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Whether kidney transplant recipients are capable of mounting an effective anti-severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) adaptive immune response 
despite chronic immunosuppression is unknown and has important implications for 
therapy. Herein, we analyzed peripheral blood cell surface and intracellular cytokine 
phenotyping by flow cytometry along with serum antibody testing in 18 kidney trans-
plant recipients with active coronavirus disease 2019 (COVID-19) infection and 36 
matched, transplanted controls without COVID-19. We observed significantly fewer 
total lymphocytes and fewer circulating memory CD4+ and CD8+ T cells in the COVID-
19 subjects. We also showed fewer anergic and senescent CD8+ T cells in COVID-19 
individuals, but no differences in exhausted CD8+ T cells, nor in any of these CD4+ 
T cell subsets between groups. We also observed greater frequencies of activated 
B cells in the COVID-19 patients. Sixteen of 18 COVID-19 subjects tested for anti-
SARS-CoV-2 serum antibodies showed positive immunoglobulin M or immunoglobulin 
G titers. Additional analyses showed no significant correlation among immune pheno-
types and degrees of COVID-19 disease severity. Our findings indicate that immuno-
suppressed kidney transplant recipients admitted to the hospital with acute COVID-19 
infection can mount SARS-CoV-2-reactive adaptive immune responses. The findings 
raise the possibility that empiric reductions in immunosuppressive therapy for all kid-
ney transplant recipients with active COVID-19 may not be required.
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1  |  INTRODUC TION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the 
cause of the clinical illness coronavirus disease 2019 (COVID-19), 
was first described in humans in December 2019 in Wuhan, China 
and has led to a global pandemic.1 Among the risk factors for poor 
outcome are advanced age and presence of comorbidities such as 
hypertension, cardiovascular disease, diabetes, lung disease, and 
obesity. Chronic kidney disease, tumor, and dysfunction of the im-
mune system seem to be additional risk factors for developing com-
plications during COVID-19.2

Immunosuppressed kidney transplant recipients are poten-
tially at risk for poor outcome following COVID-19 infection, but 
relatively little has been reported in this population. Mortality 
across kidney transplant recipients with COVID-19 is still unclear. 
Although some US studies reported high mortality rates (about 
20%-30%),3,4 a European study showed a reduced mortality in 
transplanted patients with COVID-19 compared to the general 
population (9.5% vs 12.5%, respectively).5 Because of the possi-
bility that immunosuppression may inhibit development of pro-
tective anti-COVID-19 immunity, many centers empirically reduce 
antirejection immunosuppression upon hospital admission for 
COVID-19 infection. As immunosuppression reduction increases 
the risk of graft rejection, understanding whether transplant re-
cipients can mount immune responses to COVID-19 has important 
implications for devising best practice strategies in these patients. 
In an effort to address this unmet medical need, herein we set out 
to analyze peripheral blood immune cell phenotypes and serum 
antibodies in kidney transplant recipients hospitalized with acute 
COVID-19 infection and compare them to those of stable controls 
without COVID-19.

2  |  METHODS

2.1  |  Study population

We included 18 kidney transplant recipients admitted at Mount 
Sinai Hospital due to active COVID-19 from March 24 to May 10, 
2020. The positivity for SARS-CoV-2 was diagnosed through real-
time polymerase chain reaction (RT-PCR) of nasopharyngeal swab 
samples. We obtained serial samples from 3 subjects collected at 
least 23 days apart during admission. We recorded epidemiological, 
clinical, and laboratory data.

As controls, we used previously biobanked samples from 
COVID-19 negative stable kidney transplant outpatients collected 
at the University Hospital in Verona, Italy (n = 8) or peripheral 
blood mononuclear cells from subjects (n = 28) enrolled in the on-
going multicenter Clinical Trials in Organ Transplantation (CTOT)-
19 trial (NCT02495077). In CTOT-19, recipients of deceased donor 
kidneys with Kidney Donor Profile Index scores 20%-90% were 
treated with antithymocyte globulin induction and randomized 
to receive a single intraoperative infusion of anti-tumor necrosis 

factor alpha (TNFα) monoclonal antibody infliximab (Remicade, 
Janssen, Raritan, NJ) or saline. Maintenance immunosuppression 
consisted of tacrolimus, mycophenolate mofetil, and prednisone. 
As the 2-year follow-up is not completed for all enrollees, the 
study remains blinded to the perioperative intervention. However, 
because infliximab half-life is <2 weeks6 and samples included in 
this study were collected >4 months after induction, it is unlikely 
that this treatment affected immune phenotype of enrollees. 
We chose COVID-19 negative controls by matching for sex, age 
(±10 years), and time after transplant (<6; 6-12; >12 months) with 
the COVID-19 positive cases.

We collected data using an ad hoc database with the appropriate 
approval of the Ethics and Scientific Committees of the participat-
ing centers (institutional review board [IRB] titles/numbers: IRB-20-
03454, Mount Sinai Hospital; EudraCT: 2013-004538-14, University 
of Verona; CTOT-19 participating sites obtained approval by IRBs at 
the participating sites). We obtained serum levels of interleukin-6 
(IL-6), C-reactive protein (CRP), and ferritin on the day of blood col-
lection from the clinical laboratory data at each participating center.

As additional controls, we used COVID-19 negative (n = 14) and 
positive (n = 16) individuals from the general population admitted 
at Mount Sinai Hospital, New York. Whole blood samples from 
these individuals were analyzed by time-of-flight mass cytometry 
(CyTOF).7 Table S1 includes a list of the markers we used for these 
analyses.

Flow cytometry analyses and anti-SARS-CoV-2 antibody mea-
surements are detailed in Data S1.

2.2  |  Statistical analyses

We expressed results as mean and standard deviation or standard 
error unless stated otherwise. Comparison of continuous variables 
between groups was performed by unpaired t test and categorical 
variables by 2-sided chi-square or 2-sided Fisher's exact test, where 
applicable. A value of P < .05 was considered as statistically signifi-
cant. No correction was made for multiple testing. Statistical analy-
sis was performed using GraphPadPrism® version 8.4.2 software 
package (GraphPad Software Inc, La Jolla, CA).

3  |  RESULTS

3.1  |  Patient population

Clinical characteristics of the 18 hospitalized COVID-19 positive kid-
ney transplant recipients and 36 matched outpatient kidney trans-
plant recipients without COVID-19 are shown in Table 1. Overall 
the subjects were mostly males, with a mean age of 53 years, and 
generally at over 1 year after transplant. Approximately half of the 
patients were African American (Table 1).

Immunosuppression included triple therapy with mycophe-
nolate mofetil (MMF) or mycophenolic acid (MPA), tacrolimus, 



    |  3151HARTZELL ET AL.

and steroids in most of the patients (Table 1). At the time of 
blood collection (day 16.1 ± 10.1 after onset of symptoms) for 
the COVID-19 subjects, the practicing physicians had withdrawn 
MMF/MPA in 5 cases (1 patient withdrew all immunosuppressive 

agents), and in the remaining 13 MMF/MPA was continued at 
reduced doses. Two patients not receiving steroids as part of 
their antirejection therapy had introduced steroids (Table 1). 
Graft function was slightly impaired in both groups (Table 1). 

Overall  
(n = 54) Controls (n = 36)

COVID-19 
(n = 18) P

Age (y) 53.0 ± 11.0 51.8 ± 9.2 55.2 ± 14.0 .3

Sex; n (%) 1

Female 24 (44.4) 16 (44.4) 8 (44.4)

Male 30 (55.6) 20 (55.6) 10 (55.6)

Time after transplant; n (%) 1

<6 mo 9 (16.7) 6 (16.7) 3 (16.7)

6-12 mo 3 (5.6) 2 (5.6) 1 (5.6)

>12 mo 42 (77.7) 28 (77.7) 14 (77.7)

Race; n (%) .04

White 17 (31.5) 14 (38.9) 3 (16.7)

Black 24 (44.4) 17 (47.2) 7 (38.9)

Unknown/Other 13 (24.1) 5 (13.9) 8 (44.4)

Ethnicity; n (%) .04

Hispanic or Latino 12 (22.2) 5 (13.9) 7 (38.9)

Not Hispanic or 
Latino

42 (77.8) 31 (86.1) 11 (61.1)

Chronic immunosuppression; n (%) .9

Tacrolimus 49 (90.7) 32 (88.9) 17 (94.4)

Prednisone 45 (83.3) 30 (83.3) 15 (83.3)

MMF/MPA 42 (77.8) 27 (75.0) 15 (83.3)

Azathioprine 1 (1.9) 1 (2.8) 0 (0)

Immunosuppression withdrawal or tapering; n (%)

Tacrolimus 1 (1.9) na 1 (5.6)

Prednisone 1 (1.9) na 1 (5.6)

MMF/MPA 5 (9.3) na 5 (27.8)

Add-on prednisone; 
n (%)

2 (3.7) na 2 (11.1)

Days between 
symptoms onset 
and sample 
collection

16.1 ± 10.1 na 16.1 ± 10.1

Days between 
admission and 
sample collection

9.8 ± 6.4 na 9.8 ± 6.4

Laboratory at the time of blood collection

White blood cell 
(×103/µL)

7.7 ± 4.3 6.8 ± 3.2 9.5 ± 5.5 .03

Lymphocytes (%) 14.4 ± 10.6 18.7 ± 10.9 8.4 ± 6.5 .0009

Hemoglobin (g/dL) 11.9 ± 2.3 12.9 ± 1.8 10.1 ± 2.1 <.0001

Platelet (×103/µL) 216.2 ± 101.1 216.7 ± 80.7 215.4 ± 134.2 .9

Serum creatinine 
(mg/dL)

2.0 ± 2.2 1.9 ± 2.5 2.3 ± 1.7 .5

Note: Data are average ± SD or n (%).
Abbreviations: COVID-19, coronavirus disease 2019; MMF, mycophenolate mofetil; MPA, 
mycophenolic acid.

TA B L E  1   Patients’ characteristics
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COVID-19 disease severity grade

P3 - 4 (n = 7) 5 (n = 6) 6 (n = 5)

Age (y) 49.7 ± 18.3 53.0 ± 10.4 65.6 ± 2.9 .1

Sex; n (%) .5

Female 2 (28.6) 3 (50) 3 (60)

Male 5 (71.4) 3 (50) 2 (40)

Medical history, n (%)

Heart disease 1 (14.3) 1 (16.7) 1 (20) .9

Hypertension 7 (100) 5 (83.3) 5 (100) .3

Cancer 0 (0) 2 (33.3) 2 (40) .2

Lung disease 2 (28.6) 1 (16.7) 0 (0) .4

HIV/AIDS 0 (0) 2 (33.3) 1 (20) .3

Obesity 4 (57.1) 2 (33.3) 0 (0) .1

Symptoms, n (%)

Fever 5 (71.4) 6 (100) 4 (80) .4

Dyspnea 5 (71.4) 4 (66.7) 5 (100) .4

Diarrhea 2 (28.6) 5 (83.3) 0 (0) .01

Myalgia 5 (71.4) 5 (83.3) 3 (60) .7

Signs, n (%)

Respiratory rate ≥24/min 0 (0) 5 (83.3) 5 (100) .0007

Heart rate >100 beats/min 2 (28.6) 3 (50) 2 (40) .7

Complications, n (%)

Acute kidney injury 5 (71.4) 6 (100) 5 (100) .2

Admission to ICU 1 (14.3) 5 (83.3) 5 (100) .004

Laboratory

White blood cell (×103/µL) 5.1 ± 2.0 11.4 ± 5.6 13.3 ± 5.2 .01

Neutrophils (%) 76.9 ± 8.8 76.9 ± 27.4 88.8 ± 7.9 .4

Lymphocytes (%) 12.7 ± 6.0 6.6 ± 6.2 4.6 ± 4.7 .06

Neutrophils/lymphocytes 8.3 ± 6.9 33.5 ± 31.7 45.2 ± 34.3 .06

Hemoglobin (g/dL) 11.0 ± 2.3 9.8 ± 2.4 9.3 ± 0.7 .4

Platelet (×103/µL) 245.1 ± 150.1 237.2 ± 144.6 147.6 ± 92.6 .4

C-reactive protein (mg/L) 83.8 ± 60.5 137.7 ± 109.0 138.4 ± 99.9 .5

Procalcitonin (ng/mL) 0.2 ± 0.2 2.8 ± 5.3 0.5 ± 0.2 .3

Ferritin (ng/mL) 2263.4 ± 1982.4 3087.8 ± 2785.1 2015.2 ± 2706.9 .7

D-dimer (µg/mL) 1.8 ± 1.0 9.9 ± 8.5 6.3 ± 6.6 .08

IL-6 (pg/mL) 34.7 ± 25.1 94.3 ± 51.1 652.6 ± 943.6 .1

Creatine phosphokinase (U/L) 120.0 ± 133.2 185.7 ± 214.4 62.5 ± 26.4 .5

AST (U/L) 36.9 ± 19.5 36.2 ± 27.3 30.8 ± 17.8 .9

ALT (U/L) 35.0 ± 30.2 33.3 ± 42.0 37.4 ± 35.6 .9

LDH (U/L) 311.7 ± 100.0 602.2 ± 280.8 426.2 ± 160.0 .05

Note: According to a meta-analysis on 1035 renal transplant recipients, mean IL-6 value of in kidney 
transplant recipients is 3.25 pg/mL (95% CI: 2.17, 4.32).14 Acute kidney injury is defined by Acute 
Kidney Injury Network (AKIN) criteria. Disease severity score: (1) not hospitalized with resumption 
of normal activities; (2) not hospitalized but unable to resume normal activities; (3) hospitalized not 
requiring supplemental oxygen; (4) hospitalized, requiring supplemental oxygen; (5) hospitalized, 
requiring nasal high flow oxygen therapy, noninvasive mechanical ventilation or both; (6) 
hospitalized, requiring extracorporeal membrane oxygenation (ECMO), invasive mechanical 
ventilation or both; (7) death.12

Abbreviations: AIDS, acquired immune deficiency syndrome; ALT, alanine aminotransferase; 
AST, aspartate aminotransferase; CI, confidence interval; COVID-19, coronavirus disease 2019; 
HIV, human immunodeficiency virus; ICU, intensive care unit; IL-6, interleukin-6; LDH, lactate 
dehydrogenase. Ref range: C reactive protein 0.0-5.0 mg/L; D-dimer 0.00-0.50 µg/mL; ferritin 
30-400 ng/mL.

TA B L E  2   Characteristics of COVID-19 
positive patients stratified by disease 
severity
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CRP, D-dimer, and ferritin levels were all above normal ranges 
in COVID-19 patients (Table 2). Analysis of serum IL-6 levels (a 
proinflammatory mediator) in the COVID-19 positive subjects 
revealed median values of 237.5 pg/mL (95% confidence interval 
[CI]: 55.3-422.7) (Table 2) that are remarkably higher than those 
reported by others in stable, noninfected, kidney transplant re-
cipients (<5 pg/mL).8

Over a median (interquartile range [IQR]) follow-up of 86.5 days 
(IQR: 81.5-97.8) since admission, 7 COVID-19 patients died and 11 
were discharged. No patients developed biopsy-proven acute re-
jection during this period, but 16 patients showed acute renal graft 
injury (Table 2).

3.2  |  Naïve, effector, memory, dysfunctional, and 
regulatory CD4+ T cell subsets

Flow cytometric analysis showed significantly fewer lymphocytes 
and total T cells in the COVID-19 kidney transplant recipients vs 
controls (Table 1; Figure 1A,B), similar to what has been reported 
by others in COVID-19 positive patients in the general popula-
tion.1,9 Within the T cell population, we observed lower percent-
ages of CD8+ T cells (Figure 1D), and higher CD4+/CD8+ T cell 
ratio (Figure 1E) in the COVID-19 group, whereas percentages 
of CD4 + T cells did not differ between the 2 groups (Figure 1C; 
Figure S1A).

To assess effects on CD4+ T cell subsets we quantified  
naïve (CD45RA+CD45RO−CD27+CD28+), effector (CD45RA− 

CD45RO+CD27−CD28+), and memory (CD45RA−CD45RO+CD27+ 

CD28+) CD4+ T cells in each COVID-19 positive and control subject by 
flow cytometry (gating strategy Figure S1B). These analyses revealed 
significantly more naïve and fewer effector and memory CD4+ T cells 
in COVID-19 patients compared to controls (Figure 2A-C).

We did not detect differences in frequencies of CD4+CD25+ 

CD127low regulatory T cells (TREG) or CD4+CCR4+CD45RA−CD25+ 

CD127low activated TREG
10 between COVID-19 patients and controls 

(Figure 2D,E; Figure S1C).
Previous work by others studying nontransplanted COVID-19 

patients with severe disease showed the emergence of dysfunc-
tional (exhausted, anergic, or senescent) T cells that could nega-
tively affect outcomes.11 When we quantified CD4+ T cells with 
phenotypic characteristics of exhaustion (KLRG1+PD-1+CD57−), 
anergy (KLRG1−PD-1+CD57−), or senescence (KLRG1+PD-1−CD57+) 
we did not detect differences between groups (Figure 2F-H; 
Figure S1D).

3.3  |  Naïve, effector, memory, and dysfunctional 
CD8+ T cells

Analysis of CD8+ T cell subsets similarly revealed no differences in 
naïve or effector subsets between groups (Figure 3A,B), although 
we observed fewer circulating memory CD8+ T cells in the COVID-
19 subjects (Figure 3C). Although we did not observe differences 
in phenotypically exhausted CD8+ T cells between COVID-19 and 
control subjects (Figure 3D), our analyses interestingly showed 
fewer anergic and senescent CD8+ T cells in COVID-19 enrollee 
(Figure 3E,F).

F I G U R E  1   Total lymphocytes and 
T cells in coronavirus disease 2019 
(COVID-19) transplant patients and in 
COVID-19 negative controls. A,B, Total 
lymphocytes and CD3+ percentage of 
acquired cells. C, D, CD4+ and CD8+ cells 
percentage of CD3+ and E, calculated 
CD4+/CD8+ ratio. For 20 control patients, 
lymphocyte and total T cell absolute 
numbers were not available. Data are 
represented as mean and standard error 
of the mean (SEM). Each dot represents 
an individual value. *P < .05; **P < .01; 
***P < .001. CTR, controls [Color figure 
can be viewed at wileyonlinelibrary.com]
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3.4  |  Evidence of enhance humoral immune 
activation in COVID-19-infected transplant recipients

Follicular helper T cells (TFH) promote class switch recombination 
and affinity maturation in germinal centers,12 are essential for 
rapid immunoglobulin G (IgG) antibody production in response 
to Ebola virus13,14 and influenza virus14 and are likely needed for 
development of effective anti-COVID-19 antibody responses.

When we quantified peripheral blood CD4+CXCR5+PD-1+ TFH by 
flow cytometry (gating strategy Figure S3), we did not observe signif-
icant differences between the 2 groups (Figure 4A). We also did not 
observe significant differences in the frequencies of CD4+CXCR5+PD-
1+CCR6−CXCR3+ TFH1 cells (implicated as crucial in antiviral antibody 
responses15), CD4+CXCR5+PD-1+CCR6−CXCR3− TFH2 cells (import-
ant for maturation of B cells into IgG4-secreting cells16), nor in the 
CD4+CXCR5+PD-1+CCR6+CXCR3− TFH17 cells17 between groups 
(Figure 4B-D).

Analysis of peripheral blood B cells (gating strategy in Figure 
S4) showed higher frequencies of total B cells and all B cell subsets 

(including transitional [IgD+CD27−CD19+], switched memory [IgD−CD27+ 

CD19+], switched/activated [CD21−CD95+CD24−IgD−CD27+CD19+], 
recently activated [CD19+CD21+], and regulatory B cells [BREG] 
[CD25highCD71highCD19+]) in COVID-19 subjects compared to 
controls (Figure 4E-J). Analysis of percentages of peripheral blood 
plasma cells (CD19+CD38highCD27highCD138+) and plasmablasts 
(CD19+CD38highCD27highCD138−) showed no differences between 
groups (data not shown).

3.5  |  Anti-SARS-CoV-2 antibodies

To assess whether these immunosuppressed kidney transplant re-
cipients could mount an antibody response to SARS-CoV-2, we 
measured specific immunoglobulin M (IgM) and IgG antibodies by 
ELISA in 16 patients with available sera. When we plotted anti-
SARS-CoV-2 IgM and IgG over time after symptoms, we noticed that 
most patients developed antivirus antibodies starting 10 days after 
the symptom onset (Figure 4K-L).

F I G U R E  2   CD4+ T cells and cytokines 
in coronavirus disease 2019 (COVID-19) 
transplant patients and in COVID-19 
negative controls. A-C, Naïve, effector, 
and memory CD4+ cells percentage of 
total CD4+ T cells. D,E, Regulatory T cells 
(TREG) and activated TREG percentage of 
CD4+. F-H, Dysfunctional CD4+ T cell 
percentages of total CD4+ T cells. We 
did not have enough cells to perform 
naïve, effector, memory, and TREG 
staining for 6 COVID-19 patients. For 17 
control patients, staining was not done 
for exhaustion, anergic, or senescent 
cells. Data are represented as mean 
and standard error of the mean (SEM). 
Each dot represents an individual value. 
*P < .05; ** P < .01; ***P < .001. CTR, 
controls; TREG, regulatory T cells [Color 
figure can be viewed at wileyonlinelibrary.
com]
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We did not observe significant differences in the incidence of 
anti-SARS-CoV-2 (60.0% vs 36.4%, respectively; P: .6) or IgG (60.0% 
vs 63.6%; P > .9) in subjects who underwent MMF/MPA withdrawal 
vs those who maintained MMF/MPA.

3.6  |  Immune changes according to disease 
severity and time after symptom onset

To test whether immune phenotypes associate with disease severity 
of disease (Data S1), we stratified patients into 3 groups, low (score 
3-4), intermediate (score = 5), and high risk (score ≥6),18 and we com-
pared the percentages of each T and B cell subset and anti-SARS-
CoV-2 IgM and IgG across patients in the 3 categories (Table 2), 
noting that IL-6, a marker of inflammation, was highest in patients 
with most severe disease (Table 2).

We did not detect significant differences across the 3 groups 
for any of the analyzed T and B cell subsets (Figure 5A-X), nor for 
anti-SARS-CoV-2 antibody levels (Figure 5Y,Z). Analysis of mito-
gen-induced cytokine production showed no significant differences 
in IL-2, IL-10, IL-17, interferon-gamma (IFN-γ), and TNFα in CD4+ 
(Figure 5AA-JJ) and CD8+ (Figure 5C) T cells.

Notably, the PD1+ T cell subsets did not produce cytokines, 
verifying their dysfunctional status (Figure S2). Altogether, 
these data indicate that the immune changes in COVID-19 pa-
tients were independent of disease severity, at least in hospi-
talized patients.

To assess the variations in COVID-19 immune response over 
time, we analyzed changes in the immune phenotype in serial 
samples from 3 COVID-19 kidney transplant recipients. Overall, 
data from these 3 patients suggest a trend toward lower percent-
ages of circulating regulatory T cells (Tregs), exhausted T cells, 

B cell subsets, and anti-SARS-CoV-2 IgG levels. Interestingly, 
the absolute numbers of circulating T cells increased in the 2 
patients who were successfully discharged, whereas they re-
mained low in the patient who died (COVIDTX32) (Figure 6).

3.7  |  Immune changes in COVID-19 negative and 
positive individuals from the general population

Finally, we tested whether the described immune changes as-
sociated with COVID-19 infection were unique to kidney trans-
plant recipients or are similarly present in infected individuals in 
the general (nontransplanted) population. To address this issue, 
we analyzed samples from 16 individuals admitted for COVID-
19 at Mount Sinai Hospital and 14 healthy controls (Table S3). 
These samples were analyzed by CyTOF (as part of a concerted 
multi-PI effort within the institution), a technology that gen-
erates data that correlates well with data obtained by flow 
cytometry.19

Similar to findings in kidney transplant recipients, we observed 
that COVID-19 individuals in the general population showed higher 
frequencies of active B cells (CD19+CD27+) compared to healthy 
controls (Figure 7). At variance from transplant recipients, individ-
uals from the general population with COVID-19 showed increased 
Tregs (Figure 7).

4  |  DISCUSSION

Our unique analysis of peripheral blood immune phenotypes in 
a cohort of COVID-19 infected kidney transplant recipients pro-
vides evidence that these individuals are capable of developing 

F I G U R E  3   CD8+ T cells in coronavirus 
disease 2019 (COVID-19) transplant 
patients and in COVID-19 negative 
controls. A-C, Naïve, effector, and 
memory CD8+ cells percentage of total 
CD8+ T cells. We did not have enough 
cells to perform staining for 6 COVID-19 
patients. D-F, Dysfunctional CD8+ cells 
percentage of total CD8+ T cells. For 17 
control patients, staining was not done 
for exhaustion, anergic, or senescent 
cells. Data are represented as mean 
and standard error of the mean (SEM). 
Each dot represents an individual value. 
*P < .05; ** P < .01; ***P < .001. CTR, 
controls [Color figure can be viewed at 
wileyonlinelibrary.com]
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an adaptive immune response to SARS-CoV-2 despite immu-
nosuppression to prevent graft rejection. We observed higher 
serum IL-6, broad activation of B cell subsets, and detectable 
serum anti-SARS-CoV-2 IgM and IgG as early as 10 days after 
the onset of clinical symptoms in the majority of COVID-19 kid-
ney transplant recipients, findings similar to those reported by 
others in COVID-19-infected but nontransplanted subjects.20 
We did not detect differences in circulating plasma cells or plas-
mablasts in our subjects. As the majority of antibody secreting 
cells are sequestered in the spleen or bone marrow,21 it is not 
surprising that similar frequencies of these cells are detected in 
the circulation of transplanted subjects with and without COVID-
19 infection. In a separate cohort of nontransplant patients with 
COVID-19, we also found a significant increase in active B cells, 
indicating that immune changes observed in transplant recipients 
on chronic immunosuppression are similar to those observed in 
the general population.

Although MMF/MPA was withdrawn in 5/18 subjects at the time 
of hospitalization (Table 1), these changes did not appear to have an 
impact on the development of SARS-CoV-2-specific antibodies, but 
longer follow-up and additional analyses will be required to deter-
mine whether the subjects have truly developed protective, memory 
immunity.

The COVID-19 transplant patients in our study developed 
lymphopenia, similar to data reported by others in nontrans-
planted patients.1 Progressive lymphodepletion has been asso-
ciated with clinical deterioration COVID-19 infection, whereas 
recovery of lymphocyte counts tended to directly precede clinical 
recovery.22 The cross-sectional nature of our study prevents to 
formally test whether the same trends occur also in kidney trans-
plant recipients. However, the inverse relationship between dis-
ease severity and lymphocyte numbers (Table 2) suggests that a 
similar phenomenon occurs in transplant recipients. Intriguingly, 
in the 3 patients with serial samples analyzed in the present study, 
progressive lymphocyte decline was observed only in the patient 
with fatal outcome.

We found fewer memory CD8+ T cells in COVID-19 kidney 
transplant recipients compared to COVID-19 negative controls. 
Consistent with experimental data in mice infected with influenza,23 
it is possible that antiviral CD8+ T cells are recruited into the lungs 
and other sites of SARS-CoV-2 infection. Our data indicate that kid-
ney transplant recipients have fewer CD4+ and CD8+ IL-17+ T cells 
in the circulation. Similar to CD8+ memory T cells, it is possible that 
these cells are recruited in peripheral tissues. IL-17 has been im-
plicated in the pathogenesis of COVID-19 also in nontransplanted 

patients.24 The fact that IFN-γ, IL-2, and TNF-α CD4+ and CD8+ T 
cells did not differ between COVID-19 positive and negative pa-
tients speaks against a skew in T cell polarization, but more studies 
are needed to better understand this mechanism.

We interestingly found no evidence that COVID-19 promotes 
T cell dysfunction in our study subjects. Exhaustion and other 
forms of T cell dysfunction are commonly observed in chronic 
viral infections and can be detrimental for viral clearance.25 
Patients in our study developed disease ~2 weeks prior to blood 
collection, leaving a limited amount of time for the development 
of exhaustion. Quite surprisingly, others have found signs of T cell 
exhaustion in early phases of COVID-19 infection and suggested 
a causal link between T cell exhaustion and progression.26 Based 
on these findings,26 we stained CD4+ and CD8+ T cells for TIM3 
and LAG3, additional markers of T cell exhaustion, but we did not 
detect any association between disease severity and CD4+ or 
CD8+ PD1+TIM3+ or PD1+LAG3+ T cells (not shown). It is tempting 
to speculate that immunosuppressive therapy, while allowing the 
formation of an adaptive immune response, prevents/delays the 
onset of T cell dysfunction, but more studies are needed to for-
mally test this hypothesis.

In kidney transplant recipients, we found that, similar to the 
general population,1 COVID-19 was associated with a significant 
increase in inflammatory markers, including IL-6, CRP, ferritin, and 
D-dimer. Importantly the ratio between neutrophils and lympho-
cytes, a major risk factor for mortality in the general population,27 
was also significantly higher in more severe cases of COVID-19 
(Table 2). Altogether, these data indicate that COVID-19 is associ-
ated with a significant inflammatory response also in kidney trans-
plant recipients, despite ongoing chronic immunosuppression.

Intriguingly, we found a significant increase in circulating Tregs 
in COVID-19 individuals from the general population that was not 
present in kidney transplant recipients. Others have shown a sim-
ilar increase in Tregs in COVID-19 subjects from the general pop-
ulation.28 Lack of Treg expansion in kidney transplant recipients 
may be owing to the use of calcineurin inhibitors that prevent Treg 
induction,29 but more studies are needed to test this hypothesis. 
Others have shown that SARS-Cov-2-specific cells represent less 
than 1% of the total CD4+ and CD8+ T cells.30 Therefore, it is likely 
that the changes in frequencies of circulating lymphocytes that 
we report are in fact not driven mainly by SARS-CoV-2 specific 
cells but rather part of an overall activation of the adaptive im-
mune response.

In summary, our findings indicate that stable kidney trans-
plant recipients on maintenance calcineurin inhibitor-based 

F I G U R E  4   TFH and B cells subsets and anti-SARS-CoV-2 IgG and IgM antibody levels in coronavirus disease 2019 (COVID-19) transplant 
patients and in COVID-19 negative controls. A-D, Total TFH and TFH subsets percentage of CD4+; E-J, B cell subsets that differ significantly 
between groups. We did not have enough cells to perform TFH staining for 6 COVID-19 patients. For 2 control patients, staining was not 
done for Total TFH and TFH subsets. Data are represented as mean and standard error of the mean (SEM). Each dot represents an individual 
value. *P < .05; **P < .01; ***P < .001. K, Anti-SARS-CoV-2 IgM and L, IgG at various time-points after symptoms onset. Each dot represents 
an individual value. Dotted line represents optical density (OD) ratio to negative control. *P < .05. CTR, controls; IgG, immunoglobulin G; 
IgM, immunoglobulin M; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TFH, follicular helper T cell [Color figure can be 
viewed at wileyonlinelibrary.com]
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immunosuppression are capable of developing immune responses to 
SARS-CoV-2 that at least early on are similar to those observed in 
the general population. Importantly, immunosuppression reduction/

withdrawal was almost invariably associated with graft impairment, 
although no patients performed a biopsy to document the presence 
of acute rejection. Nonetheless, results of controlled prospective 

F I G U R E  5   Cell subsets and anti-SARS-CoV-2 antibody levels according to coronavirus disease 2019 (COVID-19) severity. T and B cell 
subsets and anti-SARS-CoV-2 IgM and IgG levels in COVID-19 patients stratified in 3 groups according to disease severity at the time 
of sampling: 3 to 4, low (n = 7); 5, moderate (n = 6); and 6 to 7, severe (n = 5) . We defined COVID-19 severity using a scale from 1 (not 
hospitalized and resumed normal activities) to 7 (death).18 Data are represented as mean and standard error of the mean (SEM). Each 
dot represents an individual value. *P < .05. Average of control samples is shown by dotted horizontal line on bar charts. No subsets are 
significantly different between groups. IgG, immunoglobulin G; IgM, immunoglobulin M; IL, interleukin; IFN-γ, interferon γ; SARS-CoV-2, 
severe acute respiratory syndrome coronavirus 2; TNFα, tumor necrosis factor α [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  6   Serial cell subsets and anti-SARS-CoV-2 antibody levels in 3 coronavirus disease 2019 (COVID-19) patients. T and B cell 
subsets and anti-SARS-CoV-2 IgM and IgG levels at 2 serial time points in 3 COVID-19 patients. Patients COVIDTX12 and COVIDTX28 
were discharged at 47 and 45 d since symptom onset, respectively, while patient COVIDTX32 died on day 32. IgG, immunoglobulin G; IgM, 
immunoglobulin M; IL, interleukin; IFN-γ, interferon γ; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TNFα, tumor necrosis 
factor α; TREG, regulatory T cells [Color figure can be viewed at wileyonlinelibrary.com]
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trials will be required to definitively address this clinically significant 
treatment decision.
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F I G U R E  7   Cell subsets in coronavirus disease 2019 (COVID-19) positive nontransplanted individual and in healthy controls. Time-of-
flight mass cytometry (CyTOF) analyses of T and B cell subsets in COVID-19 patients stratified in positive nontransplanted individuals and in 
healthy controls. Data are represented as mean and standard error of the mean (SEM). Each dot represents an individual value. *P < .05. IgM, 
immunoglobulin M; TREG, regulatory T cells [Color figure can be viewed at wileyonlinelibrary.com]
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