Skip to main content
. 2020 Aug 4;8(8):e15932. doi: 10.2196/15932

Table 4.

Class prediction performance of each machine learning algorithm with imbalance adjustment in the validation cohort.

Matching ratio and model BAa (95% CI) Sensitivity (95% CI) Specificity (95% CI) F1 score PLRb (95% CI) NLRc (95% CI)
0.5% (Real world)

MEWSd 0.75 (0.74-0.76) 0.72 (0.70-0.73) 0.78 (0.78-0.79) 0.096 3.31 (3.24-3.38) 0.36 (0.34-0.38)

LRe 0.76 (0.76-0.77) 0.75 (0.75-0.78) 0.76 (0.76-0.76) 0.093 3.21 (3.15-3.27) 0.31 (0.29-0.33)

RNNf 0.84 (0.84-0.85) 0.85 (0.84-0.86) 0.84 (0.83-0.84) 0.143 5.17 (5.09-5.26) 0.18 (0.17-0.19)

RFg 0.88 (0.88-0.89) 0.88 (0.87-0.89) 0.89 (0.88-0.89) 0.198 7.72 (7.61-7.85) 0.13 (0.12-0.14)
1%

MEWS 0.74 (0.73-0.74) 0.72 (0.70-0.73) 0.76 (0.76-0.76) 0.148 2.97 (2.90-3.03) 0.37 (0.36-0.39)

LR 0.81 (0.80-0.81) 0.78 (0.76-0.79) 0.84 (0.84-0.84) 0.218 4.77 (4.67-4.88) 0.27 (0.25-0.28)

RNN 0.84 (0.83-0.85) 0.87 (0.85-0.88) 0.81 (0.81-0.82) 0.218 4.67 (4.59-4.76) 0.17 (0.15-0.18)

RF 0.88 (0.87-0.88) 0.90 (0.89-0.91) 0.86 (0.86-0.86) 0.278 6.49 (6.38-6.60) 0.12 (0.11-0.13)
5%

MEWS 0.72 (0.71-0.73) 0.72 (0.70-0.73) 0.72 (0.72-0.73) 0.348 2.57 (2.50-2.63) 0.39 (0.37-0.41)

LR 0.85 (0.84-0.85) 0.83 (0.82-0.84) 0.87 (0.86-0.87) 0.555 6.15 (5.97-6.34) 0.20 (0.18-0.21)

RNN 0.87 (0.87-0.88) 0.89 (0.88-0.90) 0.85 (0.85-0.85) 0.562 5.96 (5.80-6.15) 0.12 (0.11-0.14)

RF 0.90 (0.90-0.91) 0.92 (0.91-0.93) 0.89 (0.88-0.89) 0.639 8.23 (7.97-8.49) 0.09 (0.08-0.10)
10%

MEWS 0.70 (0.69-0.71) 0.72 (0.70-0.73) 0.69 (0.68-0.69) 0.419 2.29 (2.23-2.35) 0.41 (0.39-0.43)

LR 0.87 (0.86-0.87) 0.86 (0.85-0.87) 0.87 (0.87-0.88) 0.675 6.80 (6.54-7.07) 0.16 (0.15-0.17)

RNN 0.89 (0.89-0.90) 0.93 (0.92-0.94) 0.85 (0.85-0.86) 0.681 6.32 (6.11-6.54) 0.08 (0.07-0.09)

RF 0.92 (0.92-0.92) 0.94 (0.94-0.95) 0.90 (0.89-0.90) 0.756 9.31 (8.95-9.69) 0.06 (0.06-0.07)

aBA: balanced accuracy.

bPLR: positive likelihood ratio.

cNLR: negative likelihood ratio.

dMEWS: modified early warning score.

eLR: logistic regression.

fRNN: recurrent neural network.

gRF: random forest.