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Abstract

Recent advances in next generation sequencing-based single-cell technologies have allowed high-

throughput quantitative detection of cell-surface proteins along with the transcriptome in 

individual cells, extending our understanding of the heterogeneity of cell populations in diverse 

tissues that are in different diseased states or under different experimental conditions. Count data 

of surface proteins from the cellular indexing of transcriptomes and epitopes by sequencing 

(CITE-seq) technology pose new computational challenges, and there is currently a dearth of 

rigorous mathematical tools for analyzing the data. This work utilizes concepts and ideas from 

Riemannian geometry to remove batch effects between samples and develops a statistical 

framework for distinguishing positive signals from background noise. The strengths of these 

approaches are demonstrated on two independent CITE-seq data sets in mouse and human.

I. INTRODUCTION

In recent years, single-cell analysis has undergone immense and rapid progress, continuing 

to transform our understanding of the diversity, development, and cooperation of distinct cell 

types in various tissues. It is now possible to measure the level of messenger RNAs 

(mRNAs) in thousands of individual cells via a single experiment of single-cell RNA 

sequencing (scRNA-seq). Furthermore, multi-omics technologies providing complementary 

information about the genomic, proteomic, and metabolomic states of single cells are being 

developed and applied.

Immunophenotyping is the process of classifying immune cells, often relying on the 

detection of cell-surface proteins. For example, fluorescent activated cell sorting (FACS), a 

commonly used technique, can be performed before scRNA-seq to provide the 
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immunophenotype information of cells. Three recent technologies based on next-generation 

sequencing (NGS) have enabled simultaneous performance of immunophenotyping and 

scRNA-seq transcriptomic profiling at the single-cell level: Ab-Seq [1], cellular indexing of 

transcriptomes and epitopes by sequencing (CITE-seq) [2] and RNA expression and protein 

sequencing (REAP-seq) [3]. These methods allow the detection of selected proteins on the 

surface of single cells by adding a panel of DNA-barcoded antibodies on top of the existing 

high-throughput scRNA-seq techniques. The antibodies bind their corresponding surface 

proteins, and after cell lysis, the DNA barcodes attached to the antibodies are PCR amplified 

and sequenced along with the mRNAs. All three methods use a unique molecular identifier 

(UMI)-based protocol, which largely reduces amplification biases. In addition to a count 

matrix for genes from sequencing the mRNAs, these methods also yield a matrix of UMI 

counts – referred to as the antibody-derived tag (ADT) counts in the CITE-seq literature – 

derived from sequencing the barcodes attached to the antibodies.

The number of different DNA-barcoded antibodies added in CITE-seq, typically 10–100, is 

much smaller than the number of genes measured, and the ADT assay is currently less prone 

to “dropout” events compared to the RNA assay [2]. Arising directly from measuring a 

selected list of biologically relevant cell-surface proteins, the ADT count matrix provides 

complementary information about the immunophenotypes of single cells, while posing new 

computational challenges in data analysis. Similar to other single-cell techniques, 

sequencing depth differs from cell to cell; a sound model of ADT count data should take the 

variation in sequencing depth into account. While it has been demonstrated that UMI-based 

scRNA-seq data can be modeled with negative binomial (NB) or zero-inflated negative 

binomial (ZINB) models even for heterogeneous cells [4–6], a direct application of the same 

approach is not ideal for the count matrix of surface proteins, because a significant portion 

of the counts comes from nonspecific background binding of antibodies, making the 

distribution of the data bimodal or multimodal [2]. Fortunately, this type of background 

noise can be assessed by spiking in control cells from another species that normally do not 

cross-react with the antibodies.

We are thus motivated to develop a rigorous statistical method that, for each protein 

measured, fits the NB or ZINB distribution to the ADT count data of spiked-in cells and then 

uses this null model to distinguish positive signals from the background noise; to our 

knowledge, a rigorous statistical framework for such hypothesis testing is not yet available. 

Once the parameters of the null model are determined, we can detect positive signals at an 

adjustable false discovery rate (FDR) and also derive an interpretable method of data 

transformation. However, when multiple samples from the same lab are being analyzed, we 

have observed that model fitting could be adversely affected by systematic differences in 

measurement between samples, suggesting that potential systematic biases should be 

removed prior to model fitting. To accomplish this task, we view single cells as points on a 

Riemannian manifold, while defining the difference between any two cells as the 

Riemannian distance on the manifold. This approach allows us to apply ideas from 

differential geometry to develop a method for removing inter-sample differences on the 

manifold, while preserving the pairwise distance between cells from the same sample. 

Therefore, for multiple samples, our aim is to first alleviate potential batch effects using 

what we can learn from the spike-in data and subsequently apply the above statistical 
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formalism to the corrected protein counts to detect positive signals at a desired FDR. We 

acknowledge that the problem of batch effects is complicated and that the information 

contained in spiked-in cells might not be sufficient to resolve it completely.

In the following sections, we first introduce the notion of high-dimensional Riemannian 

manifold endowed with the Fisher-Rao metric, and apply the idea to map the 

immunophenotype profiles of single cells to a hypersphere. The gist of our batch correction 

approach relies on the intuition that on this hypersphere, the distribution of points 

corresponding to spiked-in control cells should be similar between independent samples. We 

will thus remove sample-specific biases by aligning the center of mass (COM) of spiked-in 

cells from each sample to a consensus COM. We then apply the same aligning 

transformation learned from the spike-in data to the native species data, thereby removing 

potential systematic biases present in both spiked-in and native cells of a given sample. Main 

computational challenges lie in computing the COM of a point cloud on the hypersphere and 

“parallel transporting” the point cloud along a specific path connecting the old and new 

COM, according to some notion of geometry defined on the manifold. Finally, we 

implement expectation-maximization (EM) algorithms to fit the parameters of our null 

models describing nonspecific binding of antibodies, and perform statistical tests to detect 

signals, while keeping the false discovery under control.

II. RESULTS

We have applied our geometric and statistical methods to the following two CITE-seq data 

sets: (1) the public data set of human cord blood mononuclear cells (CBMC) [2], with a low 

level (~ 5%) of spiked-in mouse control cells; (2) our own data set consisting of 6 samples, 

each containing immune cells isolated from mouse skin after topical treatment with either 

inflammation-inducing oxazolone (OXA, 3 mice) or ethyl alcohol (EtOH, 3 mice) as control, 

as well as a small percentage (~ 5%) of human HEK293 cells spiked in after the treatment 

and isolation of the mouse cells [7].

In the first data set, individual cells’ RNA expression (scRNA-seq) profiles were used to 

identify the mouse spiked-in cells and classify the human cells into distinct cell types 

(Appendix A); in the second set, scRNA-seq data were used only to identify the human 

spiked-in cells. For both data sets, the relatively small number of spiked- in cells from a 

distinct species were identified and separated by calculating the percentage of total RNA 

counts mapped to the native vs. spiked-in species’ genome (Appendix A). Our approach 

utilizes the geometric and statistical information contained in spiked-in cells to model the 

background noise and systematic batch effects in the count data of cell-surface proteins.

Each experiment under consideration has a fixed list of M DNA-barcoded antibodies added 

before sequencing, where each antibody primarily binds its corresponding cell-surface 

protein, although some nonspecific binding manifested as background noise may also be 

possible. This experimental design determines the list of M cell-surface proteins, the 

abundance of which is to be measured by sequencing the DNA barcodes of corresponding 

antibodies. For a set of N single cells sequenced, a subset of D proteins selected from the 

whole list yields an N × D matrix of count data,
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C =

c1, 1 c1, 2 ⋯ c1, D
c2, 1 c2, 2 ⋯ c2, D
⋮ ⋮ ⋮

cN, 1 cN, 2 ⋯ cN, D

, (1)

where ci, j ∈ ℤ ≥ 0 denotes the UMI count, for the i-th cell, of the j-th protein in the selected 

subset. A row vector in this matrix thus contains the immunophenotype information of the 

corresponding cell. In our analysis, the chosen set of N cells could be all the cells sequenced 

in an experiment or only a subset, representing a certain species or a particular inferred cell 

type. Similarly, the dimension D could be equal to the total number M of assayed surface 

proteins, or it could be chosen to be smaller, depending on the biological question of 

interest.

A. Mapping immunophenotypes of cells to points on a Riemannian manifold

We first transform the row vector of count data for the i-th cell into a probability vector, with 

the j-th component pj calculated as the fraction ci, j/∑k = 1
D ci, k . The fraction can be 

interpreted as the maximum likelihood estimation (MLE) of the probability of finding a 

certain protein on the i-th cell to be the j-th protein, given that it is one of the D proteins. 

This transformation maps each cell to a point on the (D − 1)-dimensional probability 

simplex Δ D − 1 ⊂ ℝD, which, under the coordinate system (p1, … , pD) of the ambient 

space, is a polytope satisfying ∑j = 1
D pj = 1 and pj ≥ 0. On the simplex, the usual Euclidean 

distance does not properly represent how dissimilar two points are from each other. Hence, 

we employ mathematical techniques from information geometry and differentiable 

manifolds to enable the analysis of single-cell data on the probability simplex.

The open probability simplex ᐂ D − 1 , i.e., the relative interior of the probability simplex, 

satisfying

∑
j = 1

D
pj = 1, pj > 0, (2)

forms a differentiable Riemannian manifold ℳ when equipped with the Fisher-Rao 

information metric [8–10]. A vector u  in the tangent space Tpℳ at p = (p1, … , pD) is given 

by

u = u1, …, uD ∈ ℝD, such that ∑
j = 1

D
uj = 0; (3)

for any u , u ′ ∈ Tpℳ, the inner product defined by the Fisher-Rao metric is

u , u ′ p = ∑
j = 1

D ujuj′
pj

. (4)
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Let N ≡ 2S D − 1 ⊂ ℝD denote a (D − 1)-dimensional hypersphere of radius R =2 centered 

at the origin, and N+ ≡ 2S+
D − 1 ⊂ N the positive orthant of the hypersphere. It is well 

known [8–10] that the open probability simplex can be isometrically mapped onto N+ via 

the diffeomorphism

ψ:ℳ N+, p x, p1, …, pD x1, …, xD ≡ 2 p1, …, 2 pD , (5)

where x = ψ p ∈ N+ has coordinates (x1, …, xD) satisfying

∑
j = 1

D
xj2 = R2 = 4, xj > 0. (6)

The tangent space at x ∈ N+ can be obtained as the image of the differential of ψ,

Dψ p :Tpℳ TxN+, u w = Dψ p u , wj = uj
pj

, (7)

with the standard inner product

∀w , w ′ ∈ TxN+, w , w ′ x = ∑
j = 1

D
wjwj′ . (8)

Note that the pullback of this standard inner product on N+ by ψ is just the Fisher-Rao inner 

product on the open probability simplex ℳ.

The entire hypersphere N can be regarded as a manifold embedded in the Euclidean space 

ℝD with the Cartesian coordinates (x1, … , xD). Unlike the geometry of the open probability 

simplex, several properties of the hypersphere with the standard induced metric from ℝD

facilitate straightforward intuition and calculations. For example, any point x ∈ N on the 

hypersphere can be represented as a vector x = (x1, …, xD), such that a vector w ∈ TxN in 

the tangent space has coordinates w = (w1, …, wD) satisfying x · w = ∑j = 1
D xjwj = 0, where 

the dot (·) denotes the usual dot product in ℝD. Furthermore, the geodesic between two 

points x and y on a manifold can be derived using the metric-compatible Levi-Civita 

connection on the manifold. When the manifold is the hypersphere N of radius R = 2, the 

geodesic is simply the great arc connecting the two points; that is, with the vector 

representations x = (x1, …, xD) and y = (y1, …, yD) in the ambient Euclidean space, the 

geodesic distance between x and y is given by

dN x, y ≡ R arccos x·y
R2 = R arccos ∑j = 1

D xjyj
R2 . (9)

Zhang et al. Page 5

Phys Rev E. Author manuscript; available in PMC 2020 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



One of the goals in our analysis is to adjust the count data of immunophenotypes by first 

mapping them to points on the hypersphere N, then removing sample-specific biases on N
where calculations are simpler, and eventually mapping the corrected points back to count 

data. As we try to map the count data of cell-surface proteins to the hypersphere, however, 

there is a small caveat that we need to address. That is, one or more counts of surface 

proteins might be zero for a cell, and the probability vector will consequently reside on the 

boundary of the probability simplex, where the Fisher-Rao metric is not defined. Suppose in 

the probability vector (p1, … , pD), one component, say pk, is 0. One strategy is to replace it 

with a small positive number, pk pk = ϵ, and rescale the remaining components as 

pℓ ≠ k pℓ = pℓ 1 − ϵ , so that the normalization ∑j = 1
D pj = 1 is still preserved. The 

probability vector now resides on ℳ and can be mapped to a point x1, …xD ∈ N with 

xk = 2 ϵ. The distance from this point to any other point on N is well defined; taking the 

limit ϵ → 0, the distance remains finite as the point is pushed to the boundary of the positive 

orthant with its components being xk = 0 and xℓ ≠ k = 2 pℓ . The argument can be 

generalized to the case where there are more than one protein with zero UMI counts.

In summary, given a selected list of D surface proteins and the N × D count matrix, each row 

[ci,1, … , ci,D] representing the immunophenotype of the i-th cell can be mapped to a point 

on a (D − 1)-dimensional hypersphere of radius 2, with coordinates (x1, … , xD) given by

xj = 2 ci, j
∑k = 1

D ci, k
. (10)

Figure 1 demonstrates two distinct mappings of the in-dicated cell types from the human 

CBMC data set. For the sake of visualization, we have chosen the dimensionality to be D = 

3. For the list {CD3, CD19, CD56}, we observe that most T cells reside in one corner of the 

positive-orthant hypersphere with a large CD3 component, while most B cells are in another 

corner with a large CD 19 component, both forming densely packed point clouds clearly 

separated from other cell types and from each other. For the complementary list {CD3, 

CD19, CD56}, we see a further separation of CD4+ T cells and CD8+ T cells (although 

some of them seem to have been misclassified). By contrast, the spiked-in mouse cells and 

the human erythrocytes (red blood cells) do not possess those human-specific surface 

proteins expressed on immune cells; therefore, their count data only come from background 

nonspecific binding to the DNA-barcoded antibodies, and their corresponding point clouds 

he far away from any of the corners or edges and mostly overlap with each other. In the 

following sections, we will introduce a method that utilizes the data of spiked-in control 

cells to remove systematic differences between samples and to model the “noise” of 

nonspecific binding.

B. Computing the Riemannian mean and removing batch effects on the hypersphere

With the immunophenotypes of single cells mapped to points on the hypersphere, we can 

adjust the points from different experiments and remove sample-specific biases by 

employing the idea, from statistics, of standardizing data distributions by aligning their mean 
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vectors. On a Riemannian manifold, Ffechet mean generalizes the notion of Euclidean mean 

[11]. It is also often referred to as the Karcher mean, Riemannian center of mass, or 

Riemannian mean in the literature [10, 12, 13]. In this work, we will simply use the term 

Riemannian mean and adopt the recent numerical algorithm for computing the Riemannian 

mean of a set of points on the hypersphere [10].

Computing the COM of a point cloud on a Riemannian manifold involves minimizing an 

objective function consisting of the pairwise distance between the candidate COM and every 

point mass in the collection, thus requiring an investigation of the shortest distance between 

two given points or, equivalently, the geodesic path connecting them. On the (D − 1)-

dimensional hypersphere N of radius R, a geodesic g parameterized by t, satisfying the 

conditions g t = 0 = x ∈ N, and d
dtg t = 0 = w ∈ TxN, is given by

gj t = xj cos w t
R + wjR

w
sin w t

R , (11)

where the embedding coordinates of x and g in ℝD are x = (x1, …, xD) and g = (g1, …, gD), 

respectively, and w ≡ w , w x. Taking t = 1, we obtain the exponential map on the 

hypersphere, Expx:TxN N, w y = g 1 , with the corresponding vector in ℝD given by

y = x cos w
R + w R

w
sin w

R . (12)

The inverse of the exponential map, Expx
−1:N TxN, y w = Expx

−1 y , can be easily 

computed by the Gram-Schmidt process and is given in the embedding Euclidean 

coordinates by

w = θ
sin θ y−x cos θ , θ = arccos x⋅y

R2 , (13)

for which θ = 0 is reached if and only if s = r, and in that case, w = 0  is obtained by taking 

the limit θ → 0. It follows that the norm of the vector w ≡ Expx
−1 y  is equal to the geodesic 

distance between the two points on the hypersphere (9),

w = Rθ = dN x, y .

Note that because the exponential map commutes with isometry, the exponential map and 

the inverse exponential map on the open probability simplex ℳ can be obtained from these 

results on the hypersphere by using Dψ and (Dψ)−1.

Zhang et al. Page 7

Phys Rev E. Author manuscript; available in PMC 2020 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We can now define the Riemannian mean on a manifold, generalizing the Euclidean COM as 

follows: given a set of N data points {y(1), … , y(N)} with corresponding masses {m1, … , 

mN} on the hypersphere, the Riemannian mean y of the collection of point masses is

y = arg min
x

∑
i = 1

N
midN

2 x, y i

= arg min
x

∑
i = 1

N
mi w i 2

,
(14)

where w i ≡ Expx
−1 y i  is the inverse exponential map at x. The constrained gradient 

condition with respect to x then reads

∑
i = 1

N
miw

i = 0 , (15)

and the Riemannian mean on the hypersphere can be attained numerically in iterative steps 

until this condition is approximately satisfied [10]. Mapping back the resulting mean to the 

probability simplex ℳ via the inverse isometry ψ−1 yields the corresponding Riemannian 

mean on ℳ. In our biological application, we take all point masses to be 1.

As the human cells in the CBMC data, are labeled with cell type information inferred from 

the transcriptome, we have computed the Riemannian mean for each cell type, as well as the 

spiked-in mouse cells. The result depends on the choice of surface protein subsets. In Fig. 1, 

the Riemannian mean of each cell type is shown as a large dot with black outline. We see 

that the Riemannian mean is a good representative of a densely packed point cloud on the 

sphere. Figure 2 shows the components of the Riemannian mean for D = M = 13 (all the 

proteins) and D = M − 1 = 12 (CD45 excluded). We see that, in this case, excluding CD45 

increases the contrast of specific markers associated with each cell type, due to the fact that 

CD45 is generally high in human immune cells and may suppress the resolution of other 

cell-surface markers specific to certain immune cell subtypes. We also see that CD 10, 

CCR5, and CCR7 are not biological markers for any of the cell types, consistent with the 

result in [2]. This analysis illustrates how the Riemannian mean summarizes a set of 

homogeneous cells, and this idea will guide our method for removing sample-specific 

biases.

For our own data, set of immune cells isolated from the mouse skin, plus spiked-in human 

cells, we have only identified the species without further classification into distinct cell 

types. Figure 3 shows the components of Riemannian mean for the mouse and human cells 

in each of the 6 samples, in which we include all proteins measured, D = M = 42. We 

observe not only biological differences caused by the different treatment conditions – e.g., 

the enrichment of C-D11b in OXA-trea.ted mouse cells – but also some systematic 

differences between samples subjected to the same treatment – e.g., CD69 being much 

higher in EtOH2 than in EtOHl and EtOH3 for both mouse and human data.. For the spiked-

in human cells, all the count data, should in principle come from nonspecific binding, but the 

Riemannia.n mean of some samples are very much separated from the rest. In fact, certain 
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surface proteins (e.g., CD69, CD44, CD134, and CD86) show notable, reproducible skews 

in both mouse and human cells of the same sample. The pattern of certain surface protein 

enrichment in spiked-in human cells of a specific sample and the persistence of these biases 

in the mouse cells of the same sample suggest that there might exist systematic differences 

between the samples. These differences between samples can be further visualized in the 

principal component analysis (PCA), where the point clouds of EtOH2, OXA1, and OXA2 

are seen not to overlap with the other similarly treated samples for both human and mouse 

cells [Fig. 4(a,b)]. Systematic differences between samples, also known as batch effects, will 

prevent comparison between different experiments. We now describe our method for 

correcting such batch effects by aligning the Riemannian mean of samples and parallel 

transporting the collection of data from each sample along a geodesic path connecting the 

old COM and the new aligned COM.

In the above discussion of Riemannian mean, we have seen that given a reference point x, 

points y(1), … , y(N) in its neighborhood can be mapped to vectors w 1 , …, w N
 in the 

tangent space TxNviay i w i = Expx
−1 y i , and vice versa. Using the Levi-C-ivita 

connection, we propose to parallel transport these vectors along the geodesic path from x to 

a new reference point z, and then retrieve points in the neighborhood of z via the exponential 

map acting on the transported vectors lying in TzN. On the hypersphere embedded in ℝD, 

this transformation is equivalent to a rotation in the plane spanned by the vectors x, z ∈ ℝD. 

Using (12) and (13), we have for the rotation

z = x cos θ+v
θsin θ = R x cos θ + v sin θ , (16)

with θ = arccos(x · z/R2), v = Expx
−1 z ∈ TxN, and the unit vectors x = x/ x·x and 

v = v/ v·v. For a point y(i) in the neighborhood of x, the corresponding point transported to 

the neighborhood of z is given by

y i = y i − y∥
i 1 − cos θ + y⊥

i sin θ, (17)

in which

y∥
i ≡ y i · x x + y i · v v,

y⊥
i ≡ y i · x v − y i · v x .

This approach thus enables a method of correcting batch effects by aligning the Riemannian 

mean x of a point cloud from each sample to a consensus reference point z, and thereby 

transporting each point cloud to the neighborhood of z. As previously discussed, the spiked-

in human cells in each mouse sample are supposed to measure “noise” from nonspecific 

background binding and should be similarly distributed on the hypersphere. We have chosen 

the consensus reference point z to be the Riemannian mean of the aggregated human cells 

from three samples for which the point clouds of human cells mostly overlap, namely 

EtOHl, EtOH3, and OXA3 [Fig. 4(a)]. The points transported to this reference point z 
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represent the immunophenotypes of cells after the batch correction. The same rotation on the 

hypersphere is now applied to the mouse cells to remove systematic biases between samples. 

As the operation preserves any pairwise distance within a point cloud on the manifold, our 

method of batch correction has the advantage of not distorting the relationship between cells 

from the same sample.

As an approximate inverse of (10), we calculate the corrected fractions of surface proteins 

from the corrected coordinates on the hypersphere, and restore the count data by multiplying 

the fractions by the total number of UMI counts and rounding the results to nearest integers. 

It is possible that after the batch correction, some points on the hypersphere could have 

small negative coordinate components; i.e., some points may be moved out of the positive 

orthant after the rotation. As the components of a probability vector can never be negative, 

we force the negative components in (x1, … , xD) to be zero, and rescale other components 

so that the probability normalization still holds. In our experience, this thresholding has a 

negligible effect on the downstream analysis. We see in Fig. 4(c) and (d) that our batch 

correction method has successfully removed the differences between spiked- in human cells, 

and also aligned the mouse samples according to the treatment conditions. The analysis of 

variance (ANOVA), comparing the between-sample variance against the within-sample 

variance for each surface protein, also shows that our batch correction reduces the inter-

sample difference both among the spiked-in human cells from all six samples and among the 

mouse cells undergoing the same treatment [Fig. 4(e)]. We showcase the successful removal 

of batch effects using four surface proteins, CD69, TCR γ/δ, CD90.2 and I-A/I-E, in Fig. 5. 

Before the correction is applied, it can be seen that biases found in the distribution of the 

spiked-in human cells in an outlier sample is often replicated in that of the mouse cells in the 

same sample – e.g., CD69 in EtOH2, TCR γ/δ in EtOH2 and OXA2, CD90.2 in OXA1, and 

I-A/I-E in EtOH3 and OXA1. These systematic biases are largely removed in both human 

and mouse cells by our batch correction method.

C. Fitting the null model and performing statistical tests on count data

We now present a statistical framework for testing the significance of enrichment of a 

specific surface protein in the sequencing of a native cell, compared to the null distribution 

of read counts for that protein in the population of spiked-in cells. For the j-th surface 

protein, we build the null model on the j-th column, {c1,j, c2,j, …, cN,j}, of the count matrix 

for spiked-in cells. In the following, we will focus on one surface protein at a time and omit 

the subscript j indexing surface proteins to simplify notation.

When the number of zero counts is small for the surface protein under consideration, we 

propose to model the null distribution by a generalized form of negative binomial (NB) 

model, with cell-specific relative size factors {t1, t2, …, tN} capturing differences in 

individual cells’ sequencing depths. The idea is similar to that described in [5] for analyzing 

scRNA-seq UMI counts, but instead of regressing a generalized linear model (GLM), we 

will utilize the expectation-maximization (EM) algorithm to estimate the parameters in the 

NB model [14]; we will subsequently show that the algorithm can also be modified to 

estimate the parameters of zero-inflated models that are suitable for sparse data. Once the 

model parameters are determined, we will then use the null model to perform statistical tests 
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on the count data of surface proteins in native cells, distinguishing “signal” from “noise” 

while keeping the false discovery rate (FDR) under control.

For the i-th cell, we denote the surface protein count random variable as qi and its actual 

observed value as qiobs = ci, j . The relative size factor ti is a measure of the cell’s sequencing 

depth covering all surface proteins, relative to a typical sequencing depth among all N cells. 

The calculation of ti is discussed in Appendix D, where we offer two choices of definition, 

(D6) and (D7). We use the expression of ti defined in (D7) in this paper, unless stated 

otherwise.

The NB probability distribution for a count random variable qi with a predetermined relative 

size factor ti is

NB qi; μi = tiρ, α = Γ qi + α
Γ α qi!

tiρ
tiρ + α

qi α
tiρ + α

α
, (18)

parametrized by a cell-specific mean μi and a universal ‘stopping-time’ parameter a, with the 

mean being E[qi] = μi = tiρ and the variance Var qi = μi + μi2/α . For our EM implementation, 

it is instructive to view the NB distribution as an infinite mixture of Poisson distributions 

with mixing coefficients given by the Gamma distribution. This paper uses the following 

conventions:

Gamma λi; α, β = λi
α − 1βα

Γ α e−βλi, (19)

Poisson qi; λiti = λiti qi

qi!
e−λiti . (20)

The shape parameter α and rate parameter β for the Gamma distribution are the same for all 

N cells in the set. In the mixture model, once λi is sampled from the Gamma distribution for 

the i-th cell, the mean of the Poisson distribution is determined by the product of λi and the 

cell-specific size factor ti, independent of the parameters (α, β); we get the NB probability 

distribution under a reparametrization ρ = α/β, as

P qi ti, α, β = ∫
0

∞
P qi λi, ti, α, β p λi ti, α, β dλi

= ∫
0

∞
Poisson qi; λiti Gamma λi; α, β dλi

= Γ qi + α
Γ α qi!

ti
ti + β

qi β
ti + β

α

≡ NB qi; μi = tiα/β, α .

(21)

In this formulation, the NB probability distribution arises by marginalizing the hidden 

variable λi from the joint distribution of (qi, λi). In this paper, we use P to denote both 
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probability mass functions of discrete random variables and joint distributions of discrete 

and continuous random variables. To apply the EM algorithm to infer α and β, we need not 

only the joint distribution

P qiλi ti, α, β = Poisson qi; λiti Gamma λi; α, β , (22)

but also the posterior density of λi, computed by applying the Bayes’ rule as

p λi qi, ti, α, β = Poisson qi; λiti Gamma λi; α, β
NB qi; μi = tiα/β, α , (23)

which is also Gamma distributed. Once the maximum likelihood estimation (MLE) of the 

parameters (α, β) is attained, we can interpret the mean of this posterior distribution as the 

expected surface protein levels of single cells.

For the set of N homogeneous spiked-in cells, with count variables q = {q1, q2, … qN}, their 

observed values being qobs = q1
obs, q2

obs, …, qN
obs , and corresponding size-factors t = {t1, t2, 

…, tN}, we have P q t, α, β = ∏i = 1
N P qi | ti, α, β . Denoting λ = {λ1, λ2, …, λN} to be the 

set of hidden variables for the N cells, the full joint distribution is 

P q, λ t, α, β = ∏i = 1
N P qi, λi | ti, α, β , and we have

log P qobs, λ t, α, β = ∑
i = 1

N
log Gamma λi; α, β + ∑

i = 1

N
log Poisson qiobs; λiti . (24)

By taking expectation of (24) with respect to the posterior distribution of λ given in (23), we 

then apply an implementation of the EM algorithm to obtain the maximum likelihood 

estimates of the model parameters α and β (see Appendix B for details) [14].

When an experiment produces q1
obs, q2

obs, …, qN
obs  containing a relatively large number of 

zero counts, we use a zero-inflated negative binomial (ZINB) model, defined by

P qi ti, α, β, ω = ω δqi, 0 + 1 − ω NB qi; μi = tiα/β, α , (25)

where δq,0 = 1 for q = 0, and 0 otherwise. The new parameter ω is the probability of a 

“dropout” event in the measurement. Upon some modification, the above EM algorithm can 

be used to obtain the maximum likelihood estimates of α, β, and ω (see Appendix C).

Note that the NB distribution is a special case of the ZINB distribution with ω = 0. We have 

observed that if the NB model is sufficient for modeling the observed counts, then fitting a 

ZINB model will give ω → 0. However, fitting a ZINB model will take longer time, and one 

may wish to choose a particular model based on the data at hand. The human C-BMC 

dataset is not sparse, with only a few zero counts; we have thus chosen to fit a NB model for 

each of the M = 13 surface proteins. By contrast, the count data of mouse skin cells are 

sparse, with the rates of zeros sometimes as high as 70%, and we have chosen to fit a ZINB 

model for each of the M = 42 proteins.
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Fitting the NB or ZINB distribution on the count data of each surface protein from spiked-in 

cells yields a null model, from which we can compute the p-values for the observed counts 

in native cells and thus distinguish potential “signals” from “noise” in native cells. In Fig. 

6(a), we show the null model fitted on the count data of human CD3 observed on the spiked-

in mouse cells, with the distribution of p-values being nearly uniform and thus indicating a 

reasonable fit. The p-values of the human cells show a clear distinction from the null model 

and show an enrichment of cells having a significant signal of CD3 (small p-values). 

Comparing the count data from native cells to the null distribution of spiked-in cells 

introduces a problem of multiple hypothesis testing. To control for the false discovery rate 

(FDR), we use the Benjamini-Hochberg (BF1) procedure [15], as implemented in the R 

package ‘stats’ [16]. The adjusted p-values for mouse and human data are shown in Fig. 

6(b). We would decide a cell as having a significant signal for a surface protein when the 

corresponding adjusted p-value is smaller than the chosen FDR threshold.

The model fitting also provides a method of transforming the count data in a way compatible 

with the statistical model. The transformed data can be used for downstream analysis, such 

as correlation analysis, dimension reduction, and unsupervised clustering. With the ZINB 

parameters (α, β, ω) estimated from a given set of (qobs, t), we can transform a pair (q′, t′) 
of observed UMI count and size factor, either used in the model fitting or previously unseen, 

as

Eλ′ q′, t′, α, β, ω λ′ = 1 − ω δq′, 0

ω + 1 − ω β
t′ + β

α
q′ + α
t′ + β , (26)

which is roughly the posterior expected Poisson mean of the UMI-count random variable in 

the ZINB model. For the NB model, we simply need to take ω = 0, and the expectation value 

reduces to (q′ + α)/(t′ + β). The transformed CD3 count data in the CBMC data set are 

shown in Fig. 6(c) and (d), where the human data are clearly seen to have a mode with high 

E[λ] signals, well separated from the background distribution of spiked-in mouse cells. 

Taking the logarithm of E[λ] results in a better visualization, as seen in Fig. 6(d), clearly 

capturing the bimodal distribution of the CD3 expression level on the surface of human 

blood cells. For CD3, the number of human cells above the 0.99 quantile of the mouse 

control distribution approximately coincides with the number of human cells passing the 

statistical test at the adjusted p-value threshold of 0.05 in Fig. 6(b).

Python source code implementing the algorithms described in this manuscript is available on 

Github [17].

III. DISCUSSION

Inspired by the techniques of differential geometry and stochastic processes often used to 

model physical systems, we proposed a series of methods for analyzing the count data of 

surface proteins from CITE-seq. Mapping the count data to a Riemannian manifold, we used 

the Riemannian center of mass to find an exemplar point that best represents each set of 

homogeneous control cells on the manifold. We then removed potential batch effects 
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between multiple samples by aligning their center of mass on the Riemannian manifold and 

built a null model in order to separate significant signals in the count data from the noise of 

nonspecific antibody binding.

To date, CITE-seq analysis lacked a rigorous statistical framework for testing the 

significance of ADT counts and adjusting for multiple hypothesis testing. Our probabilistic 

modeling of ADT sequencing addresses this gap and also provides an appealing data 

representation based on the posterior mean E[λ], which can be used for downstream 

analyses such as clustering and visualization. Although visually similar to other data 

transformation methods, inheriting the parameters from the (ZI)NB model fitting makes our 

transformation easily interpretable and compatible with the proposed statistical hypothesis 

testing framework. Further details and comparison with other data transformation 

(normalization) methods are discussed in Appendix D.

Unlike the original approach [2], some CITE-seq data may lack a spike-in control from 

another species. In those cases, we recommend first finding a set of non-immune cells (e.g., 

erythrocytes in the blood, and keratinocytes in the skin [18, 19]) that are transcriptomically 

distinct from the rest of the cells, and then using the set to build the null model for 

immunophenotype profiling. If this strategy is not feasible, then an unsupervised method 

could be developed to distinguish signal from noise by fitting bimodal or multimodal 

distributions. Although spiking in foreign cells could provide useful information about 

background noise of antibodies, several issues may still remain. For example, high 

background noise may result from low quality of cells, making it difficult to disentangle true 

presence of surface proteins. Cross-reactivity of antibodies may also pose a problem. An 

interesting alternative approach to fitting the null distributions of ADT counts would be to 

perform parallel experiments, for instance mass cytometry [20], on select control cells and 

calibrate the ADT count data of these cells from CITE-seq.

As previously mentioned, parallel transporting the immunophenotypes of cells on the 

hypersphere might move some cells slightly out of the positive orthant. We here addressed 

the issue by setting the small negative components to zero and rescaling the rest of the 

components to preserve the normalization condition. Even though this simple correction 

method did not noticeably affect the neighborhood structure of the point clouds in our data, 

future studies would be needed to develop a more rigorous geometric construction that can 

handle these cells.

Our method of batch correction, upon some modification, may be also applicable to other 

types of count data; e.g., other multi-omics count data that complement the scRNA-seq 

assay, and count data used for topic modeling in text mining. A potentially interesting 

direction for future investigation would be integrating the geometric and statistical methods 

directly on a Riemannian data manifold.
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Appendix A: Data set preparation

The CITE-seq data set of human CBMC and spiked- in mouse cells was obtained from the 

Gene Expression Omnibus under the accession number GSE100866. For the scRNA-seq 

data, we followed the suggested procedures of normalization, feature selection, dimensional 

reduction, and Louvain clustering in Seurat v3 [21]. The cell labels were determined from 

the list of biomarkers detected for each cluster using Seurat, as in [2]. Furthermore, we 

summed up the RNA counts mapping to the mouse genome, and calculated the percentage 

of mouse gene counts with respect to the total RNA counts; the putative single cells with a 

percentage of mouse genes from 5% to 95% were filtered out, as they might be doublets of 

cells from the two species. The cells with larger than 95% mouse genes were labeled as 

mouse cells. A tSNE plot of the tra.nscriptomic data, with labeled cells is shown in Fig. 7(a). 

For a clear demonstration of our analysis, we have chosen human cells with labels only from 

the following eight cell types: B cells, memory CD4+ T cells, naive CD4+ T cells, CD8+ T 

cells, natural killer (NK) cells, dendritic cells (DCs), CD34+ cells and erythrocytes. The 

cells labeled as CD 14+ monocytes, CD 16+ monocytes, megakaryocytes, plasmacytoid 

dendritic cells (pDCs), and multiplets were all filtered out. The full list of 13 cluster of 

differentiation (CD) proteins measured in the experiment is {CD3, CD4, CD45RA, CD56, 

CD 16, CD10, CDllc, CD14, CD19, CD34, CCR5 (CD195), CCR7 (CD197)}, all of which 

are shown on the x-a.xis in Fig. 2.

Processed tables of ADT counts in murine skin cells and spiked-in human embryonic kidney 

293 (HEK293) cells [7] are available at https://github.com/jssong-lab/SAGACITE/data. The 

full list of 42 mouse proteins measured in the experiment is {CD3, CD4, CD8a, CD69, 

CD62L, CD44, CD25, CD127, TCRy/A, CD 19, IgM, CD335, NK-1.1, CD90.2, I-A/I-E, 

CD45R, GDI lb, CD172a, XCR1, CD103, CD64, CD11c, CD24, CD326, CD195, CD196, 

CXCR4, CD134, CD278, CD223, CD274, KLRG1, CD27, CD21/CD35, CD86, IgD, CD Id, 

CD 138, CD117, CX3CR1, F4/80, CD192}, as is shown on the x-a.xis in Fig. 3. The 

samples OXA1, 2, and 3 were from the ear skin of three different mice treated with 

inflammation-inducing oxa.zolone, while EtOH1, 2, and 3 were from the ear skin of three 

different mice treated with ethyl alcohol as control. The immune cells in each skin sample 

were isolated after enzymatic digestion and then cell sorting using flow cytometry. The 

F1EK293 cells were then spiked in, just before CITE-seq was performed. For each cell, we 

calculated the percentage of RNA counts mapping to the mouse genome with respect to the 

total amount of RNA counts; a cell with the percentage greater than 95% was classified as a 

mouse cell, and a cell with the percentage smaller than 1% was classified as a human cell. 

No further sub-classification of mouse cells based on the tra.nscriptome was performed.

Appendix B: EM algorithm for NB model fitting

The posterior density p(λi|qi,ti, α, β) of λi defined in (23) satisfies

Eλi qi, ti, α, β λi = ∫
0

∞
λi p λi qi, ti, α, β d λi = qi + α

ti + β (B1)

and
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Eλi qi, ti, α, β log λi = ∫
0

∞
log λi p λi qi, ti, α, β d λi

= Ψ qi + α − log ti + β ,
(B2)

where Ψ z = d
dz log Γ z  is the digamma. function.

For a dataset (q, t) of N independent samples, we define the following sample averages of 

expectation values:

Eλ q, t, α, β 1 = 1, (B3)

Eλ q, t, α, β λ = 1
N ∑

i = 1

N qi + α
ti + β , (B4)

Eλ q, t, α, β log λ = 1
N ∑

i = 1

N
Ψ qi + α − log ti + β . (B5)

Given the current estimate of (α, β), we need to update them as

αnew, βnew = arg max
α∗, β∗

Eλ q, t, α, β log P q, λ t, α∗, β∗

= arg max
α∗, β∗

∑
i = 1

N
Eλi qi, ti, α, β log P qi, λi ti, α∗, β∗

= arg max
α∗, β∗

∑
i = 1

N ∫
0

∞
log Gamma λi ; α∗, β∗ × p λi qi, ti, α, β d λi

= arg max
α∗, β∗

ℓNB α∗, β∗ ,

(B6)

where

ℓNB α∗, β∗ ≡ α∗ − 1 Eλ q, t, α, β log λ − β∗Eλ q, t, α, β λ + α∗log β∗ − log
Γ α∗ .

(B7)

Solving ∂
∂β∗ ℓNB α∗, β∗ = 0 for β* we get β∗ = α∗/Eλ|q, t, α, β λ . Substituting this expression 

of β* into ℓNB(α*, β*) we define a new function depending only on α*:

ℓNB α∗ = α∗ − 1 Eλ q, t, α, β log λ − α∗log Eλ q, t, α, β λ + α∗log α∗ − α∗

− log Γ α∗ .
(B8)

Zhang et al. Page 16

Phys Rev E. Author manuscript; available in PMC 2020 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Maximizing this function, we finally obtain the updates

αnew = arg min
α∗

ℓNB α∗ , βnew = αnew/Eλ q, t, α, β λ . (B9)

In each iterative step, we compute the optimization of αnew numerically using a generalized 

version of Newton’s method which enables faster convergence [14, 22].

Appendix C: EM algorithm for ZINB model fitting

For the ZINB model, the joint probability function is

P qi, zi, λi ti, α, β, ω = ω δzi, 0 δqi, 0 δ λi
+ 1 − ω δzi, 1Poisson qi; λi ti Gamma λi ; α, β , (C1)

where zi ∈ {0, 1} is a latent Bernoulli random variable modeling the “dropout” event (zi = 

0). The posterior probability function is

P zi, λi qi, ti, α, β, ω = δzi, 0 δ λi ℎi α, β, ω + δzi, 1 1 − ℎi ω, α, β
p λi qi, ti, α, β , (C2)

where the posterior density p(λi|qi, ti, α, β), for zi = 1, is defined in (23), and

ℎi α, β, ω ≡
ω δqi, 0

ω δqi, 0 + 1 − ω NB qi; μi = tiα/β, α . (C3)

Given the current estimate of (α, β, ω), we need to update them as

αnew, βnew, ωnew = arg max
α∗, β∗, ω∗

Ez, λ q, t, α, β, ω logP q, z, λ t, α∗, β∗, ω∗

= arg max
α∗, β∗, ω∗

ℓNB α∗, β∗, ω∗ ,
(C4)

where ℓZINB(α*, β*, ω*) , collecting only the terms involving α*, β*, ω*, is given by

ℓZINB α∗, β∗, ω∗ = 1
N ∑

i = 1

N
ℎi α, β, ω log ω∗ + 1 − ℎi α, β, ω log 1 − ω∗

+ 1
N ∑

i = 1

N
1 − ℎi α, β, ω × ∫

0

∞
p λi qi, ti, α, β log Gamma λi ; α∗, β∗ d λi

= 1
N ∑

i = 1

N
ℎi α, β, ω log ω∗ + 1 − ℎi α, β, ω log 1 − ω∗ + α∗ − 1 εlogλ

− β∗ελ + α∗log β∗ − log Γ α∗ ε1 .

(C5)

In the last line, ε1, ελ, and εlog λ are defined as follows, similar to (B3), (B4), and (B5):
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ε1 ≡ 1
N ∑

i = 1

N
1 − ℎi ω, α, β , (C6)

ελ ≡ 1
N ∑

i = 1

N
1 − ℎi α, β, ω ∫

0

∞
d λi fi α, β λi

= 1
N ∑

i = 1

N
1 − ℎi α, β, ω qi + α

ti + β ,
(C7)

εlogλ ≡ 1
N ∑

i = 1

N
1 − ℎi α, β, ω ∫

0

∞
d λi fi α, β λi

= 1
N ∑

i = 1

N
1 − ℎi α, β, ω Ψ qi + α − log ti + β .

(C8)

Solving ∂
∂ω∗ ℓZINB α∗, β∗, ω∗ = 0 for ω*, we obtain

ωnew = 1
N ∑

i = 1

N
ℎi α, β, ω . (C9)

From ∂
∂β∗ ℓZINB α∗, β∗, ω∗ = 0, we have α*/β* = ελ/ε1.

Keeping only those terms involving α* and β* in (C5) and substituting β* = α*ε1/ελ, we 

can define a function that depends only on α* as follows

ℓZINB α∗ /ε1 ≡ α∗ − 1 εlogλ/ε1 − α∗log ελ/ε1 + α∗logα∗ − α∗ − log Γ α∗ . (C10)

The update now reads

αnew = arg max
α∗

ℓZINB α∗ /ε1 , βnew = αnewε1/ελ . (C11)

With the ratios εlog λ/ε1 and ελ/ε1 calculated using (C6), (C7), and (C8), the resulting 

optimization is the same as in (B8).

Appendix D: Comparison of data transformation methods

The log normalization with a fixed scale factor so, commonly used to process scRNA-seq 

data, transforms the count data (ci,1, …, ci,D) within the i-th cell as
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ci, j log ci, j
si

× s0 + 1 = log ci, j
si/s0

+ 1 , (D1)

where si ≡ ∑k = 1
D ci, k is the total sequencing depth in the i-cell, and s0 can be chosen to be a 

typical value of si. Some common choices are s0 = 1000, 10000, or 100000, depending on 

the data. We also find it reasonable to choose s0 as either the arithmetic or the geometric 

mean of si’s.

The centered log ratio (CLR) is a related transformation method that is previously used to 

process the CITE-seq count data [2], and is defined as

ci, j log cij + 1
gi

= log ci, j + 1 − 1
D ∑

k = 1

D
log ci, k + 1 , (D2)

where gi = ∏k = 1
D (ck, j + 1) 1/D

 is the geometric mean of the D surface protein counts, each 

adjusted by one pseudocount. It can be interpreted as row mean-centering the table of 

pseudocount-adjusted log counts, log (ci,j + 1). Another version of the CLR transformation, 

implemented in Seurat v3 [21], is given by

ci, j log ci, j
gi

+ 1 , (D3)

which is not row-centered. Unlike the expression defined in (D2), the alternative form given 

in (D3) always yields nonnegative values.

We here propose a new data transformation method using the posterior E[λi,j] computed 

using the MLE of ZINB model parameters (αj, βj, ωj) for the j-th protein, as given in (26); 

we take the logarithm for better visualization of the data, the effect of which is clear when 

we compare Fig. 6(c) with Fig. 6(d). When the zero-inflation mixing coefficient ωj = 0, our 

transformation is

ci, j log ci, j + αj
ti + βj

; (D4)

when ωj ≠ 0, it is

ci, j log 1 −
ωj δci, j, 0

ωj + 1 − ωj
βj

ti + βj

αj
ci, j + αj
ti + βj

. (D5)

We provide two choices regarding how to compute the relative size factor ti for the i-th cell: 

the first definition is
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ti = si/s0 = ai/a0, ai ≡ 1
D ∑

k = 1

D
ci, k, (D6)

where the ratio si/s0 is the same as that used in the log normalization method (D1), ai is the 

arithmetic mean of the D surface protein counts, and a0 = s0/D is some choice of typical 

value of ai; the other definition is

ti = gi/g0, gi = ∏
k = 1

D
ci, k + 1

1/D
, (D7)

where gi is the geometric mean as in the two versions of CLR transformation (D2) and (D3), 

and g0 is some choice of typical value of gi. Although (D6) capturing the differences in total 

count might seem more intuitive, we recommend (D7), as the geometric mean is more robust 

against outliers than the arithmetic mean. Transformation results for the two choices are 

shown in Fig. 7(d) and (e), respectively, where it is apparent that the second convention ti = 

gi/g0 better separates the CD8+ T cells from spiked-in mouse cells along the CD3+ 

direction. This phenomenon may be attributed to the fact that CD8+ T cells have high CD8 

counts and, thus, inflated size factors under the former definition, thereby suppressing the 

transformed CD3 values. Consistent with this observation, performing statistical tests on the 

CD3 level shows that the CD8+ T cells are correctly classified as being CD3+, when (D7), 

but not when (D6), is used to calculate the size factors.

In each of the transformation methods described above, the argument of the logarithm can be 

considered as a normalized version of the raw count ci,j. In our transformation, the argument 

is E[λ], and the normalization adds a data-driven pseudocount αj to the raw count and βj to 

the relative size factor ti ~ 1, which corrects the sum ci,j + αj for different sequencing depths. 

Similarly, the term containing ωj corrects for the case of an inflated zero count. Compared 

with the log normalization (D1) and the CLR transformation (D2,D3), our approach utilizes 

the model parameters inferred from the data, rather than adding an arbitrary pseudocount of 

1. It is also specific to a particular surface protein and has the ability to address a potential 

dropout effect in the measurement.

In our implementation, we have chosen g0 to be the geometric mean of all gi’s. However, a 

different choice of g0 would merely translate the distribution of the transformed data by a 

constant. That is, under rescaling ti → bti by a fixed constant b, the mixture probabilities of 

the NB and ZINB models remain invariant under the compensating redefinitions λi,j → λi,j/

b, αj → αj, βj → b βj, (ci,j+αj)/(ti+βj) → (1/b)(ci,j+αj)/(ti+βj) and ωj → ωj; hence, the only 

effect of choosing a different g0 is to rescale E[λi,j] by a multiplicative constant for all i, 
resulting in translating log E[λi,j] by a global constant for all cells.
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FIG. 1. 
Examples of mapping the surface protein count data of human CBMC with spiked-in mouse 

cells to a three-dimensional sphere of radius 2. (a) The list of selected proteins is {CD3, 

CD19, CD56}. (b) The list of selected proteins is {CD4, CDS, CDllc}. In both cases, each 

distinct cell type is displayed with the color indicated in the legend. NK and DC denote 

natural killer cells and dendritic cells, respectively. Small dots denote individual cells, and 

large dots with black outlines denote the Riemannian mean of the point cloud of each cell 

type.
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FIG. 2. 
Riemanman mean calculated from the surface protein count data of each indicated cell type 

in the human CBMC data set. (a) All proteins are included (D = 13). (b) CD45RA is 

excluded (D = 12). In both ways of mapping, the components of the Riemanman mean 

correspond to the height of the bars; the light gray bars in the back represent the spiked-in 

mouse data, while the thin bars in the front represent the different cell types in human blood, 

with their order and colors indicated in the legend.
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FIG. 3. 
Batch effects within the three oxazolone-treated samples (OXA1,2,3) and the three control 

samples (EtOHl,2,3) of mouse skin cells, (a) Riemannian mean of the native mouse cells 

from each sample, (b) Riemannian mean of the spiked-in human cells from each sample. All 

proteins measured are included (D = 42). The bar height corresponds to the component of 

the Riemannian mean in the direction indicated on the ;r-axis.
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FIG. 4. 
Principal component analysis (PCA) and the analysis of variance (ANOVA) of spiked-in 

human cells and native mouse cells on the probability simplex before and after batch 

correction. The single-cell ADT count data of surface proteins were transformed to 

probability vectors, which were then projected to the plane spanned by the first two principal 

components (PCs) for the PCA plots (a-d) and on which ANOVA was performed, (a) 

Spiked-in human data before batch correction. One control sample (EtOH2) and two treated 

samples (OXA1,2) are seen to be outliers from the rest, (b) Mouse data before batch 
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correction. The biases observed in (a) are seen to be carried over here, (c) Spiked-in human 

data after batch correction. Point clouds of all six samples are seen to overlap well, (d) 

Mouse data after batch correction. Points from the six samples are seen to align well with 

respect to the two treatment conditions, (e) Distribution of the F-statistics from ANOVA for 

41 surface proteins before and after the batch correction in six murine skin samples.
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FIG. 5. 
Effects of batch correction on the six samples of mouse skin cells with spiked-in human 

cells. The data points on the hypersphere either before or after the batch correction are 

mapped back to the probability simplex. Distributions of proportion for human and mouse 

cells in each of the six samples are shown for the four selected surface proteins CD69, TCR 

γ/δ, CD90.2, and I-A/I-E.
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FIG. 6. 
Fitting the NB model on spiked-in mouse cells in the CBMC data set, and performing 

statistical tests and data transformation with the estimated model parameters. The surface 

protein is chosen to be (human) CD3, with the fitted model paramters α = 10.30, β = 0.2074 

estimated from the mouse data, and ω = 0 fixed for the NB model, (a) The distribution of p-

values for mouse and human cells calculated from the fitted model. The horizontal dashed 

line indicates a uniform distribution with constant density 1. (b) The distribution of adjusted 

p-values. The vertical red dashed line indicates the FDR threshold of 0.05; cells to the left of 

this line are considered as CD3+, and they are all human cells, (c) The distribution of the 
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posterior mean E[λ] for mouse and human cells calculated from the model parameters, (d) 

The distribution of log10E[λ] for mouse and human cells. In (c) and (d), the vertical dashed 

line indicates the 0.99 quantile of the spiked-in mouse data.
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FIG. 7. 
Data transformation applied to human CBMC with spiked-in mouse cells, (a) tSNE plot of 

the single-cell transcriptomic (scRNA-seq) data. The RNA count data, have been log-

normalized, as described in Eq. (D1), and compressed using a dimensional reduction method 

(Appendix A). The indicated color scheme for cell types is carried over to (b,c,d,e). NK and 

DC denote natural killer cells and dendritic cells, respectively. CD14+ monocytes, CD16+ 

monocytes, megakaryocytes, and plasmacytoid dendritic cells (pDCs) are grouped into the 

category “Other” and omitted in other panels. (b) A version of the centered log ratio (CLR) 

Zhang et al. Page 30

Phys Rev E. Author manuscript; available in PMC 2020 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transformation of the single-cell immunophenotype data, as described in Eq. (D2). (c) 

Another version of the CLR transformation of the single-cell immunophenotype data, as 

described in Eq. (D3). (d) Our data transformation method using the relative size factor ti = 

ai/a0, with ai being the arithmetic mean of count per protein, as described in Eq. (D6). (e) 

Our data transformation method using the relative size factor ti = gi/g0, with gi being the 

geometric mean of count (plus one pseudocount) per protein, as described in Eq. (D7).

Zhang et al. Page 31

Phys Rev E. Author manuscript; available in PMC 2020 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	RESULTS
	Mapping immunophenotypes of cells to points on a Riemannian manifold
	Computing the Riemannian mean and removing batch effects on the hypersphere
	Fitting the null model and performing statistical tests on count data

	DISCUSSION
	Appendix A: Data set preparation
	Appendix B: EM algorithm for NB model fitting
	Appendix C: EM algorithm for ZINB model fitting
	Appendix D: Comparison of data transformation methods
	References
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.

