Table 8.
10-fold cross validation accuracies (in %) for the classification of VALENCE using a multichannel DNN on the DEAP dataset. refers to fold number i. The best performance for each fold is highlighted in bold.
| Approach | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | Average |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Bi-modal AE [7] | - | - | - | - | - | - | - | - | - | - | 85.20 |
| TTO | 87.67 | 87.03 | 87.85 | 86.93 | 87.26 | 87.44 | 88.03 | 87.08 | 87.75 | 87.25 | 87.43 |
| VAE-transfer | 85.17 | 84.86 | 83.92 | 85.48 | 84.75 | 84.06 | 84.23 | 85.42 | 84.90 | 84.69 | 84.75 |
| CNN-transfer | 90.89 | 91.12 | 90.22 | 90.39 | 90.51 | 90.27 | 90.71 | 90.39 | 91.08 | 90.84 | 90.64 |