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Abstract
Clinicians have been faced with the challenge of differentiating between severe
acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) infected
pneumonia (NCP) and influenzaA infected pneumonia (IAP), a seasonal disease
that coincided with the outbreak. We aim to develop a machine-learning algo-
rithm based on radiomics to distinguish NCP from IAP by texture analysis based
on computed tomography (CT) imaging. Forty-one NCP and 37 IAP patients
admitted from January to February 6, 2019 admitted to two hospitals in Wen-
zhou, China. All patients had undergone chest CT examination and blood rou-
tine tests prior to receiving medical treatment. NCP was diagnosed by real-time
RT-PCR assays. Eight of 56 radiomic features extracted by LIFExwere selected by
least absolute shrinkage and selection operator regression to develop a radiomics
score and subsequently constructed into a nomogram to predict NCP with area
under the operating characteristics curve of 0.87 (95% confidence interval: 0.77-
0.93). The nomogram also showed excellent calibrationwithHosmer-Lemeshow

Abbreviations: ASA, American Society of Anesthesiologists; AUC, area under the operating characteristics curve; CT, computed tomography; IAP,
influenza A virus infected pneumonia; LASSO, least absolute shrinkage and selection operator; NGLDM, neighborhood gray-level dependence matrix;
ROI, region of interest; SARS-CoV-2, severe acute respiratory syndrome-associated coronavirus 2; SVM, support vector machine
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test yielding a nonsignificant statistic (P = .904). The novel nomogram may effi-
ciently distinguish betweenNCP and IAP patients. The nomogrammay be incor-
porated to existing diagnostic algorithm to effectively stratify suspected patients
for SARS-CoV-2 pneumonia.
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1 INTRODUCTION

Recently, the spread of coronavirus disease 2019 (COVID-
19), caused by severe acute respiratory syndrome associ-
ated coronavirus 2 (SARS-CoV-2), has become a global
pandemic and public health problem.1-3 As of March 12,
2020, a total of more than 180 000 cumulative confirmed
cases and 4292 deaths for COVID-19 had been reported
globally.4 Although unprecedented efforts had been con-
centrated to identify and isolate individuals with risk of
SARS-CoV-2 infection, clinicians are facing tremendous
difficulties in efficiently and quickly diagnosing these
patients due to massive volume of suspected cases.
Accurately diagnosing pneumonia patients is

paramount in that those without SARS-CoV-2 infection
may be exposed to risk of cross-infection during inpa-
tient and group isolation as human-to-human has been
reported to be the most prominent route of transmission.2
The current major challenge is differentiating between
patients with NCP and those with influenza A infected
pneumonia (IAP), a seasonal disease that coincided
with SARS-CoV-2 outbreak.5 This is clinically important
because there is little evidence that early clinical signs
and symptoms demonstrated by NCP patients are any
different from that of their IAP counterparts. Computed
tomography (CT) is often used to evaluate the pulmonary
condition of those suspected SARS-CoV-2 infection. How-
ever, clinicians may also find challenges in distinguishing
radiographic features of NCP patients from pneumonia of
other viral etiologies.6,7
We aim to develop an effective diagnostic tool to

overcome the above-mentioned challenge using machine
learning methods based on CT radiomics. We hope our
findings may aid diagnosticians currently serving first-line
against SARS-CoV-2 outbreak.

2 METHODS

2.1 Study design and participants

Forty-five SARS-CoV-2 positive and 132 influenza A virus
positive patients admitted to the First AffiliatedHospital of

Wenzhou Medical University and Wenzhou Central Hos-
pital from January 1 to February 6, 2020, were included
in this study. Patient’s demographical, clinical, labora-
tory, and radiological data were recorded and reviewed by
trained physicians upon admission and prior to receiving
any medical treatment. Retrieval of above-mentioned data
for this study was performed retrospectively from elec-
tronic medical records. Patients with SARS-CoV-2 infec-
tion were diagnosed by confirmatory test according to rec-
ommendations set forth by theWorld Health Organization
interim guidance.8 Influenza A viral infection was con-
firmed by measuring nucleic acid by fluorogenic quanti-
tative PCR. Pneumonia was diagnosed by radiological evi-
dence of lung inflammatory lesionswith orwithout pleural
effusion. Patients were excluded if they met any of the fol-
lowing criteria: (a) history of American Society of Anesthe-
siologists (ASA) score of more than 2; (b) history of exist-
ing respiratory disease prior to outbreak of SARS-CoV-
2; (c) pneumonia of etiology other than SARS-CoV-2 or
influenzaA virus bymeasuring nucleic acid by fluorogenic
quantitative PCR of serum samples and/or oropharyngeal
swab samples in conjunction to radiographic evidence and
clinically established diagnosis; or (d) absent of obvious
pulmonary lesions on radiographic imaging.
The First Affiliated Hospital of Wenzhou Medical Uni-

versity andWenzhouCentral Hospital are situated inWen-
zhou, China, and the former is the largest staffed teaching
tertiary hospital designated for the treatments of NCP by
local government.9 This study was approved by the local
ethics review board by First Affiliated Hospital of Wen-
zhou Medical University and Wenzhou Central Hospital,
waiving patient written informed consent for deidentified
data.

2.2 Real-time reverse transcription PCR
assay for SARS-CoV-2

In brief, throat swab samples were collected from patients
and preserved in appropriate solution prior to transport
to central laboratory. Total RNA was extracted and sub-
sequently tested by real-time reverse transcription PCR
assay (Shanghai ZJ Bio-Tech Co., Ltd.), according to
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diagnostic guideline set forth by the Chinese National
Institute for Viral Disease Control and Prevention (http://
ivdc.chinacdc.cn/kyjz/202001/t20200121_211337.html).

2.3 CT acquisition

In brief, all patients underwent chest CT scans using 64-
sliceCT scanner (Light-speed;GEHealthcare, Chicago, IL)
with a collimation coverage of 40 cm and reconstruction
thickness of 1.25 mm and 5 mm, while holding breath and
lying in a supine position. Parameters used for CT varied
with patient size and were, on average, 120 kV with mAs
100-250. Digital CT imaging was exported from Picture
Archiving and Communication System without any pro-
cessing or standardization. Prior to radiomic feature anal-
ysis, imaging segmentation on above-mentioned exports
were performed by an expert radiologist and validated by
another senior radiologist with at least 10 years of expe-
rience. Region-of-interest (ROI) selection was conducted
covering all detectable inflammatory lesions of the lungs
prior to texture analysis. Themachine learning procedures
and workflow are illustrated in Figure 1.

2.4 Texture feature extraction and
radiomic signature selection

Based on segmented ROI, texture features were
extracted by LIFEx (version 5.0) using open script
(https://www.lifexsoft.org/index.php/resources/19-
texture/radiomic-features). LIFEx is an open source
and multiplatform freeware developed as a tool to mine
radiomic texture data from established medical imaging.10
The texture analysis by LIFEx consisted of a two-order
evaluation resulting in 56 three-dimensional radiomic fea-
tures. The first-order involved measuring shape histogram
based matrix and histogram-based matrix. The second
order assessed gray-level co-occurrence matrix gray-level
zone length matrix, neighborhood gray-level dependence
matrix (NGLDM), and gray-level run length matrix. The
overall signature analysis enables differentiation of pul-
monary inflammatory lesion attributed to the two distinct
etiological pneumonias (Supplementary figure 1). For sim-
pler procedural replication and reproducibility, detailed
extraction techniques and typesetting may be found in the
Texture User Guide of LIFEx (www.lifexsoft.org).
Least absolute shrinkage and selection operator

(LASSO) with 10-fold cross-validation was employed
for the radiomic signature/feature selection. The utility
of LASSO regression model begins with identification
of optimal penalization coefficient lambda (λ) among
multitude of radiomic features extracted by LIFEx. By

Key points

∙ Chest computed tomography can be used as a
quick tool to screen patients for pneumonia.

∙ Influenza A viral pneumonia have similar clini-
cal presentation as SARS-CoV-2 pneumonia.

∙ Radiomics-based model of the chest computed
tomography can be utilized to effectively differ-
entiate between SARS-CoV-2-infected pneumo-
nia. This may help stratify pneumonia patients
for COVID-19, especially when nucleic acid test-
ing kits (confirmatory test for SARS-CoV-2) is
unavailable.

adjusting λ, LASSO is able to differentiate signatures that
do not associate with NCP by shrinking their coefficients
to zero. Thus, signatures with nonzero coefficient are sub-
sequently selected for establishment of a radiomics score.

2.5 Construction and validation of the
nomogram

Predictive features selected by the LASSO regression were
subject to logistic regression for development of radiomic
score. Further evaluation was performed by waterfall plot
for assessing the linear association between radiomics
score and observed disease outcome. Each diseased patient
was plotted against, respectively, associated radiomics
score for better visualization of their associative qualities.
The components deemed valuable to outcome prediction
were used for the final construction of nomogram. The per-
formance of the nomogram indiscriminatingNCPand IAP
were evaluated by area under the operating characteristics
curve (AUC) and subjected to calibration.

2.6 Support vector machines
classification of SARS-CoV-2 and IAP

The support vector machine (SVM) is a state-of-the-art
algorithm used to classify disease outcome by sorting
differentiative coordinate mapped by massive amount of
radiomics features. The SVM is capable of plotting n-
dimensional space where n represents the number of
radiomic features available for assessment. In this study,
we performed classification by running SVM algorithm
(C-classification and radial kernel on Python 3.7.5) based
on radiomic features resulted from LASSO regression and
logistic regression. A visualization plot was subsequently

http://ivdc.chinacdc.cn/kyjz/202001/t20200121_211337.html
http://ivdc.chinacdc.cn/kyjz/202001/t20200121_211337.html
https://www.lifexsoft.org/index.php/resources/19-texture/radiomic-features
https://www.lifexsoft.org/index.php/resources/19-texture/radiomic-features
http://www.lifexsoft.org
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F IGURE 1 Enrollment flow diagram of the
study. Abbreviation: ASA score, American society
of anesthesiologists score

F IGURE 2 Radiomics-basedmachine learningworkflow, including computed tomography (CT) images acquisition and region-of-interest
(ROI) segmentation of inflammatory lesions; radiomic feature extraction by LIFEx; features selection by least absolute shrinkage and selection
operator (LASSO) with 10-fold cross-validation; radiomics prediction score and calibration; and nomogram development for a more clinician-
friendly application, and support vector machine (SVM) were used to distinguish these two kinds of diseases effectively

drawn to compare the predicted outcome versus observed
outcome of each patient in order to illustrate the probabil-
ity of NCP. The capacity of predictionmodels in separating
patients with NCP and IAP was evaluated by the discrimi-
nation demonstrated by the SVM plot.

2.7 Statistical analysis

Categorical variables were described as frequency rates
and percentages, and continuous variables were described
using median and interquartile range (IQR) values. Dif-
ference between categorical variables was examined with
the chi-squared test or Fisher’s exact test as appropriate.

A P-value < .05 was considered statistically significant.
Data management and analysis were performed using
R software (R version 3.5.2, R Foundation for Statistical
Computing, Vienna, Austria) and Python 3.7.5.

3 RESULTS

3.1 Patient characteristics

Four of the 45 SARS-CoV-2 patients were excluded (two
for history of ASA score > 2, one for history of existing
respiratory disease, and one for absent of obvious find-
ings on CT imaging). Of the 132 influenza A viral infected
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F IGURE 3 Radiomic feature selection from signature heatmap using the least absolute shrinkage and selection operator (LASSO) logistic
regressionmodel. (A) The heatmap of relationship among texture analysis parameters. (B) Identification of the optimal penalization coefficient
lambda (λ) in the LASSO model used 10-fold cross-validation and the minimum criterion. (C) Lasso coefficient profiles of the 56 radiomic
features. The dotted vertical line was plotted at the value selected using 10-fold cross-validation in (A), for which the optimal λ resulted in 10
non-zero coefficients

patients, 95 were excluded (40 for history of ASA score> 2;
39 for history of existing respiratory disease; and 16 for
pneumonia of other etiology) (Figure 3). As a result, 41
NCP and 37 IAP patients were included for the final anal-
ysis.
Table 1 summarizes the main clinical and biochemical

characteristics of pneumonia patients stratified by etiol-
ogy. Overall, NCP and IAP patients share similar clinical
and laboratory variables. Themedian age for NPC and IAP
patients were 46 (IQR, 39–50) and 55 (IQR, 45–67) years,
respectively, P < .01. The most common symptoms found
in included pneumonia patients, irrespective of etiology,
were fever, fatigue, cough, myalgia, and dyspnea; how-
ever, no significant difference was observed between NCP
and IAP patients except in proportions of patients showing
symptoms of cough (22 [53.7%] vs 31 [83.8%],P< .01]. Of the
lesser common symptoms, higher proportion of dyspneic
patients was observed in the IAP group. By comparing the
laboratory parameters between NCP and IAP patients, dif-
ference in serum levels of white blood cell count and aspar-
tate aminotransferase was observed. However, no relation-

ship can be observed between disease condition and above-
mentioned differences in biochemical profile.

3.2 Radiomic feature construction

Based on CT imaging derived ROI, 56 radiomic fea-
tures were extracted and compared (Supplementary
figure 1). The analysis by least absolute shrinkage
and selection operator (LASSO) with 10-fold cross-
validation of these 56 radiomic features yield eight
distinct features that were most associative to NCP
(Figure 2). The eight distinct features were subse-
quently used to build a radiomics score producing
the equation as follows: −0.84557 + 0.00219*CON-
VENTIONAL_HUMIN + 0.00145*CONVENTIONAL_
HUMAX −0.00623*CONVENTIONAL_HUQ1 −0.32549*
HISTO_EXCESSKURTOSIS −106.08669*GLRLM_LRLGE
+ 455.66502*NGLDM_COARSENESS + 0.60757*
NGLDM_BUSYNESS −0.00002*GLZLM_ZLNU. To
better visualize the associative quality of the radiomics
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TABLE 1 Demographics and baseline characteristics of
patients infected with SARS-CoV-2 or influenza A virus

SARS-CoV-2
(n = 41)

Influenza A
(n = 37) P-value

Characteristics
Age, years 46 (39-50) 55 (45-67) <.01
Sex .40
Men 15 (36.6%) 17 (45.9%)
Women 26 (63.4%) 20 (54.1%)

Signs and symptoms
Fever 32 (78.0%) 28 (75.7%) .80
Highest temperature,
◦C

.70

<37.3 9 (22.0%) 9 (24.3%)
37.3-38.0 15 (36.6%) 11 (29.7%)
38.1-39.0 11 (26.8%) 8 (21.6%)
>39.0 6 (14.6%) 9 (24.3%)

Cough 22 (53.7%) 31 (83.8%) <.01
Myalgia or fatigue 11 (26.8%) 8 (21.6%) .61
Headache 2 (4.9%) 2 (5.4%) .92
Hemoptysis 1 (2.4%) 3 (8.1%) .34
Diarrhea 2 (4.9%) 0 (0.0%) .50
Dyspnea 1 (2.5%) 15 (40.5%) <.01
Respiratory rate > 24
breaths per min

1 (2.5%) 4 (10.8%) .19

Laboratory data
White blood cell
count, ×109/L

.02

<4 13 (32.50%) 10 (27.03%)
4-10 26 (65.00%) 18 (48.65%)
>10 1 (2.50%) 9 (24.32%)

Lymphocyte count, ×109/L
<1.0 5 (12.50%) 1 (2.70%) .20
≥1.0 35 (87.50%) 36 (97.30%)

Aspartate
aminotransferase, U/L

.05

≤40 31 (81.58%) 22 (59.46%)
>40 7 (18.42%) 15 (40.54%)

Total bilirubin,
mmol/L

10.2 (7.1-15.0) 8.0 (6.0-12.0) .07

Lactate
dehydrogenase, U/L

.40

≤245 20 (62.50%) 10 (47.62%)
>245 12 (37.50%) 11 (52.38%)

Note. Continuous variables are presented as median (IQR), n (%); categorical
variables are presented as number (%). P values tested by one-way ANOVA for
normally distributed variables, Kruskal-Wallis rank test for not normally dis-
tributed continuous variables, and Fisher’s exact test for categorical variables,
respectively.

score and NCP, a waterfall plot was drawn. As illustrated
in Figure 4A, the observation can be made that only minor
disagreements exist when each patient was plotted against
respective radiomics score. Therefore, it is reasonable to
infer that radiomics score possesses satisfactory predictive
capability to differentiate NCP and IAP patients.

3.3 Nomogram development

A clinician user-friendly nomogram was developed to
visually quantify the individualized probability of a patient
for having NCP (Figure 4B). The nomogram incorporated
eight predictive components of the radiomics score in
order to optimize the diagnostic utility in differentiating
disease outcome (NPC vs IAP). Based on summation of
“Total Points” on the nomogram, its corresponding value
on the line “DIAGNOSIS” may produce a quantifiable
risk assessment for pneumonia etiology; as the value
approaches 1, it is more likely to be NCP.

3.4 Diagnostic performance of models

As illustrated in Figure 4C, the nomogram achieved
excellent performance in predicting NCP with area under
the characteristic curve (AUC) of 0.87 (95% confidence
interval: 0.77-0.93). The diagnostic ability of nomogram
was evaluated alongside calibration curve (Figure 4D).
Hosmer-Lemeshow test yielded a nonsignificant statistic
(P = .904) for the nomogram, which suggested excellent
discrimination for both NCP and IAP. Figure 5 represents
a two-dimensional projection by VSM. The plotted visu-
alization depicts the comparison of predicted outcome
versus observed outcome of each patient, and plotted
illustration indicated a satisfactory performance for the
diagnostic model.

4 DISCUSSION

To the best of our knowledge, this is the first observational
study to investigate the radiomic signatures on CT imag-
ing of NCP patients. This is also the first study to pro-
pose a diagnostic model to distinguish between NCP and
IAP patients.We found eight of 56 signatures, by analyzing
radiomics features on CT imaging, are independent diag-
nosticator of NCP and subsequently developed a radiomics
score that may accurately classify pneumonias of the two
examined viral etiologies. To ensure realistic clinical appli-
cation of our diagnostic tool, we established a user-friendly
nomogram to aid clinicians in stratifying patients for
NCP. Our data show that the nomogram has excellent
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F IGURE 4 (A) Waterfall plot of radiomics score for each patient. Default is set to NCP (red bar) above the baseline and IAP (green bar)
below the baseline. This plot assesses the association between radiomic score and disease type in which disagreement of color coding indicates
misclassification by the radiomics score. (B) Nomogram for differentiating NCP and IAP. For each patient, the value of eight variables are
represented as points by projecting them onto the upper-most line (Points). Summing the eight variables and projecting the total points value
downward onto the bottom-most line (DIAGNOSIS) can determine disease type. Value approaching 0 on the DIAGNOSIS line indicates higher
probability of IAPwhile approaching 1 indicates higher probability of NCP. Linear predictor is the nomogram visualization of NCP prediction by
radiomics score. (C) Receiver operating characteristic curve for predicting NCP by nomogram; AUC is expressed as n (95% confidence interval).
(D) Calibration curve of the nomogram. Calibration curves depict the calibration ofmodel in terms of the agreement between the predicted risks
of novel coronavirus and observed outcomes. The y-axis represents the actual novel coronavirus rate. The x-axis represents the predicted novel
coronavirus risk. The diagonal solid line represents a perfect prediction by an ideal model. The dotted line represents the performance of the
nomogram, of which a closer fit to the diagonal solid line represents a better prediction. The Hosmer-Lemeshow test yielded a nonsignificant
statistic (P = 0.904), which suggested that there was no departure from perfect fit. Abbreviations: NCP, SARS-CoV-2 infected pneumonia; IAP,
influenza A infected pneumonia; AUC, area under operating characteristics curve

diagnostic accuracy for differentiating between NCP and
IAP patients, and by using this tool clinicians may make
better decision on choosing the next step of management.
While the source of the SARS-CoV-2 is actively under

investigation, drastic health security measures have been
implemented across China in response to containing all
possible contagion. In areas of higher outbreak activities,
such as in the case of Wenzhou, China, local author-
ities moved quickly to close its borders and imposed
a conditional city-wide curfew to reduce public human
gatherings.11 As a result, the city ushered a steady decrease
in reported incidence of NCP patients from January 31 to
February 10, 2020 (55 vs 16 new daily cases reported on
January 31 and February 10, 2020, respectively).12 How-
ever, worrisome local reports identified new cases of NCP

in those who were previously tested negative for SARS-
CoV-2. Although multiple factors may contribute to this
finding, including false negative real-time RT-PCR results
and posthospital infection, it is possible that some of the
new cases of NCP were the result of hospital-related cross-
infection during initial visitation. Recent epidemiologi-
cal report by Wang et al showed that among 138 con-
firmed NCP patients, prevalence of presumed in-hospital
infection was observed to be as high as 41.3%.12 Thus,
based on these preliminary findings, we can make the fol-
lowing inference: (1) real-time RT-PCR testing does not
completely rule out SARS-CoV-2 infection and com-
plementary diagnostic strategies may be required; and
(2) accurately differentiating pneumonia by SARS-CoV-
2 from other etiologies and separately hospitalize these
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F IGURE 5 Support vector machine visualization plot. Black
cross indicates patients with IAP; red cross indicates patients with
NCP; circle indicates misclassification or incorrect prediction; the X-
and Y-axis denote mapping variables for two-dimensional presenta-
tion of the multidimensional hyper-plane

patients may reduce the likelihood of in-hospital cross-
infection. That said, pneumonia patients entering in-
hospital observationwithout effective risk stratification for
NCP may place those without SARS-CoV-2 infection at
greater risk for cross-infection.
In China, there were approximately 88 100 influenza-

associated excess respiratory deaths per year, and the most
prevalent influenzaA virus,with strongwinter seasonality,
has an estimated mortality rate of up to 3.9 (95% CI: 3.6-
4.2) per 100 000 person-seasons.13 Common radiographic
features of IAP patients on chest CT include ground-glass
opacities and consolidation, which are not outstandingly
different from that of NCP patients to the naked eye, as
a recent report demonstrated.6,7 As a consequence, the
seasonal flu pneumonia combined with the outbreak of
SARS-CoV-2 have produced a tremendous challenge for
diagnosticians across China. This is because there is little
evidence that early clinical signs and symptoms demon-
strated by IAP patients are any different from that of their
NCP counterparts. More pertinently, IAP patients that are
isolated for observation could be exposed to SARS-CoV-2
cross-infection. Although it is currently unclear the clini-
cal outcome for patients with combined NCP and IAP, it
is reasonable to speculate that IAP patients (often at sub-
par immune state) with superimposed SARS-CoV-2 infec-
tion are at increased risk for mortality. That said, accu-
rately diagnosing and differentiating between NCP and
IAP patients is paramount.

To solve this conundrum, we have developed a diag-
nostic tool using machine learning methods based on
radiomics that may effectively and accurately distinguish
between NCP and IAP patients. Although real-time RT-
PCR testing lacks the ability to diagnose pneumonia by
design, it possesses good sensitivity and remains currently
the gold standard for confirming SARS-CoV-2 infection.
That said, our proposed diagnostic tool may be used as a
screening assessment for patients suspected of NCP prior
to real-time RT-PCR testing or used as a complementary
examination for better evaluation of patient’s condition. By
accurately diagnosing NCP, number of suspected patients
without SARS-CoV-2 may be reduced and consequently
reduce the risk of hospital-related cross infection.
There are several limitations to our results. The scarcity

of available NCP (n = 41) and IAP (n = 37) patients for
analysis and the lack of external validation may limit the
generalizability of our diagnostic model; future valida-
tion studies are certainly needed. By design, our proposed
diagnostic tool is developed for differentiating between
NCP and IAP; therefore, precaution is needed prior to
evaluating patients with viral pneumonia of etiologies
other than above-mentioned pathogens. Our study, while
limited mostly by small sample size, has a few notable
strengths. First, radiomics may provide more detailed and
specific information, patterns, and signatures on radiog-
raphy that are often not apparent to the naked eye, and
combining it with machine learning methods can provide
superior modeling tools for improved accuracy. Second, to
promote transparency, we included detailed and replica-
ble procedures (open script) for texture analysis in order to
conduce higher reproducibility and quicker implementa-
tion. Lastly, this study is clinically important because our
proposed diagnostic toolmay enable clinicians to quantita-
tively differentiate SARS-CoV-2 and IAP on CT imagining,
which was not realizable until now.
In conclusion, the novel nomogram, developed based

on radiomics, may accurately distinguish NCP and IAP
patients as demonstrated in this study. This tool is easily
reproducible, therefore, is conducive to widespread clini-
cal implementation. Potential application includes screen-
ing or diagnosing suspected patients in an algorithm com-
bining real-time RT-PCR to effectively stratify suspected
patients for COVID-19.
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