach are less than the aggregate
optimal investments for each group in the first approach. This shows if we want to reduce the investment for each group,
we should use the differential game theory approach and divide the individuals into separate groups according to their
contacts together and then for each group obtain the best aggregate investment with respect to the aggregate investments
for other groups.

http://wileyonlinelibrary.com
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F I G U R E 5 The graphs are related to the best
investment with differential game approach for different
groups. m=m1 =m2 = … =m1000 = 60. If the number of
infected individuals increases then the best investment is
increased too [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 6 The graphs are related to the best investment in term of time with optimal control approach. The results show that by
spending time, the best investment is decreased. The left graph is depicted for different the maximum efficiencies of social distancing. k= 20.
The best investment in social distancing is decreased by increasing the maximum efficiencies of social distancing (m). The right graph is
depicted for different (m= 60). By increasing the number of contacts, the best investment in social distancing is increased [Colour figure can
be viewed at wileyonlinelibrary.com]

Epidemic cost and saving in cost per person with both optimal control approach and differential game approach
are shown in Figures 10 and 11. The results show that by increasing the basic reproduction number, epidemic cost per
person increases. The results show that social distancing is most beneficial on the network with low contacts. If vacci-
nation and other measures are not available then optimal social distancing never recovers more than 14% of the cost of
infection.

In this study, it has been shown that if we deal with a human network and want to control or stop the epidemic,
we should impulse individuals to distance. That is, we should motivate individuals in the network to participate in this
investment. Two key parameters are considered in this study: the maximum efficiency of social distancing and basic
reproduction number. The maximum efficiency of social distancing is the maximum number of susceptible individuals
who separate themselves from the population before the cost of social distancing increases from the cost of the disease.
By increasing this maximum efficiency, the epidemic cost is reduced. That means that if more individuals are more likely
to participate in the distancing, the cost of the epidemic is reduced. Another key parameter is the basic reproduction
number. Increasing the basic reproduction number increases the cost of an epidemic. The suggestion in this study is to
motivate individuals in the network to participate in distancing. It is shown that the basic reproduction number varies in

http://wileyonlinelibrary.com
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F I G U R E 7 The graphs are related to the best investment with optimal control approach for different groups.
m=m1 =m2 = … =m1000 = 60. If the number of infected individuals increases then the best investment is increased too [Colour figure can
be viewed at wileyonlinelibrary.com]
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F I G U R E 8 The graphs are related to the best
investment with differential game approach for different
groups. By increasing the number of infected
individuals, the best investment is increased too [Colour
figure can be viewed at wileyonlinelibrary.com]

different groups. This means that social distancing are more beneficial when the basic reproduction number tends to a
specific number that must be calculated for each group. In an optimal control approach, for example, for a group with five
contacts, social distancing is more beneficial for a basic reproduction number about three. According to this approach,
for a group with the number of fourteen contacts, this number is about two. Moreover, in differential game approach, for
example, for a group with a contact number of five, social distancing is more useful for basic reproduction number about
five, while for a group with the number of fourteen contacts, this number is about six. The results show that for each
individual, the best investment strategy in social distancing and epidemic cost in the differential game approach are less
than the optimal control approach.
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F I G U R E 9 The graphs are related to the best investment in term of time with differential game approach. The results show that by
spending time, the best investment is decreased. The left graph is depicted for different the maximum efficiencies of social distancing. k= 20.
By increasing m, the best investment in social distancing is decreased. The right graph is depicted for different groups, m= 60. By increasing
the number of contacts, the best investment in social distancing is increased [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 10 The graphs are related to epidemic cost per person and saving in cost per person with an optimal control approach. By
increasing the number of contacts, epidemic cost per person is increased. The results show that for the number of low contacts, there is a
peak point in the graph (k= 1,2,… ,10). But the graph is strictly decreasing for the number of more contacts (k= 11,12,… ). According to (b),
by increasing the number of contacts, saving in cost per person is decreased. These graphs are depicted for m= 100 [Colour figure can be
viewed at wileyonlinelibrary.com]
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F I G U R E 11 The graphs are related to epidemic cost per person and saving in cost per person with a differential game approach. By
increasing the number of contacts, epidemic cost per person is increased. The results show that for the number of low contacts, there is a
peak point in the graph (k= 1, 2,… ,35). But the graph is strictly decreasing for the number of more contacts (k= 35, 36,… ). According to (b),
by increasing the number of contacts, saving in cost per person is decreased. These graphs are depicted for m= 100 [Colour figure can be
viewed at wileyonlinelibrary.com]
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