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Abstract: The use of graphene and its derivatives with excellent characteristics such as good electrical
and mechanical properties and large specific surface area has gained the attention of researchers.
Recently, novel nanocomposite materials based on graphene and conducting polymers including
polyaniline (PANi), polypyrrole (PPy), poly (3,4 ethyldioxythiophene) (PEDOT), polythiophene (PTh),
and their derivatives have been widely used as active materials in gas sensing due to their unique
electrical conductivity, redox property, and good operation at room temperature. Mixing these two
materials exhibited better sensing performance compared to pure graphene and conductive polymers.
This may be attributed to the large specific surface area of the nanocomposites, and also the synergistic
effect between graphene and conducting polymers. A variety of graphene and conducting polymer
nanocomposite preparation methods such as in situ polymerization, electropolymerization, solution
mixing, self-assembly approach, etc. have been reported and utilization of these nanocomposites as
sensing materials has been proven effective in improving the performance of gas sensors. Review
of the recent research efforts and developments in the fabrication and application of graphene and
conducting polymer nanocomposites for gas sensing is the aim of this review paper.

Keywords: graphene; conductive polymer; sensing material; resistive gas sensors

1. Introduction

Graphene possesses unique properties including a high specific surface area (2630 m2g−1) and
excellent electron mobility, and the atoms of a single-layer graphene sheet can adsorb gas molecules
and provide the largest sensing area per unit volume, which makes it suitable as an active material for
gas-sensing applications [1–3]. The interaction between graphene sheets can be variable from weak
van der Waals interactions to strong covalent bonding [4]. These different interactions disturb the
electronic balance of graphene, which can be readily monitored by convenient electronic techniques.
Graphene indicates excellent high carrier mobility at room temperature due to the charge carriers of
graphene having zero rest mass near its Dirac point [5].

Graphene is a p-type semiconductor that contains a larger hole to electron ratio concentration and
has to pull an electron effect in a gas atmosphere [6]. When graphene absorbs the gas molecules, weak
hybridization and coupling interactions generate between the graphene surface electron and the gas
molecules, and they can only move up and down in small increments of the Fermi level. The Fermi
level and consequently graphene conductivity will be changed by electron or hole doping. The relative
position of the electron in orbit identifies the donor and the acceptor molecule. Gas molecules act as an
electron donor when the Fermi in graphene is at a lower level than the valence band of adsorbed gas,
and also when the Fermi in graphene is at a higher level, the gas molecules act as an acceptor [7–9]. All
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these are unique and attractive features of graphene, making it an ideal candidate for gas detection [10].
Therefore, great efforts have been put into the research and development of gas-sensing devices based
on graphene and its derivatives. Nevertheless, sensors based on pure graphene sensors have some
drawbacks because dangling bonds on their surface are too few to restrict the chemisorption of target
molecules on the graphene surface [11]. Graphene tends to stack and self-aggregate because of the
existence of strong π–π* interactions, van der Waals forces, and high surface energy, which leads
to limited gas-sensing performance [12]. Incorporation of other nanomaterials including metal or
metal oxide nanostructures and conducting polymers into graphene sheets prevents graphene from
becoming agglomerated and, besides, cause a good distribution of nanostructures [13]. Because of
low cost, simplicity, being compatible with modern electronic devices and their high sensitivity, metal
oxide semiconductors have attracted a lot of attention. However, gas sensors based on metal oxide
semiconductors generally have the disadvantage of poor selectivity between gases and also working at
a high temperature which results in high consumption energy [14].

Conducting polymers, including polypyrrole (PPy), polyaniline (PANi), polythiophene (PTh), and
so on, have been used as the sensing materials of gas sensors. Conducting polymer-based gas sensors
are more sensitive, with a shorter response time at room temperature, that tune both chemical and
physical properties by using different substituents in comparison with most commercially available
metal oxide (MO)-based gas sensors. Another advantage of conducting polymers is their synthesizing
procedure is facilitated through chemical or electrochemical processes. Also, copolymerization or
structural derivations can modify their polymer molecular chain structure [15].

In recent years, the development of novel polymer nanocomposites has attracted significant
worldwide research interest. The advantage of polymer-nanocomposite includes the value-added
properties of the pure polymers without affecting their processability, inherent mechanical properties,
and lightweight [16–18]. While both graphene and conducting polymers present some unique
and exciting capabilities in the detection of a variety of gases, some researchers came up with the
idea of mixing these materials to fabricate a graphene/conducting polymer composite with better
sensing characterizations [19–21]. Several methods such as chemical, electrochemical, and physical
techniques have been used to synthesize conducting polymers and graphene composites for fabricating
chemiresistive gas sensors. The most widely used chemical technique for the synthesis of conducting
polymers and graphene composites is in situ polymerization in a solution containing monomer and
graphene [22].

Nowadays, many studies investigated the performance of gas sensor-based graphene and its
composites with metal oxides and polymers [19,23–27]. Several review papers on graphene and
graphene/conducting polymer nanocomposites-based gas sensors are available in the literature. A list
of these review papers is given in Table 1.

A critical review of the published papers indicates that there is a gap in our knowledge about the
comparison in preparation and sensing performance of graphene and different conducting polymers
in the application of chemiresistive sensors for detecting various target gases. This article focuses on
recent research efforts, developments, and approaches for the preparation of graphene and conducting
polymer nanocomposites. The fabrication of chemiresistive gas sensors with graphene and conducting
polymer nanocomposites is described along with a discussion of sensing performances.
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Table 1. List of review papers on graphene and graphene/conducting polymer nanocomposites-based
gas sensors.

Year of Publication Title of Paper Main Emphasis References

2019
Review—Conducting Polymers as

Chemiresistive Gas Sensing Materials: A
Review

Conducting polymers [28]

2018

A review on chemiresistive room
temperature gas sensors based on metal
oxide nanostructures, graphene and 2D

transition metal dichalcogenides.

2D transition metal dichalcogenides,
metal oxide nanomaterials, and graphene [24]

2018 Research progress of gas sensor based on
graphene and its derivatives: a review. Graphene and its derivatives [25]

2018 Graphene and its sensor-based
applications: A review.

Graphene and its application in 3
different sensor applications such as
electrochemical, strain and electrical

sensors

[26]

2017 Chemo-electrical gas sensors based on
conducting polymer hybrids.

Conducting polymers and conducting
polymer hybrids for chemo-electrical gas

sensors
[21]

2016
A review on graphene-based gas/vapor

sensors with unique properties and
potential applications.

Graphene [23]

2015 Graphene–metal oxide nanohybrids for
toxic gas sensor: A review. Graphene and metal oxide hybrids [27]

2015 Graphene-based hybrids for
chemiresistive gas sensors Graphene and graphene-based hybrids [11]

2015 Elaborate chemical sensors based on
graphene/conducting polymer hybrids.

Graphene and conducting polymer
hybrids for chemical sensors [29]

2014
Conducting polymer composites with

graphene for use in chemical sensors and
biosensors.

Chemical sensors and biosensors [19]

2. Chemiresistive Gas Sensors

Sensors with accurate sensing performance have attracted much attention to monitoring and
controlling emissions from various emitters [30]. Gas sensors consist of sensing material and are
devices that can detect combustible, toxic gases, and oxygen depletion [3,31–34]. According to various
kinds of reaction with external atmospheres, gas sensors can be classified into chemiresistors [35,36],
silicon-based field-effect transistors (FET) [37], micro-electro-mechanical systems (MEMS) [38], surface
work function (SWF) change transistors [39], surface acoustic wave (SAW) change transistors [2],
and quartz crystal microbalance (QCM) sensors [2]. Among these options, resistive sensors are the
most popular gas sensors due to their cheap fabrication process, smooth operation, and possible
miniaturization [24]. A chemiresistive gas sensor measures the resistance changes of the sensing
materials under target gas exposure. The schematic illustration of chemiresistive gas sensor is shown
in Figure 1. Certain kinds of conducting materials experience a change in their electrical resistance in
response to an interaction with gases and vapors [40]. Chemiresistive sensors can be utilized in several
applications such as air-quality monitoring, medical diagnostics, detection of toxic and flammable
gases, and food processing due to their excellent sensitivity, low cost, simplicity, and compatibility with
modern electronic devices [41,42]. Since the discovery of chemiresistive-type sensors, metal oxide has
always been used as sensing materials because of their benefits such as low cost and easy fabrication.
Typical metal oxide semiconductors (MOS) that are widely used to detect harmful and toxic gases,
include TiO2, Fe2O3, ZnO, SnO2, and WO3. MOS materials possess good sensing properties, but
require high operating temperatures [24]. Theoretical and experimental results showed that graphene
and its derivatives indicated a high specific surface area and good electron mobility [43]. On the
other hand, conducting polymers have been used as the active layer of gas sensors since the early
1980s [44]. The sensors based on conductive polymers have many improved properties such as high
sensitivities and short response time at room temperature, compare to the sensors made of metal
oxides. According to different studies, the use of graphene and conducting polymer composites can
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improve the selectivity and other important sensing parameters of chemiresistive sensors which might
be attributed to several factors such as synergistic and geometrical effects [23,43,45,46].

Figure 1. Schematic of electrodes and sensor devices (adapted from references [47,48]).

2.1. The Detection Mechanism of Chemiresistive Sensors

To enhance the sensitivity and selectivity of a resistive gas sensor, it is essential to understand the
sensing mechanism. It is well known that the conductance of n-type semiconductors increases with a
reducing analyte and decreases with an oxidizing one [49]. The opposite effects are observed with a
p-type semiconductor with holes being the majority charge carriers. The typical sensing mechanism of
the p-type semiconducting sensor is shown in Figure 2. The conductivity increases in the presence of
an oxidizing gas as the number of holes increases and decreases when a reducing gas is introduced as
the hole charge carrier concentration decreases [50].



Materials 2020, 13, 3311 5 of 24

Figure 2. Interaction between (a) oxygen and sensing material; and (b) interaction between NH3 and
sensing material (adapted from reference [51]).

2.2. Gas-Sensing Performance Parameters

The sensing performance parameters of the gas sensor include response, sensitivity, selectivity,
stability, repeatability, response and recovery time, the limit of detection, and working temperature [52].
The response of the sensor towards reducing gases is defined as the ratio of the resistance when
exposed to the background and target gas environments. On the other hand, the response towards
oxidizing gases is defined as the ratio of the resistance when exposed to the target gas and background
environment. The response of the sensor is calculated by the following equations:

For reducing environments;
S = Ro/Rg (1)

For oxidizing environments;
S = Rg/Ro (2)

where, Ro and Rg are the resistances of the sensor in background gas and the presence of target gas,
respectively, and S is the response of the sensor. Based on the electrical response, different approaches
are used to determine the sensitivity of a gas sensor. Sensitivity is the change degree in response to a
certain concentration of target gas. The ability of a sensor to selectively respond is known as selectivity.
Selectivity refers to the characteristics that determine whether a sensor can respond selectively to an
analyte or a group of analytes. Repeatability is how much the gas sensor test results will be constant
when they are tested in the same environment continuously and whether it can affect the working life
of the sensor. Response time and recovery time are other important parameters for determining the
performance of a sensor towards a specific gas. The response time and recovery time are defined as
the time to reach 90% of the total change in resistance during exposure and removal of the target gas,
respectively. The lowest concentration of target gas that can be detected by the gas sensor is known as
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the limit of detection (LOD). The temperature that can give the gas sensors its highest sensitivity is
known as the working temperature [23,53–55].

2.3. Sensing Material

To detect the target gases, variety of materials such as conducting polymers [56,57], carbon
nanotubes [58] and MO, in varieties of forms (e.g., thick or thin films, nanorods, nanowires, etc. [59])
have been widely used. The most common gas sensors used in industries are MO semiconductor-based
sensors owing to their high sensitivity and fast response time [60,61]. Although MO semiconductor
gas sensors are highly sensitive, the poor selectivity, short lifetime, and high operating temperature
are the drawbacks of these sensors [62,63]. These drawbacks limit the application of MO as a sensing
layer in the gas sensors and bring other alternatives such as graphene and conducting polymers to the
center of the researchers’ attention [11,19,64].

Nowadays, graphene and its derivatives have received attention owing to their unique properties
such as good conductivity, large specific surface area, feasible adsorption of gas molecules, and their
potential to be modified by functional groups as a sensing material for gas sensor fabrication [43,65].
On the other hand, conducting polymers, including PPy, PANi, PTh, etc. which have high sensitivities,
short response time, and suitable mechanical properties have been used as the active layers of gas
sensors since the 1980s [66–69].

Several studies reported that graphene and conducting polymer composites indicated excellent
mechanical, thermal, gas barrier, electrical, and flame retardant properties in comparison with pure
conducting polymers [70–74].

3. Graphene/Conducting Polymer Nanocomposites for Chemiresistive Gas Sensor Application

Over the last few years research on incorporating graphene into polymer matrices to provide
novel nanocomposite materials with enhanced electrical, thermal, mechanical, electrical, and other
properties due to the large aspect and surface-to-volume ratios of the nanofiller has reseived extensive
attention [75–79]. Different techniques have been reported for the preparation of graphene-polymer
nanocomposites including in situ polymerizations [80–83], electro-polymerization [84], solution
mixing [85,86], self-assembly approaches [87,88], and so on [89].

The in situ polymerization involves chemical reactions. Normally in this technique, the nanofiller
mixes with monomers in a solvent. The use of monomers can help to adjust the interactions between
materials which makes possible intercalation and results in exfoliation and also compared to high
molecular weight polymers, monomers diffuse into the galleries of the silicate more efficiently [90,91].
Although in situ polymerization method has advantages in promoting effective dispersion of nanofillers
in polymer matrices, this technique has some disadvantages such as complex procedures and processing
steps and also requires expensive reactants [92]. On the other hand, it is only applicable for the limited
elastomers and thermally unstable polymers which are insoluble in the solvent. Another widely used
method to prepare graphene and conducting polymer composites is solution mixing due to it being
amenable to small sample sizes and possessing a low-viscosity condition for dispersing the nanofiller.
This technique is considered an effective means to prepare composites with uniformly dispersed
graphene or its derivatives. Despite the advantages of the solution mixing method, the removal of the
solvent which normally remains on the graphene after several washing and drying processes is a big
issue [93]. Electropolymerization is a novel and convenient method to fabricate graphene and polymer
composites. This kind of method has many advantages, such as being a short process, easier to control,
and eco-friendly [22]. The electrochemical polymerization method consists of a three-electrode system
including, the counter, reference, and working electrodes. During the polymerization process, an
anodic potential is applied to the monomer to oxidize onto the electrode. However, as fairly large
electrode potential is a necessity for the oxidation of aniline, the consumption of other substances is
restricted [94]. The self-assembly approach is one the most important techniques to fabricate materials
in nano, micro and macro scales and is an efficient way to control the composition of a composite. In
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this method, molecules are utilized for building complex molecular architecture under eco-friendly
conditions. However, the self-assembly approach also exhibits some drawbacks, such as the difficulty
in achieving high quantities of materials, the corresponding high costs, and in some cases, purification
limitations [95–97]. The advantages and disadvantages of each method are summarized in Table 2.

Table 2. Summary of different fabrication techniques.

Fabrication Methods Advantages Disadvantages

In situ polymerization Highly effective and a high level
dispersion

Needs highly cost reactants and
the processing steps are

complicated
Solution mixing Versatile and a good dispersion Solvent removal is a critical issue

Electro-polymerization Short process, easier to control,
and eco-friendly Available monomers are less

Self-assembly approach Efficient way to precisely control
the composition of a composite

High costs, purification
limitations, and difficult to achieve

a high quantity of materials

This section focuses on the synthesis of graphene and different conductive polymers (such as PPy,
PANi, PTh, poly (3,4 ethyldioxythiophene) (PEDOT), etc.) nanocomposites and their application for
gas sensing (Figure 3).

Figure 3. Schematic for preparing graphene/conductive polymers composites and their application for
gas sensing.

3.1. Graphene/Polyaniline (PANi) Nanocomposites

3.1.1. Preparation of Graphene/Polyaniline Nanocomposites

The most widely used methods to synthesize graphene and PANi nanocomposites for the
application of gas sensors are in situ chemical polymerization and solution mixing. In situ chemical
polymerization was reported as an efficient method to uniformly disperse graphene oxide (GO) with
a strong interaction between the GO and polymer matrix and [98]. Typically, the reduced graphene
oxide (rGO) aqueous solution was added in 1 mL of aniline in 50 mL of aqueous 1 M HCl solution
quickly. The anilinium cation grows on the surface of rGO and after that, the aniline monomers were
polymerized by the addition of ammonium peroxydisulfate (APS) [75,99–105].
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In situ chemical oxidative polymerization also was used for the preparation of graphene quantum
dots (GQDs)/PANi [106,107]. SnO2/rGO/PANi nanocomposite was synthesized by using the in situ
polymerization technique [108–110]. As seen in Figure 4, rGO and aniline were added into the mixture
of HCL and distilled water. PANi/rGO composite was formed when the color of the solution changed
from white to green. SnO2 powder and NaOH were added in the same solution and then stirred to
obtain the precipitate of SnO2/rGO/PANi composite [109].

Figure 4. The preparation process of in situ polymerized SnO2/polyaniline (PANi)/rGO nanocomposite
(adapted from reference [109]).

The S, N: GQDs were prepared by the hydrothermal method in the presence of citric acid and
thiourea. Ammonium persulfate (APS) was added to the mixture of aniline, 30 mL hydrochloric acid
(HCl) and then transferred to the suspension of citric acid and thiourea. In the last step, the powder of
S, N:GQDs/PANi hybrid was washed and dried in the oven. Figure 5a,b present scanning electron
microscopy (SEM) images of pure PANi and S, N: GQDs/PANi hybrid, respectively, and the images
illustrate the uniform nanofibrous structure. The SEM image of prepared S, N:GQDs/PANi hybrid
(Figure 5b), shows that the nanofibrous structure of PANi remained the same, and all the S, N: GQDs
were homogeneously surrounded by PANi [106].

Figure 5. (a) Scanning electron microscopy (SEM) images of (a) pure PANi, and (b) S, N: GQDs/PANi
hybrid sensing films (adapted from reference [106]).

Junfeng Tian, et al. synthesized TiO2/GO/PANi by using the in-situ polymerization of aniline
in the presence of TiO2/GO nanocomposite. Firstly, TiO2/GO composite was mixed with 50 mL of
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deionized water under stirring, and then aniline was added to the solution drop by drop in an ice
water bath to obtain a hybrid material consisting of bulk reduced TiO2/GO/PANi [111].

The most simple process method to prepare graphene and PANi nanocomposite is solution
mixing [89,112]. Normally in this technique, as-prepared graphene and PANi are mixed under
stirring [113]. To prepare graphene/PANi composite by solution mixing, PANi was treated with
ammonia (NH4OH) solution firstly and then dissolved in N-methyl-2-pyrrolidone (NMP) while stirring.
After that, graphene was added to the solution to make graphene-PANi nanocomposite [85,114].

3.1.2. The Sensing Performance of Gas Sensors Based on Graphene/PANi Nanocomposites

The NH3 sensor based on rGO–PANi hybrid, which was synthesized using a simple, chemical
oxidative polymerization method and coated on a flexible polyethylene terephthalate (PET) thin film
was reported by Shouli Bai [101]. The combination of the functionalized rGO with PANi developed
a new sensing material with high sensing characteristics compared to the constituent counterparts.
The sensor based on rGO–PANi hybrid indicated the highest response of 344.2 under 100 ppm NH3

exposure, good selectivity to some of the volatile organic compounds (VOCs) tested, and short response
time and recovery time which were 20 s and 27 s, respectively at room temperature. GO-rambutan like
PANi hollow nanosphere hybrid (GPA) for the detection of ammonia gas was prepared by the in situ
chemical oxidation polymerization method and assembled on PET substrates as flexible devices [115].
The sensor-based on GPA indicated a response value of around 31.8 toward 100 ppm NH3, response
and recovery time (102 s and 186 s, respectively) and low detection limit of 50 ppb.

Jaber Nasrollah Gavgani, et al. [106] and M. Hakimi, et al. [107] reported NH3 sensors based
on (S, N-doped GQDs)/PANi loading on PTE and N-doped GQDs/PANi hybrid assembled on two
different electrodes, silver (Ag) and aluminum (Al). The composite of S, N: GQDs and PANi lead
to significant improvement in the response (~42% and 385% under 100 ppm and 1000 ppm NH3

exposure, respectively), and response and recovery time (115 s and 44 s, respectively) at room
temperature [106]. The NH3 gas sensor based on N-GQDs/PANi with Ag contact illustrated the best
response of 110.92 compared to the sensor with an Al electrode (86.91) under 1500 ppm target gas at
room temperature [107].

The rGO@ SnO2/PANi composites were prepared by using the in situ chemical oxide
polymerization for detecting different gases such as NH3 [108], CH4 [110], and H2S [109] at room
temperature. The rGO@ SnO2/PANi composite film exhibited 160% response to 20 ppm NH3, 9.1%
toward 100 ppb H2S, and 26.1% to 100 ppm of CH4.

The Gr/PANi nanocomposites were prepared by solution mixing [114] and in situ
polymerization [104] for detecting toluene (C6H5–CH3) gas indicated the response of 11.6% and
90% toward 100 ppm and 5000 ppm C6H5–CH3 gas, respectively.

Table 3 critically investigates and lists the pieces of literature that have been studied the
graphene/PANi composites and their sensing performance under various target gases such as NH3,
CH4, C6H5–CH3, Benzene, and H2S. Among different NH3 gas sensors based on graphene and
PANi nanocomposites, rGO–PANI hybrids loaded on a flexible PET thin film indicated the highest
response of 344.2 to 100 ppm NH3 and the response time and recovery time were 20 s and 27 s,
respectively [101]. The selectivity data of the rGO-PANi hybrid under 100 ppm ethylbenzene, methanol,
formaldehyde, ethanol, and acetone exposure at room temperature are indicated in Figure 6 and it
shows the high-selectivity response to 100 ppm NH3. The enhancement of the sensing performance
of the sensor based on rGO-PANi hybrid under NH3 exposure might be related to the acid-base
deprotonation process of PANi nanoparticles, resulting in the selective response to NH3 gas.
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Table 3. Comparison of chemiresistive gas sensors performance based on graphene/PANi
nanocomposites.

Target Gas Sensing
Material Response LOD Response

Time
Recovery

Time
Nanocomposite

Preparation Method Ref

NH3

CRG/PANi 37.1%
(50 ppm) - 18 min -

In-situ
polymerization

[99]

RGO–PANi 59.2%
(50 ppm) - 18 min 4 min [116]

(S, N:
GQDs)/PANi

42.3%
(100 ppm)

1–1000
(ppm) 115 s 44 s [106]

GS–PANi 1.6
(20 ppm) 71 ppb 11 min - [108]

GO-PANi Rg/Ra = 30.8
(100 ppm) 50 ppb 102 s 186 s [115]

TiO2/GO/PANi Rg/Ra = 110
(100 ppm) 5 ppm 32 s 17 s [111]

N-GQDs/PANi Rg/Ra = 150.09
(1500 ppm) - 366 s 4.98 s [107]

Py-RGO/PANi 59.1%
(50 ppm) 0.2 ppm - - [117]

rGO–PANi Rg/Ra = 344.2
(100 ppm) - 20 s 27 s [101]

NiNPs@3D-(N)GFs 750.2%
(1000 ppm) 45 ppb 95 s 32 s [83]

CH4

PANi/GO 20.9
(100 ppm) - 3–120 s 3–120 s [103]

SnO2@rGO/PANi 26.1%
(100 ppm) - - - [110]

G/PANi-C15 3.25%
(100 ppm)

10–1600
(ppm) 85 s 45 s [100]

C6H5–CH3
C-PANi 11.6%

(100 ppm) - 8 min 22 min Solution mixing [114]

PANi–G 90%
(5000 ppm) - 8.6 s 16 s In-situ

polymerization
[104]

Benzene PANi–G 80%
(5000 ppm) - 16.25 s 18.5 s

H2S SnO2/rGO/PANi 76.25%
(5 ppm) 50 ppb 80 s 88 s [109]

Figure 6. The selectivity of rGO–PANI hybrid thin films to 100 ppm of different gases. (adapted from
reference [101]).
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The enhancement of NH3 gas sensor based on rGO/PANi hybrid sensing performance can be
caused by the acid-base de-doping process of PANi nanoparticles and the synergetic effects between
rGO and PANi [57]. This novel composite can be used as a sensing layer for the detection of different
gases, but as it can be understood from this table, it was mostly used for the detection of NH3.

3.2. Graphene/Poly (3,4 Ethyldioxythiophene) (PEDOT) Nanocomposite

3.2.1. Preparation of Graphene/PEDOT Nanocomposite

Different synthesis techniques have been reported for synthesizing graphene and poly (3,4-ethylene
dioxythiophene) (PEDOT) nanocomposite. Yajie Yang, et al. [90,118] prepared rGO and porous
conducting polymer (PEDOT) nanostructure by in situ polymerization technique. Figure 7a shows
the SEM image of the porous PEDOT layer coated on rGO Langmuir–Blodgett (LB) films. The
rGO layer is prepared from the GO LB deposition and a thermal reduction treatment [119]. The in
situ polymerization of 3,4-ethylene dioxythiophene (EDOT) monomer was used to deposit PEDOT
nanostructure on the surface of rGO sheets. Figure 7b indicates the SEM image of PEDOT/GO films
prepared by a fully electrochemical route and reported by Katarzyna Dunst and his group [120].
The electro-polymerization and electrochemical reduction of PEDOT/GO were accomplished in GO
aqueous solution and 0.1 M KCl at a constant potential, respectively. Yotsarayuth Seekaew, et al. [121]
synthesized graphene–PEDOT: poly (styrenesulfonate) (PSS) nanocomposite by using solution mixing
method (Figure 7c). Hamed Sharifi Dehsari, et al. [79] investigated sensing performance of NH3 gas
sensor based on copper (II) tetrasulfophthalocyanine supported on a 3-dimensional nitrogen-doped
graphene-based framework (CuTSPc@3D-(N)GF)/(PEDOT-PSS) nanocomposite (Figure 7d).

Figure 7. SEM images of (a) porous poly (3,4-ethylene dioxythiophene) (PEDOT) layer deposited on
rGO Langmuir–Blodgett (LB) films (adapted from reference [118]), (b) PEDOT/rGO film (adapted
from reference [120]), (c) transmission electron microscope (TEM) image of graphene–PEDOT:poly
(styrenesulfonate) (PSS) nanocomposite (adapted from reference [121]), and (d) SEM image of
CuTSPc@3D-(N)GF (adapted from reference [122]).

PEDOT:PSS is a widely used conjugated polymer due to its excellent electrical conductivity, high
transparency, good processability, and low redox potential [123,124]. Firstly, PEDOT:PSS was dissolved
in the mixture of dimethyl sulfoxide (DMSO), ethylene glycol (EG) and triton x-100 to prepare the
graphene–PEDOT:PSS ink, and then stirred at room temperature. To synthesize graphene solution,
as-prepared graphene powder was mixed with 5 mL of DMSO. Then, graphene solution was added
to 40 mL of PEDOT:PSS. To prepare GQDs/PEDOT-PSS compound, Mahdieh Hakimi, et al. [125]
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combined the PEDOT-PSS and N-GQDs solutions in which N-GQDs was synthesized using a
hydrothermal technique in the presence of citric acid and urea.

3.2.2. The Sensing Performance of Gas Sensors Based on Graphene/PEDOT Nanocomposites

PEDOT, one of the most famous conducting polymers, attracted researchers’ attention due to its
good conductivity, electrical properties associated with its low bandgap, and good stability [126,127].
The conducting polymer nanostructures such as PEDOT plays an important role in enhancing the
sensing properties of graphene and its derivatives [128,129]. Yajie Yang, et al. synthesized a single
layer of RGO and PEDOT nanocomposite using LB deposition and an in situ polymerization technique
and as they reported, the RGO and PEDOT composite indicated better sensing performance to NO2

gas compared to the sensor based on pure rGO [90]. The electro-polymerization technique was used to
fabricate a sensing PEDOT/RGO layer and reported by Dunst and his group in Gdansk University
of Technology using [120] and the effect of annealing temperature on the sensing performance of
the film under NO2 were also investigated. The PEDOT/RGO composite showed good sensing
performance to NO2, higher operating temperature, and improved sensitivity. The gas sensor based
on (CuTSPc@3D-(N)GF)/(PEDOT-PSS) nanocomposite indicated better response (5 and 53 times) and
lower response and recovery times towards 200 ppm of NH3 compared with pure PEDOT-PSS and
CuTSPc@3D-(N)GF [122].

As we can see in Table 4, PEDOT/RGO nanocomposites are mostly utilized as a sensing material for
detecting NH3 and NO2 gases. The gas-sensing performance of PEDOT/rGO nanocomposites prepared
by in-situ polymerization technique revealed in contrast to other PEDOT/rGO nanocomposites, which
were listed in Table 4 exhibited excellent sensing performance as well as response and recovery time to
NO2 gas [90].

Table 4. Comparison of chemiresistive gas sensors performance based on graphene/PEDOT
nanocomposites.

Target Gas Sensing Material Response LOD Response
Time

Recovery
Time

Nanocomposite
Preparation

Method
Ref

NH3

PEDOT/RGO 3.43%
(5 ppm) 200 ppb 90–100 s 180 s In situ

polymerization [118]

G/PEDOT:PSS 18.9%
(1000 ppm) 10 ppm 3 min 5 min

Solution mixing
[121]

GQDs/PEDOT-PSS 116.38%
(1000 ppm) - 7.7 min 10 min [125]

CuTSPc@3D-(N)GF/PEDOT-PSS 8%
(50 ppm)

1–1000
ppm 138 s 63 s [122]

NO2 PEDOT/RGO
41.7%

(20 ppm) - 170–180 s 70 s In situ
polymerization [90]

14%
(100 ppm) - 8.3 min 16.3 min Electro-polymerization [120]

The repeatability of the gas sensor based on rGO and PEDOT composite is illustrated in Figure 8a.
Five response cycles of the sensor based on rGO and PEDOT nanocomposite under 2 ppm NO2 gas
exposure have been executed repeatedly. Yang et al. [90] concluded that the sensor exhibits excellent
repeatable properties, and the response levels of the sensor can be maintained after repeated cycles.
Moreover, the composite of rGO and PEDOT provides excellent reproducing stability toward lower
concentration of NO2 gas, because of the synergistic effect between rGO and PEDOT. The gas sensor
based on rGO and PEDOT nanocomposite under the various concentrations of NO2 gas (Figure 8b),
shows a fast response and recovery even at the ppb level.
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Figure 8. (a) Repeatability of sensor based on rGO and PEDOT nanocomposite and (b) sensitivity of
sensor based on rGO and PEDOT nanocomposite under various NO2 concentrations (adapted from
reference [90]).

3.3. Graphene/Polypyrrole (PPy) Nanocomposites

3.3.1. Preparation of Graphene/PPy Nanocomposites

Highly stable rGO/PPy nanocomposites were synthesized using in situ polymerization of pyrrole
monomers onto rGO [130]. Firstly, GO was reduced by hydrazine and then pyrrole polymerized at
high temperatures using an oxidizing agent and a surfactant. Wang-De Lin, et al. [131] prepared
graphene/PPy by the chemical oxidative polymerization method. Normally in this technique, pyrrole
was mixed with graphene solution contained distilled water and 1% cetyltrimethylammonium bromide
(CTAB), then sonicated for 10 min. On the other hand, distilled water contained 1% APS was added to
the solution during the sonication. Cuili Xiang, et al. [77] decorated graphene/PPy nanocomposite
with titanium dioxide (TiO2) nanoparticles utilized the sol-gel method to obtain TiO2@PPy–graphene
nanosheet (GN) nanocomposite (Figure 7b). Figure 9a–d display the SEM images of GNs, PPy–GN,
and TiO@PPy–GN, respectively. As seen in Figure 9a, the morphology of graphene nanosheets is
normally like irregular plates with smooth surfaces. Figure 9b illustrates PPy nanofibers coated the
GNs. After decorating PPy and graphene composite by TiO2 nanoparticles, it can be observed that the
surface of the TiO2@PPy–GN nanocomposite became rough and TiO2 nanoparticles homogeneously
dispersed into the nanocomposite (Figure 9c–d).

3.3.2. The Sensing Performance of Gas Sensors Based on Graphene/PPy Nanocomposites

PPy is one of the most widely used conducting polymers in different applications due to its high
conductivity, facile synthesis process, and great environmental stability [132]. Graphene and PPy
nanocomposites had also become appealing sensor materials due to their combined effects, and better
electrochemical performance compared with pure PPy and graphene [133]. Rawoof A. Naikoo and
Radha Tomar [134] investigated a CO gas sensor using Zeolite-X/reduced graphene oxide/polypyrrole
(Na-X/rGO/PPy) nanocomposite as a sensing material. When they increased the concentration of CO
gas, the response of gas sensor based on Na-X/rGO/PPy composite was increased from 14.9% to 77.4%.
Huynh Ngoc Tien and Seung Hyun Hur [135] fabricated NO2 gas sensors based on RGO–PPy composite
which exhibited high sensitivity (~32%) when exposed to 50 ppm of NO2 at room temperature. The
gas sensor based on RGO-PPy composite decorated by TiO2 indicated a response of 102.2% toward
50ppm of NH3 [77].
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Figure 9. SEM images of (a) GNs, (b) PPy–GN, and (c,d) TiO2@PPy–GN (adopted from reference [77]).

The investigation of gas sensors based on RGO-PPy composites toward various target gases
such as NO2, humidity, NH3, and CO is indicated in Table 5. The comparison of chemiresistive
gas sensors’ performance based on graphene/PPy nanocomposites under different gases displays
that the gas-sensing performance of rGO/PPy nanocomposite exhibited the highest response of
102.2% under 50 ppm NH3 exposure when it is decorated with TiO2 nanoparticles [77]. TiO2 is an
n-type semiconductor material with a bandgap of around 3.33 eV, which made it useful for sensing
materials [136]. Development of a gas sensor that can operate at room temperature and at the same time
retain the sensing properties of TiO2 nanoparticles can be a useful way to enhance sensing performance
of rGO/PPy.

Table 5. Comparison of chemiresistive gas sensors performance based on
graphene/PPy nanocomposites.

Target Gas Sensing Material Response LOD Response
Time

Recovery
Time

Nanocomposite
Preparation

Method
Ref.

NO2
RGO/Polypyrrole

(PPy)
32%

(50 ppm) - - -
In situ

polymerization

[135]

Humidity RGO/PPy 138% - 15 s 20 s [131]

NH3 TiO2@PPy–GN 102.2%
(50 ppm) 1 ppm 36 s 16 s [77]

CO Na-X/rGO/PPy 14.9%
(5 ppm) - 600 s 358 s [134]

3.4. Preparation and Sensing Performance of Gas Sensors Based on Other Graphene-Based Polymer Composites

Polystyrene (PS)-modified graphene composites were prepared by using the solution blending
method [70,137,138]. The composite thin films exhibited semi-conducting behavior in nature.
PS/graphene nanosheet (GNS) composites were prepared by Hu et al. [139] utilizing an in situ
polymerization technique. The thermal stability and electrical conductivity of the nanocomposite were
higher compared to the pure PS.
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Figure 10a displays an SEM image of polydiacetylene (PDA)/graphene composite which was
prepared by the self-assembly approach [140]. PDA monomers were mixed with chloroform and
filtered and then this was dropped on to graphene and exposed to air to evaporate the solvent.
Diacetylenic moieties were polymerized under ultraviolet (UV) light with a wavelength of 254 nm at
room temperature and after polymerization the white sample became blue. The VOC sensor based
on PDA/graphene composite indicated high sensitivity and short response time in the concentration
range of 0.01 to 10%.

Figure 10. SEM images of (a) polydiacetylene (PDA)/graphene film (adapted from reference [140]), and
(b) rGO-polythiophene (PTh) hybrid, (c) response of sensors based on PTh and rGO-PTh to different
gases at room temperature (adapted from reference [141]), and (d) sensitivity values changes of PS and
polyhydroxibutyrate (PHB) doped with 5,10,15,20-tetraphenylporphyrin (H2TPP) and mesoporous
graphene to water vapors, toluene and acetic acid (adapted from reference [142]).

The in situ polymerization technique was used to prepare a hybrid of ethylenediamine-modified,
rGO, and PTh and then the as-prepared hybrid was deposited on a flexible PET film to fabricate a
sensor for NO2 detection [141]. PTh attracted researchers’ attention due to their characteristics of the
inherently porous structure, remarkable environmental stability, and easy preparation [143,144]. The
field-emission scanning electron microscope (FESEM) image of rGO-PTh hybrid (Figure 10b) confirms
the successful combination between PTh and rGO. As shown in Figure 10c, hybridization of PTh
with graphene enhanced response of gas sensor (26.36 under 10 ppm of NO2 exposure) compared
to the pure PTh and graphene which might be attributed to synergistic effects between PTh and
graphene [90,144–147].

Joshua Avossa, et al. [142] designed a nanofibrous conductive chemical sensor based on two
insulating polymers (PS and PHB, named as PsB) doped with H2TPP and graphene which were selected
for being versatile, biodegradable, eco-compatible, recyclable (PS) [148,149] and resistant to thermal
excursions. The sensor indicated non-linear relationships between the conductivity and the temperature
(Figure 10d). This means that, when the temperature increased, the electrical conductivity increased.
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Rey Alfred G. Rañola, et al. [150] investigated graphene/polystyrene-sulfonate (rGO/PSS)
nanocomposite prepared by solution mixing as a chemiresistive gas sensor for detecting trimethylamine
(TMA). The sensitivity of the gas sensor was 1.72 × 10−3 ∆R/R mg L−1 and the LOD of the sensor was
22.67 mg/L.

Figure 11a indicates compiled results on sensing performance of gas sensors based on different
graphene and conducting polymer composites under various target gases. In the past few years, the
hybridization of conducting polymers by graphene and its derivatives has become important because
of tunable morphology, high electrical conductivity, and the synergistic effect between graphene and
conducting polymers might contribute to enhancing the gas-sensing performance of hybrids [11].
Among different target gases, graphene and its composite with conducting polymers show better
sensing performance toward NH3 exposure. Figure 11b exhibits the response of various nanocomposites
gas sensors for detecting different concentrations of NH3 (1–1500 ppm). As we can understand from
the tables and Figure 9a,b, the composites of PPy, PANI, PTh, and PEDOT with graphene and its
derivatives have been investigated during these years. However, PANi and PPy have a higher number
of studies which might be attributed to the relatively better sensing performance [151]. Based on the
collected results, graphene/PANi nanocomposite was investigated by Shouli Bai shows the highest
response compared to other conducting polymers [101]. PANi, among different conducting polymers,
has attracted a lot of attention due to its unique conduction mechanism, environmental stability, and
facile synthesis and processability. Nanocomposites based on graphene and PANi presented special
characteristics, such as excellent electrical conductivity, good thermoelectric properties, significant
electrocatalytic activity, and great electrochemical stability. The enhancement of sensing properties for
the graphene and PANi nanocomposite can be attributed to the synergistic effects between the graphene
and the PANi. Besides, another factor to enhance gas-sensing performance is doping. Compared
to other conducting polymers, composite based on PANi normally illustrates better gas-sensing
performance which might be attributed to its reversible doping mechanisms. Oxidation or protonation
process can help to improve the electronic structure and electrical properties of PANi which allow
PANi to specifically detect oxidizing or reducing gas. Furthermore, this can also be the reason why
PANi has achieved importance in comparison with other conducting polymers [152].

Figure 11. (a) Response versus different target gases concentration and (b) response versus ammonia
concentration for gas sensors based on graphene and conductive polymer nanocomposites (schematic
visualization of Tables 3–5).
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4. Conclusions

The preparation methods and sensing performance of graphene and conductive polymer
nanocomposites are discussed in this review paper. The most widely used methods to prepare
nanocomposites of graphene and conductive polymers for the application of gas sensors are in
situ chemical polymerization. Mixing these two materials exhibited better sensing performance
compared to pure graphene and conductive polymers because of the large specific surface area of
the nanocomposites, which might be attributed to the anchoring of conducting polymers on the
surface of graphene sheets. According to the tables listed, rGO–PANI hybrids loaded on a flexible
PET thin film indicated the highest response of 344.2 to 100 ppm NH3, the gas-sensing performance of
PEDOT/RGO nanocomposites prepared by in-situ polymerization technique revealed in contrast to
other PEDOT/RGO nanocomposites exhibited excellent sensing performance to NO2, and rGO/PPy
nanocomposite indicated the highest response of 102.2% under 50 ppm NH3 exposure when it
is decorated with TiO2 nanoparticles. Compared to various gas sensors based on graphene and
conductive polymer nanocomposites such as graphene/PEDOT, graphene/PPy, graphene/PTh, and
so on, graphene and PANi nanocomposite gas sensor shows the highest response for detecting NH3

gas. The enhancement of gas accessibility might contribute to the large surface area of the composite
materials and also the combination of materials with various properties can result in a synergistic
effect. Incorporating the merits of high conductive graphene sheets with the advantages of conducting
polymers has attracted researchers’ attention to tap their novel characteristics because of the synergistic
effect between them. The superior electrical properties of graphene materials, including high carrier
mobility, and detectable change in their resistance after adsorption or desorption of gases, also
contribute to the high sensitivity.

The most important mechanism that should be considered in graphene and conducting polymer
composites is normally referring to non-interface dependent complementary behavior, which is known
as a synergistic effect. A synergistic effect determines when various constituents in a composite material
are separately in contact with the gas phase and serve a different purpose that is complementary of the
other constituents in a material.

The chemiresistors fabricated using the composite of graphene and other conducting polymers
to date have received relatively little attention. On the other hand, there are only a few works that
have studied the sensing performance of graphene/conductive polymer composites under various
gases. Very few works have been reported on new preparation methods of this novel material and
their application in gas sensors. The lower limit of detection for the given gas was not reported in
most studies.

Improving the large-scale production of gas sensors based on graphene/conductive polymer
nanocomposites, enhancing the selectivity by functionalizing the sensing layer, and increasing the
stability of the active layer should be considered in future studies.
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