Skip to main content
. 2020 Aug 4;8(8):e15932. doi: 10.2196/15932

Table 3.

Overall predictive performance for each machine learning algorithm with imbalance adjustment in the development and validation cohorts.

Matching ratio and model

Development cohort Validation cohort
AUROCa
(95% CI)
AUPRCb
(95% CI)
ICIc Calibration slope
(95% CI)
AUROC
(95% CI)
AUPRC
(95% CI)
ICI Calibration slope
(95% CI)
0.5% (Real world)

MEWSd 0.77 (0.77-0.77) 0.09 (0.08-0.09) 0.013 3.69 (3.64-3.74) 0.80 (0.80-0.81) 0.11 (0.10-0.12) 0.016 4.19 (4.09-4.29)

LRe 0.82 (0.82-0.83) 0.08 (0.08-0.09) 0.003 1.09 (1.08-1.10) 0.82 (0.81-0.83) 0.09 (0.09-0.10) 0.004 1.12 (1.09-1.15)

RNNf 0.96 (0.96-0.97) 0.47 (0.46-0.48) 0.002 1.13 (1.12-1.15) 0.91 (0.90-0.91) 0.17 (0.16-0.18) 0.006 0.70 (0.69-0.72)

RFg 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0.007 6.71 (6.18-7.24) 0.94 (0.94-0.95) 0.37 (0.35-0.39) 0.003 1.09 (1.06-1.13)
1%

MEWS 0.76 (0.76-0.77) 0.12 (0.12-0.12) 0.022 3.46 (3.41-3.51) 0.79 (0.79-0.80) 0.16 (0.15-0.17) 0.025 4.09 (3.97-4.20)

LR 0.88 (0.88-0.89) 0.26 (0.25-0.26) 0.008 1.07 (1.06-1.09) 0.88 (0.87-0.88) 0.28 (0.27-0.30) 0.007 1.09 (1.06-1.12)

RNN 0.96 (0.96-0.96) 0.52 (0.51-0.53) 0.003 1.03 (1.01-1.04) 0.91 (0.91-0.92) 0.33 (0.32-0.35) 0.010 0.79 (0.78-0.81)

RF 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0.010 7.51 (6.86-8.15) 0.94 (0.93-0.94) 0.47 (0.45-0.49) 0.003 1.14 (1.11-1.18)
5%

MEWS 0.73 (0.72-0.73) 0.25 (0.25-0.26) 0.052 3.08 (3.01-3.14) 0.77 (0.77-0.78) 0.35 (0.34-0.37) 0.066 4.22 (4.08-4.37)

LR 0.91 (0.90-0.91) 0.59 (0.58-0.60) 0.034 1.00 (0.99-1.02) 0.90 (0.89-0.90) 0.61 (0.60-0.63) 0.028 1.02 (0.99-1.04)

RNN 0.97 (0.97-0.97) 0.79 (0.79-0.80) 0.003 1.04 (1.02-1.06) 0.94 (0.93-0.94) 0.68 (0.66-0.69) 0.015 0.82 (0.80-0.84)

RF 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0.025 9.88 (8.54-11.22) 0.96 (0.96-0.96) 0.78 (0.76-0.79) 0.012 1.21 (1.17-1.25)
10%

MEWS 0.70 (0.70-0.71) 0.29 (0.29-0.30) 0.018 1.14 (1.11-1.17) 0.76 (0.75-0.77) 0.42 (0.41-0.44) 0.043 1.68 (1.62-1.75)

LR 0.93 (0.92-0.93) 0.71 (0.70-0.71) 0.043 1.00 (0.99-1.01) 0.92 (0.91-0.92) 0.72 (0.71-0.74) 0.039 0.98 (0.95-1.01)

RNN 0.98 (0.97-0.98) 0.87 (0.87-0.88) 0.002 1.02 (1.00-1.04) 0.95 (0.95-0.96) 0.82 (0.81-0.83) 0.015 0.81 (0.79-0.84)

RF 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0.025 10.19 (8.73-11.65) 0.97 (0.97-0.97) 0.86 (0.84-0.87) 0.014 1.14 (1.09-1.18)

aAUROC: area under the receiver operating characteristic curve.

bAUPRC: area under the precision recall curve.

cICI: integrated calibration index.

dMEWS: modified early warning score.

eLR: logistic regression.

fRNN: recurrent neural network.

gRF: random forest.