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Abstract

PI3K/AKT signaling pathway plays an important role in tumorigenesis and regulates critical 

cellular functions including survival, proliferation and metabolism. PIK3CA mutations and AKT 

activation by phosphorylation (pAKT) are often detected in many cancers and especially at high 

frequencies in breast cancer. Mounting data suggest that PIK3CA mutations or pAKT are mostly 

associated with better or insignificant outcomes in estrogen receptor-positive (ER+) early stage 

breast cancer and tend to be with worse prognosis in ER− disease. pAKT expression has been 

identified to predict paclitaxel chemotherapy benefit in node-positive breast cancer. Preclinical and 

neoadjuvant trial data suggest that PIK3CA alterations confer resistance to HER2-targeted therapy 

and are associated with lower pathological complete response (pCR) rate in HER2-positive breast 

cancer. However, recent results from randomized clinical trials of adjuvant and metastatic settings 

show that patients with mutant and wildtype PIK3CA tumors derived similar benefit from anti-

HER2 therapy. This article, with our new insights, aims to decipher the mixed data and discusses 

the influence of the potential confounding factors in the assessments. We also share our views for 

validation of PI3K/AKT alterations in relation to clinical outcome in the context of specific breast 

cancer subtypes and treatment modalities towards further advance of the precision medicine for 

breast cancer treatment.
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Introduction

Breast cancer is the most commonly diagnosed cancer among women and the second 

leading cause of cancer death in women in the United States (http://www.cancer.org/Cancer/

BreastCancer).

The phosphatidylinositol 3-kinase (PI3Ks) pathway comprises a family of intracellular 

signal transducer enzymes with three key regulatory nodes − PI3K, AKT, and mammalian 

target of rapamycin (mTOR) [1]. Somatic mutations have been identified in PIK3CA (36%), 

PIK3R1 (3%), PTEN (3%) and AKT1 (2%) genes in the pathway, with PIK3CA as the most 

frequently altered in breast cancer [2]. AKT activation by phosphorylation (pAKT) regulates 

critical cellular activities such as growth, proliferation, differentiation, metabolism and 

survival as well as tumorigenesis. Importantly, PI3K/AKT signaling is implicated in the 

pathogenesis of breast cancer and has been hypothesized to confer resistance to systemic 

treatments including chemotherapy and HER2-targeted therapy.

The relationship of PIK3CA mutations and AKT activation with prognosis and treatment 

benefit in breast cancer has been an area of intense investigation with mixed results. Given 

that chemotherapy and anti-HER2 treatment are standard management in breast cancer and a 

rapid advance of the targeted approach, it is imperative to diligently interpret the impacts of 

these alterations on the translational and/or clinical results. Here, we discuss PIK3CA 
mutations and pAKT for prognosis, and response to or benefit from standard therapy. We 

review the alterations with an emphasis on the translational research results of the 

randomized clinical trials in addition to the discussion of the relevant preclinical findings. 

We also share our views for validation of the pathway biomarkers pertaining to clinical 

outcomes in the context of specific cytotoxic agents or regimens in breast cancer subtypes.

Breast cancer subtypes and treatment modalities

Clinically, breast cancer is divided into the subtypes based on biologic or phenotypic 

markers. Estrogen receptor alpha-positive (ER+) and/or progesterone receptor (PR+) — 

hormone receptor-positive (HR+) – breast cancer (~70 –75%) is the most common clinical 

subtype. Patients with HR+ disease significantly benefit from endocrine therapy [3,4]. 

Human epidermal growth factor 2-positive (HER2+) breast cancer, accounting for about 

20% of all cases of breast cancer, is a particularly aggressive form of breast cancer [5]. 

HER2+ disease is defined as tumors with either high expression of HER2 protein by 

immunohistochemistry (IHC) or amplification of HER2 gene by fluorescence hybridization 

in situ (FISH) [6]. Standard systemic treatment for HER2+ disease includes chemotherapy in 

combination with HER2-targeted therapy [7]. Approximately half of HER2+ breast cancers 

are HR+, which are also managed with endocrine therapy. Triple-negative breast cancer 

(TNBC; ER−, PR− and HER2−) accounts for about 15% of all breast cancers. There are no 

approved targeted trerapy for TNBC and the standard treatment is cytotoxic chemotherapy. 

While the clinical HR+, HER2+ and TNBC subtypes are routinely used for management, 

breast cancer has been classified into the molecular subtypes by intrinsic gene expression 

signatures: luminal A (ER+ and HER2−, low proliferative, ~50%), luminal B (ER+, high 
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proliferative, HER2+ or HER2−), HER2-type (HER2+, ER+ or ER−; ~15%), and basal-like 

(accounting for the majority of triple-breast cancer; ~15%) [8–10].

PI3K/AKT pathway and alterations

Class IA PI3K is a heterodimeric lipid kinase consisted of a p110 catalytic subunit encoded 

by PIK3CA gene and a regulatory p85 subunit by PIK3R1 gene. PI3K is activated in 

response to a variety of extracellular signals through a receptor tyrosine kinase (RTK) such 

as HER2, epidermal growth factor receptor (EGFR) or insulin-like growth factor 1 receptor 

(IGF1R) (Fig. 1A and B). The serine/threonine kinase AKT (protein kinase B) is a 

downstream multifunctional kinase, which serves as the central mediator of the pathway 

[11]. Upon activation, p110 PIK3CA phosphorylates phosphatidylinositol (3,4)-

bisphosphate (PIP2) to form phosphatidylinositol (3,4,5)-trisphosphate (PIP3). Binding of 

AKT to PIP3 leads to AKT translocation from the cytoplasm to the plasma membrane, 

where the co-localization of 3-phosphoinositide dependent protein kinase-1 (PDK1) and 

AKT allows PDK1 to phosphorylate AKT at threonine 308. The full activation of AKT 

requires AKT to be phosphorylated at serine 473 (pAKT-S473 or pAKT) by mTOR/Rictor 

complex 2 (mTORC2) [12]. Based on this mechanism of action, antibodies to pAKT-S473 

are commonly utilized to evaluate AKT activity [13]. Upon activation, AKT phosphorylates 

a large number of downstream substrates, which regulate cell growth and protein synthesis 

by regulating activity of the mTOR/Raptor complex 1 (mTORC1). This increases 

proliferation/cell-cycle progression. Through GSK-3ß and tau, pAKT regulates microtubule 

dynamics and organization [14]. pAKT promotes cellular survival via either direct 

inactivation by phosphorylation of multiple proapoptotic proteins or inhibition of the 

Forkhead box transcription factors that results in decreased expression of proapoptotic 

proteins [15]. The characteristic attenuation of apoptosis by pAKT has been hypothesized as 

a major mechanism of resistance to cancer treatment [16]. The PI3K/AKT pathway is 

negatively regulated by phosphatase and tensin homolog (PTEN), a lipid phosphatase that 

dephosphorylates PIP3 [17]. Loss or reduced expression (PTEN low) and function of PTEN 

occur frequently in breast cancer.

Noticeably, many studies have shown that AKT activity was modulated by chemotherapy 

agents and other cancer therapeutics [18–20]. Paclitaxel inhibits and doxorubicin augments 

AKT expression. Table 1 lists the agents that modulate AKT activity in vitro and patients. Of 

relevance is whether the treatment-induced changes in pAKT have an impact on resistance 

or sensitivity to specific treatments and long-term clinical outcomes.

Somatic mutations in the PI3K/AKT pathway genes have been identified in significant 

frequencies in breast cancer. About 90% of PIK3CA mutations, all missense, were located at 

hotspot clusters in the helical domain (HD) in exon 9 and kinase domain (KD) in exon 20. 

The activating mutations H1047R in the KD and E545K and E542K in the HD are the most 

prevalent alterations [21]. PIK3CA is mutated in ~30% of all breast cancers [22]. The 

mutation frequencies vary by breast cancer subtypes of 34.5–45%, 22.7–39% and 8.3–25% 

in HR+, HER2+ and TNBC, respectively [23,24,2,25]. The Cancer Genome Atlas (TCGA) 

breast cancer analysis found PIK3CA mutation rates of 45% in luminal A, 29% in luminal 
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B, 39% in HER2+, and 9% in the basal-like subtypes [2]. Association of PIK3CA mutations 

with AKT activation status was observed in some study cohorts [25–27].

PI3K/AKT alterations and prognosis

A factor for prognosis is defined as the one that is associated with clinical outcome in the 

absence of therapy or in the context of a standard treatment that all patients likely receive in 

a disease setting [28]. To date, the relationship between PIK3CA mutations/pAKT and 

prognosis are mixed in early breast cancer, some data demonstrating association with 

favorable outcome, others with poor prognosis, and a number of studies showing 

insignificant results (Table 2). That PIK3CA mutations or pAKT expression was associated 

with favorable outcomes has the following features. Over half of each study population 

received adjuvant endocrine therapy with or without chemotherapy or radiation therapy in 

studies including all subjects or in those with ER+ disease only (Table 2) [22,29–33]. 

Furthermore, PIK3CA mutation and a PIK3CA mutant-like expression signature derived 

from exon 20 PIK3CA-mutated tumors was associated with a favorable outcome in ER+ 

patients who received adjuvant tamoxifen by multivariate analysis [27]. Sabine et al. 

recently found that PIK3CA was mutated in ~40% of ER+ breast cancer samples in the 

Tamoxifen Exemestane Adjuvant Multinational (TEAM) phase III trial [33]. The mutations 

were associated with favorable clinicopathological factors (lower grade, less lymph node 

involvement, and PR expression), and a better 5-year distant relapse-free survival (DRFS). 

However, PIK3CA mutations were not an independent predictor of outcome in multivariate 

analysis. Consistent with these results, a recent meta-analysis confirmed that PIK3CA 
mutations were significantly associated with ER positivity, increasing age, lower grade and 

smaller tumor size. The genotype was correlated with better invasive disease-free survival 

(DFS) by univariate analysis, but not in multivariate analysis [34]. In a neoadjuvant study, 

PIK3CA KD mutations were prognostic of longer RFS in patients with HR+ tumors after 

receiving either letrozole or tamoxifen treatment [26]. Together, these results suggest that the 

clinical outcomes appear to be mostly driven by the intrinsic ER+ tumor characteristics, 

rather than by activating PIK3CA mutations [35]. Both PI3K and AKT kinases increase ER 

transcriptional activity in experimental models (Fig. 1A) [36]. MCF-7 cells transfected with 

an active AKT attenuated apoptosis induced by tamoxifen. However, clinical data may have 

suggested that the effect of cross-talk between PI3K/AKT signaling and ER could be largely 

inhibited by adjuvant endocrine therapy administered as a part of systemic therapy in the ER

+ breast cancer (Fig. 1A) [27,36]. A recent study by Bosch and colleagues demonstrated that 

the increase in ER activity following PI3K inhibition could be stimulated by estradiol and 

suppressed by tamoxifen and fulvestrant in vitro and patient-derived models as well as in 

tumors from patients [37].

In large studies with all subjects, evaluation of pAKT was not significantly associated with 

clinical outcomes, suggesting the possibility of confounding factors in the assessments 

(Table 2) [38–40]. By stratifying ER status, a study analysis recently demonstrated a 

significant difference for OS in patients with pAKT+ tumors with and without ER 

expression in doxorubicin–cyclophosphamide (AC) treatment arm (P < 0.0001) and AC 

followed by paclitaxel group (P = 0.002), respectively [41]. Particularly in the AC arm, OS 

at 10 years was similar in ER+ patients whether pAKT was present or not (77% in pAKT+ 
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ER+, 75% in pAKT− ER+ tumors), but was much worse in ER− patients if pAKT was 

positive (66% in pAKT− ER− and 58% in pAKT+ ER− tumors).

Thus, it warrants further investigation for the divergent effects of pAKT on prognosis 

between ER+ and ER− breast cancers in the context of AC chemotherapy.

As for ER− breast cancer, what role may PIK3CA mutation or AKT activation play? pAKT 

or combined pAKT and total AKT expression appeared to be associated with unfavorable 

outcome in ER− disease treated with anthracycline-based chemotherapy (Fig. 1B) [41,42]. 

However, the results need to be validated in studies with sufficient numbers of ER− or 

TNBC breast cancer patients.

PI3K/AKT alterations and chemotherapy outcome

Anthracyclines (doxorubicin and epirubicin) are a class of chemotherapy agents that are 

commonly used for the treatment of breast cancer in the adjuvant and neoadjuvant settings 

[43]. The agents inhibit topoisomerase II and intercalate into DNA that cause DNA damage 

to produce cytotoxic effects. Doxorubicin has been shown to induce AKT activation, which 

mediates resistance to doxorubicin in both ER+ and ER− breast cancer cells [18,20]. Brown 

and colleagues recently reported that MERIT40 phosphorylation by AKT kinase facilitates 

assembly of the BRCA1 DNA repair complex, which contributes to DNA damage repair and 

cancer cell survival following doxorubicin treatment [20]. In the MCF7 breast cancer cell 

line, transfection of HER2 led to an increase in pAKT expression [44], which resulted in 

cellular resistance to multiple chemotherapy agents including microtubule-stabilizing 

paclitaxel, DNA-damaging etoposide, camptothecin and doxorubicin, and antimetabolite 5-

fluorouracil. However, a subsequent study presented data that constitutive overexpression of 

HER2 was inadequate to augment pAKT upon exposure to doxorubicin in several HER2+ 

cell lines [45].

The treatment benefit can be evaluated through the interaction of a biomarker (predictive 

biomarker) status and treatment outcomes using any of the clinical endpoints such as 

response, overall survival (OS), disease-free survival (DFS) or progression-free survival 

(PFS) [28]. The relative clinical outcomes of the two treatments of comparing a new 

treatment to control in randomized clinical trials are assessed separately in the biomarker-

positive and biomarker-negative patient groups [46].

A prospective-retrospective investigation examined pAKT expression in 823 primary breast 

tumors from patients who were randomized to receive no treatment or anthracycline-based 

adjuvant chemotherapy (Table 2). pAKT was neither significantly prognostic of DFS and OS 

nor predictive of efficacy of anthracycline-based chemotherapy [39]. The test for interaction 

was insignificant between pAKT status and efficacy with anthracycline-based chemotherapy. 

In the neoadjuvant setting, a research team evaluated 140 patients with stage II and III breast 

cancer and did not observe any association between PIK3CA mutation status and response 

to neoadjuvant anthracycline- and taxane-containing regimens [47]. Such results were 

ascribed to a limited number of patients categorized by ER status, mutation types and 

treatment regimens.
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Taxanes including paclitaxel and docetaxel are another class of chemotherapy agents, which 

primarily stabilize microtubules to inhibit mitosis; they are commonly used for the treatment 

of breast cancer in all settings. Preclinical data did not demonstrate a clear correlative 

relationship between PIK3CA or PTEN mutation or AKT activation and paclitaxel 

(NSC125973) resistance in breast cancer cell lines. These include MCF-7 (PIK3CA-mutant, 

ER+ and HER2−; Log GI50, −7.9 or 10−7.9 M), MDA-MB-231 (PIK3CA/PTEN-wildtype, 

ER− and HER2−; −7.2), T47D (PIK3CA-mutant, ER + and HER2−; −7.0), MDA-MB-468 

(PTEN-mutant, ER and HER2−; −7.7), Hs578T (PIK3CA/PTEN-wildtype, ER and HER2−; 

−8.1), and BT549 (PTEN-wildtype, ER− and HER2−; −7.6) (https://dtp.cancer.gov/

dtpstandard/servlet/MeanGraph?

searchtype=NSC&searchlist=125973&outputformat=HTML&outputmedium=page&chemn

ameboolean=AND&debugswitch=false&assaytype=&testshortname=NCI+Cancer+Screen

+Current+Data&dataarraylength=60&endpt=GI50&button=Mean+Graph&highconc=−5.0). 

MDA-MB-468 cells that express high level of pAKT were more sensitive to paclitaxel than 

MDA-MB-231cells with low pAKT expression in vitro and in vivo [48].

Recently, pAKT, 1+ to 3+ expression detected by IHC (38%, 606/1581), was identified to 

predict benefit of adding paclitaxel to adjuvant AC chemotherapy. Women with node+ breast 

cancer were randomly assigned to 4 cycles of adjuvant AC or 4 cycles of AC followed by 4 

cycles of paclitaxel chemotherapy in the National Surgical Adjuvant and Bowel Project 

(NSABP) B28 clinical trial [49,50]. In the pAKT+ breast tumors, addition of paclitaxel 

resulted in a 26% improvement in DFS and 20% in OS [41,50,51]. By contrast, adding 

paclitaxel to AC did not lead to any improvement in DFS and OS in patients with pAKT-

negative tumors. An apparent interaction was detected between pAKT and treatment with 

sequential addition of paclitaxel to AC chemotherapy. Since pAKT regulates microtubule 

dynamics/organization and paclitaxel inhibits AKT phosphorylation, pAKT+ tumors may 

have incurred more damage from paclitaxel chemotherapy than pAKT− tumors (Table 1; 

Fig. 1B) [19,52–54].

Recently, Bartlett and colleagues reported that expression of pAKT, p70S6K and p90RSK 

were not significantly associated with either resistance or sensitivity to docetaxel-based 

chemotherapy [55]. The United Kingdom Taxotere as Adjuvant Chemotherapy Trial (TACT) 

tested 4 cycles of 5-fluorouracil, epirubicin and cyclophosphamide (FEC) followed by 4 

cycles of docetaxel in comparison with 8 cycles of FEC or 4 cycles of epirubicin followed 

by 4 cycles of cyclophosphamide, methothexate and 5-flurouracial (CMF) regimens in the 

control arm (Table 3) [56]. The study did not identify any trend for interaction between the 

pathway biomarkers and docetaxel benefit. The analyses of the interactions between PI3K 

pathway proteins and addition of docetaxel were likely obscured by 4 additional cycles of 

FEC or CMF in the control arm. Thus, the interaction between the pathway biomarkers and 

docetaxel data presented can’t be directly inferred from the docetaxel only. For analysis of a 

biomarker-taxane interaction, it would be ideal to compare the addition of a taxane 

sequentially or concurrently to AC or FAC or FEC regimen in the experimental arm to equal 

cycle number of AC or FAC or FEC or CMF in the control group [49,57,58]. For more 

guidance, please refer to a recent publication on the “statistical and practical considerations 

for clinical evaluation of predictive biomarkers” [46]. Table 3 lists the randomized clinical 
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trials with and without a taxane, including those that are ideal for evaluation of the 

interaction between a biomarker and treatment outcomes.

PI3K/AKT alterations and clinical outcome in HER2+ breast cancer

HER2 overexpression and signaling result in the activation of two downstream signaling 

pathways – the RAS/RAF/ERK pathway and the PI3K/AKT pathway. Experimental 

observations with BT474 (luminal B phenotype) breast cancer cell model demonstrated that 

HER2+ breast cancer with an activating PIK3CA mutation and low PTEN expression were 

resistant to HER2-targeted therapy with trastuzumab [59]. Using a genetic approach to 

search novel modulators of lapatinib resistance in the BT474 breast cancer cells, Eichorn et 

al. found that loss of PTEN and PIK3CA activating mutations conferred resistance to 

lapatinib (a dual HER2/HER1 tyrosine kinase inhibitor) [60]. In a transgenic HER2+ 

mammary tumor mouse model, PIK3CA mutations cooperated with HER2 promoting tumor 

progression and inducing resistance to trastuzumab alone, and trastuzumab in combination 

with lapatinib or pertuzumab therapy [61].

In the phase II neoadjuvant Remagus 02 trial, patients with HER2+ breast tumors received 

epirubicin/cyclophosphamide (EC) preoperatively, and followed by docetaxel and 

trastuzumab either preoperatively or postoperatively [62]. With a median follow-up of 51 

months, DFS was significantly worse in patients with PIK3CA-mutant tumors [63]. In a 

cohort of 240 patients who received adjuvant FEC followed by one year trastuzumab, worse 

OS and IDFS (invasive disease-free survival) were observed in early stage HER2+ breast 

cancer patients whose tumors harbor PIK3CA mutations [64]. Recently, results from the 

phase III CLEOPATRA trial (testing the addition of pertuzumab to docetaxel plus 

trastuzumab as first line therapy for metastatic breast cancer) showed that PIK3CA 
activating mutations were associated with a shorter PFS [65]. These data presented evidence 

of the association between PIK3CA alterations and poor prognosis in early and late stage 

HER2+ breast cancer. However, it is worthwhile to mention that in metastatic breast cancer 

with trastuzumab as first-line therapy, loss of PTEN but not PIK3CA mutations or pAKT 

was significantly associated with a shorter survival, and poor response to trastuzumab alone 

and to combination of trastuzumab with vinorelbine or taxane-based chemotherapy [66].

In the Neoadjuvant Lapatinib and/or Trastuzumab Treatment Optimization trial 

(NeoALTTO), patients received lapatinib plus paclitaxel or trastuzumab plus paclitaxel or 

trastuzumab in combination of lapatinib plus paclitaxel before surgery, followed by FEC 

chemotherapy plus anti-HER2 agent after surgery [67]. PIK3CA mutations were associated 

with worse outcome and a lower pCR rate [68]. However, PTEN status failed to distinguish 

a difference in total pCR to trastuzumab and lapatinib-based therapies [69]. Recently, 

PIK3CA mutations (21.4%) were evaluated in 504 patient tumors by combining three 

neoadjuvant trials – GeparQuattro [70], GeparQuinto [71] and GeparSixto [72–74]. HER2+ 

patients were treated with either trastuzumab or lapatinib plus anthracycline-docetaxel 

chemotherapy. The pCR rate was significantly lower in patients with PIK3CA mutations 

than those without by both univariate and multivariate analyses. However in this study, 

association of PIK3CA genotype with pCR did not translate into OS and DFS outcomes. 

Recently, another metaanalysis evaluated pCR rate in 967 patients from GEPAR, 
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NeoALTTO and CHER-LOB trials [75], and found a statistically significant lower pCR rate 

in HER2+/PIK3CA-mutant tumors than HER2+/PIK3CA-wildtype tumors [68,73,76]. Of 

note in the evaluation, the pCR rate in PIK3CA-mutant tumors was significantly lower than 

wildtype in HR+ subgroup; in contrast, the difference in pCR rates was not statistically 

significant in HR− subgroup [77].

Most recently, Slamon and colleagues conducted a combined analysis of the mTOR inhibitor 

everolimus from the BOLERO-1 and BOLERO-3 clinical trials in patients with locally 

advanced or metastatic HER2+ breast cancer [78]. The international BOLERO-1 clinical 

trial enrolled 719 patients with locally advanced or metastatic HER2+ breast cancer and 

randomized them to paclitaxel plus trastuzumab with or without everolimus as first-line 

therapy [79]. The BOLERO-3 trial recruited 572 women with locally advanced or metastatic 

HER2+ breast cancer previously treated with paclitaxel and trastuzumab, who were 

randomized to vinorelbine plus trastuzumab with or without everolimus [80]. The combined 

analysis demonstrated a significant PFS benefit in patients with PIK3CA-mutant or PTEN 

loss/low tumors treated with everolimus in combination with trastuzumab plus either 

paclitaxel or vinorelbine. By contrast, an everolimus benefit was not seen in patients with 

PIK3CA wildtype or PTEN normal status. These results are the first to demonstrate that 

PIK3CA mutations and/or PTEN loss predict everolimus efficacy in patients with advanced 

HER2+ breast cancer.

As for the predictive value of the PI3K/AKT pathway alterations to HER2-targeted therapy, 

several studies using samples from randomized clinical trials showed comparable results in 

patients with both PIK3CA-mutant and PIK3CA-wildtype tumors. Patients were randomly 

assigned to receive or not to receive nine weekly trastuzumab infusions after adjuvant 

chemotherapy with docetaxel or vinorelbine, followed by FEC in those with HER2+ disease 

in Fin-HER phase III trial [81]. There were no significant interactions between PIK3CA 
mutations and distant DFS or OS [82]. In NSABP B31 trial, all patients were randomly 

assigned to AC followed by paclitaxel chemotherapy with and without trastuzumab. Pogue-

Geile and colleagues recently analyzed tumor PIK3CA mutation status and reported that 

patients with both PIK3CA- mutated and - wildtype HER2+ tumors similarly benefited from 

adjuvant trastuzumab [83]. In analysis of specimens from the BCIRG-005 and BCIRG-006 

clinical trials [7,84], PTEN loss was associated with worse DFS and OS in HER2+ disease 

[85]. However, patients with PTEN− tumors, as those with PTEN+ tumors, also benefited 

from adjuvant trastuzumab. Extending this trend from the adjuvant setting, PIK3CA 
mutations were found not predictive of treatment resistance or benefit from addition of 

pertuzumab to trastuzumab/docetaxel regimen in HER2+ metastatic breast cancer [65]. The 

biomarker analysis in the EMILIA study also did not find an association between PIK3CA 
mutations and response to trastuzumab-emtansine conjugate (T-DM1) therapy in patients 

with HER2+ locally advanced or metastatic breast cancer [86].

Hence, mounting evidence from the randomized clinical studies has challenged the role of 

PI3K/AKT alterations to anti-HER2 therapy resistance or confounded by some cytotoxic 

treatment. PIK3CA mutations are mostly associated with poor prognosis and lower pCR rate 

in patients treated with neadjuvant chemotherapy in combination with trastuzumab and/or 

lapatinib in HER2+ breast cancer. The impact of administration sequence of paclitaxel and 
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anthracycline-based chemotherapy or paclitaxel versus docetaxel or vinorelbine with regard 

to PI3K/AKT alterations on the clinical outcome remains to be determined.

Conclusions

PI3K/AKT pathway is of critical importance in breast cancer pathogenesis unraveled after 

research spanning over several decades; nonetheless, data has been mixed for its 

implications in patient outcomes. As discussed, the factors complicating the translation 

primarily are (i) heterogeneous breast cancer population whose tumors may differ in the 

magnitude of dependence on the PI3K/AKT signaling or received different treatments; (ii) 

some and evolving treatment modalities that may have altered this pathway activity. As such, 

results were inconsistent with regard to PIK3CA mutations or AKT activation for prognosis 

in early stage breast cancer. These alterations were mostly associated with better or 

insignificant outcome in ER+ population and tend to be with worse outcome in ER− disease. 

Adjuvant endocrine therapy is effective, which may have largely overridden the effects of 

the PI3K/AKT pathway signaling in ER+ early breast cancer.

pAKT is identified to predict paclitaxel benefit in node+ breast cancer and the results on 

taxane benefit could be validated using samples from the randomized clinical trials listed in 

Table 3 or prospectively designed clinical trials. The question remains on whether 

anthracycline-based chemotherapy led to different outcomes with regard to AKT activation 

in ER+ and ER− breast cancers, respectively. It is important to determine if the alteration is a 

negative predictor to anthracycline-based chemotherapy in patients with ER− disease using 

sample sizes with adequate statistical power. Taxanes are the agents of choice in 

combination with trastuzumab or lapaninib. It is important to test their addictive effect with 

HER2-targeted agents in terms of inhibition of the PI3K/AKT signaling.

There have been challenges to retrospectively evaluate the interaction of a biomarker with 

the drug for treatment outcome in the randomized clinical trials. The elements that influence 

this type of analysis include (i) many of the conventionally designed treatment trials are not 

ideal or suitable to evaluate biomarker-drug interaction; (ii) modulation of the central 

mediator of PI3K pathway, AKT activity, by some chemotherapy or hormonal agents may 

have substantial impact on clinical outcome. In addition, (iii) much data have pointed out 

PI3K/AKT alterations in connection with the ER status that have impact on clinical 

outcome. The data may have implications on the choice of chemotherapy agents and other 

cancer therapeutics according to the ER status, shedding light on further advance of 

precision medicine in breast cancer treatment.
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Fig. 1. 
(A) ER and PI3K/AKT/mTOR signaling and endocrine therapy in ER+ early breast cancer. 

Schematic interaction of the two signaling pathways and dominant effects of adjuvant 

endocrine therapy on the cellular output and its overall impact within 10 years after surgery. 

Abbreviations: AI, aromatase inhibitors; DFS, disease-free survival; E2, estradiol; ERE, 

estrogen receptor element; OS, overall survival; PIP, phosphatidylinositol phosphate; RTK, 

receptor tyrosine kinase. (B) PI3K/AKT/mTOR signaling and chemotherapy in ER− early 

breast cancer. DNA damaging agents upregulate pAKT [20] that facilitates DNA repair, 

which may contribute to early recurrence [87]. Taxanes counteract AKT activity at certain 

extent [19,50,88]. Abbreviations: PIP, phosphatidylinositol phosphate; RTK, receptor 

tyrosine kinase.
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