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Introduction

Patients with chronic obstructive pulmonary disease 
(COPD) or idiopathic pulmonary fibrosis (IPF) are at an 
increased risk of lung cancer, especially in male smokers 
(Ozawa et al., 2009; El-Zein et al., 2012). As lung cancer 
is the most common cancer and the leading cause of 
cancer-related mortality worldwide (Ferlay et al., 2015; 
Nakagawa-Senda et al., 2017), a considerable number 
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of candidate-gene association studies in lung cancer 
have been conducted to date. COPD is characterized by 
progressive airflow limitation that is due to airway and/
or alveolar abnormalities caused, in turn, by exposure 
to environmental exposures such as the constituents 
in cigarette smoke (Vogelmeier et al., 2017). IPF with 
no established etiology is the most common form of 
idiopathic interstitial pneumonias (IIPs), which are 
primarily a disorder of interstitial tissue and can lead to 
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significant morbidity and mortality due to hypoxemic 
respiratory insufficiency (Yang and Schwartz, 2015). The 
malignant change from these lung diseases to lung cancer 
is partly caused by the accumulation of DNA damage.  
Cigarette smoking is the major cause of DNA damage, but 
natural biological processes such as aging also contribute 
to the accumulation of DNA damage. 

Telomeres, which are repetitive DNA sequences, are 
located at the ends of linear chromosomes and protect the 
chromosome ends from degradation (Blackburn, 2001).  
Because critically shortened telomeres signal a DNA 
damage response that can lead to apoptosis, telomere 
length is thought to be a biomarker of aging (Blackburn 
et al., 2006; Mather et al., 2011). As smoking may induce 
oxidative stress and then irretrievable damage to the 
telomeric DNA (von Zglinicki, 2002), smoking may 
be associated with shortened telomere length. Despite 
biological plausibility between smoking and shortened 
telomere length, there have been inconsistencies in the 
studies (Harris et al., 2012; Revesz et al., 2015). As 
telomere length is influenced by non-genetic factors such 
as age and smoking, the relationship between telomere 
length and lung cancer is controversial (Jang et al., 2008; 
Machiela et al., 2015).  

Recently, genes involved in telomere length have been 
implicated in the pathogenesis of a variety of chronic lung 
diseases (CLDs), including IPF, COPD, and lung cancer 
(Alder et al., 2011; Codd et al., 2013; Fingerlin et al., 
2013; Gansner and Rosas, 2013; Snetselaar et al., 2015; 
Stanley et al., 2015; Zhou and Wang, 2016).  Mutations 
in the telomerase complex, TERT (telomerase reverse 
transcriptase) and TERC (telomerase RNA component), 
which help maintain telomere lengths and chromosome 
stability in cells, are of great importance to human health 
(O’Reilly et al., 1999; Ly, 2009) and has been reported as 
a risk of COPD (Ding et al., 2019), IPF (Noth et al., 2013; 
Kropski et al., 2015) and lung cancer (Fernandez-Garcia 
et al., 2008; Li et al., 2017). OBFC1 (oligosaccharide-
binding fold-containing protein 1) is part of the CST 
complex (consists of CTC1, STN1, and TEN1 proteins), 
which binds to single-stranded DNA and is important for 
telomere maintenance (Levy et al., 2010).  Polymorphisms 
of OBFC1 have been reported as a risk factor for glioma 
(Walsh et al., 2015) and IPF (Fingerlin et al., 2013). 
Although overlapping genetic risk factors among COPD, 
IPF, and lung cancer have been reported (Haycock et al., 
2017; Hobbs et al., 2017), not all genetic factors might 
contribute to the development of the three diseases. 
Namely, the alleles associated with the risk of having a 
disease depend on the type of disease (van Moorsel, 2018).  

TERT rs2736100 and TERC rs1881984 were relatively 
well-examined in both IPF and COPD, while OBFC1 
rs11191865 has been reported to be associated with 
various carcinomas (Walsh et al., 2015). As to elucidate the 
mechanisms of lung cancer via IPF or COPD may enable 
early detection and early treatment of the disease, we 
first examined the association between telomere-related 
polymorphisms (TERT rs2736100, TERC rs1881984 
and OBFC1 rs11191865), which were selected from 
genome-wide association studies on IPF (Mushiroda et 
al., 2008; Fingerlin et al., 2013; Noth et al., 2013; Stuart 

et al., 2015; Allen et al., 2017), and the risk of IPF and 
COPD in this case-control study. 

Materials and Methods

Fukuoka tobacco-related lung disease survey and 
population

In this case-control study, patients with COPD or 
IPF were selected from a multicenter (29 associated 
hospitals), prospective cohort study named the Fukuoka 
Tobacco-Related Lung Disease (FOLD) registry study 
conducted in Fukuoka prefecture, Japan between 
September 1st, 2013 and April 1st, 2016 (Ogata-Suetsugu 
et al., 2020). The patients who agreed to donate blood 
samples for genetic testing were included in this study 
(Supplement and Supporting Data / SSD1). IPF was 
diagnosed based on the criteria (Raghu et al., 2011) while 
COPD was diagnosed according to the Global Initiative 
for Chronic Obstructive Lung Disease (GOLD) criteria. 
(Vestbo et al., 2013). The details on the cohort setting 
were described elsewhere (Ogata-Suetsugu et al., 2020).

Controls (n = 379) were derived from a previous 
case-control study conducted in Fukuoka prefecture 
between November 1996 to March 2008 (Kiyohara et al., 
2014). They were hospitalized patients without a clinical 
history of any type of malignancy, ischemic heart disease, 
or chronic respiratory disease.  All controls agreed to 
donate blood samples after written informed consent. 

All subjects were unrelated ethnic Japanese.  The study 
protocol was approved by our institutional review board 
and research ethics committee (#25-135, #555-00), and all 
participants provided written informed consent. 

Genetic analysis 
Genome DNA was extracted from blood samples, and 

genotyping was conducted with blinding to case/control 
status.  TaqMan® SNP Genotyping Assays purchased from 
Applied Biosystems (Foster City, CA, USA) were used 
for the following [gene, single nucleotide polymorphism 
(SNP), assay ID]: TERT, rs2736100, C___1844009_10; 
TERC, rs1881984, C___176429_10 and OBFC1, 
rs11191865, C___2818536_10. The real-time PCR 
reaction conditions were as follows: 95°C for 10 min, 
followed by 40 cycles of 95 °C for 15 s and 60°C for 1 min.  
For quality control, we repeated assays on a random 5% 
of all samples, and the replicates were 100% concordant. 

Statistical analysis
Comparisons of means and proportions were based 

on the unpaired t-test (or Mann-Whitney test in case 
of not following a normal distribution) and χ2 test (or 
Fisher’s exact test in case of n < 5), respectively. The 
former tests were used for continuous variables, while 
the latter ones were used for dichotomous variables. 
Unconditional logistic regression was used to compute 
the odds ratios (ORs) and their 95% confidence intervals 
(CIs), with adjustments for several covariates (age, sex, 
and smoking status). Deviation from Hardy-Weinberg 
Equilibrium (HWE) for each SNP was tested in controls by 
the chi-square (Pearson) test. Because there is no generally 
accepted answer to the question of which alleles are 
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Results

Characteristics of study subjects
SSD 2 shows the distributions of selected characteristics 

among study subjects.  This study included 572 patients 
with IPF (n = 155) or COPD (n=417) and 379 controls. 
Since controls were not selected to match patients in 
regard to age and sex, there were significant differences 
in age (P < 0.001) and sex ratio (P < 0.001) between 
patients and controls. Smoking history was higher for 
both patient groups as compared to controls (P < 0.001 
for both groups). Hence, we included age, sex and 
smoking history as a covariate in all the analyses.  The 
prevalence of a family history of idiopathic interstitial 
pneumonias was significantly higher in patients with IPF 
(4.5%) than in those with COPD (0.5%) (Fisher’s exact 
P = 0.002).  Diagnostic biopsies were performed in 13 
patients with IPF. IPF patients had a lower prevalence of 
smoking history, a lower percentage of males, and a lower 
vital capacity (VC) (% predicted) than COPD patients.  
Conversely, patients with IPF had a higher BMI, a higher 
forced expiratory volume in 1 (FEV1.0 (L)), (%FEV), and 
a higher Tiffeneau Index than those with COPD. There 
was no difference in the prevalence of cancer history and 
gastroesophageal reflux disease between IPF patients and 
COPD patients.

Allelic frequencies in patients with IPF or COPD, and 
in controls

SSD 3 shows the allelic frequencies of telomere-
related genetic polymorphisms in study subjects.  The 
distribution of genotypes in rs2736100, rs1881984, and 
rs11191865 were in Hardy-Weinberg equilibrium in 
controls (P > 0.05). The frequencies of the minor alleles 
of rs2736100, rs1881984, and rs11191865 among controls 
were 41.3%, 36.0%, and 33.2%, respectively. As for 
rs2736100, the genotypic distribution among patients with 

“at-risk” alleles, we selected the category with the largest 
number of subjects (generally major homozygotes) as 
the reference category.  We then designated the genotype 
that is presumed to increase the risk of lung disease as 
the “at-risk” genotype. Thus, analyses were done under 
a dominant model (the heterozygotes grouped with the 
homozygotes for the “at-risk” allele), a recessive model 
(the heterozygotes grouped with the homozygotes for the 
“non-risk” allele) and a codominant model (genotypic 
model, three genotypes considered independently) in 
this study. The trend test was described in two ways: by 
reference to homozygotes of major alleles and by reference 
to homozygotes of minor alleles.  For example, the trend 
was assessed by a score test for each genotype as follows: 
0 = homozygous for the major allele, 1 = heterozygous 
for the minor allele, and 2 = homozygous for the minor 
allele. The cumulative “at-risk” genotype (at least one 
“at-risk” allele) effects were evaluated and assigned an 
ordinal score of 0 (“no-risk” genotypes), 1 (one “at-risk” 
genotypes), 2 (two “at-risk” genotypes) and 3 (three 
“at-risk” genotypes). 

Patients with respiratory disease may have changed 
their smoking habits following the appearance of 
respiratory symptoms before the diagnosis of the disease.  
As it is difficult to distinguish clearly between current 
smokers and former smokers, subjects were considered 
ever smokers if they smoked or stopped smoking 
before the date of registration of the FOLD registry. 
Never-smokers were defined as those who had never 
smoked in their lifetime.

All statistical analyses were performed using 
the computer program STATA Version 15.1 (STATA 
Corporation, College Station, TX). All P values 
were two-sided, with those less than 0.05 considered 
statistically significant. 

Polymorphism No. of cases/
controls

Adjusted OR a (95% CI)
Codominant model Dominant model Recessive model

TERT rs2736100 (T>G) TT+TG vs. GG TT vs. TG+GG
     TT 82 / 137 1.00 (Reference) 2.88 (1.31–6.34) 

2.41 (1.14–5.09)
1.76 (1.06–2.91)

     TG 57 / 171 0.68 (0.39–1.17) 1.96 (0.88–4.37 1.00 (Reference)
     GG 16 / 71 0.35 (0.15–0.76) 1.00 (Reference) 1.00 (Reference) 

Ptrend =0.008 Ptrend =0.008
TERC rs1881984 (T>C) TT+TC vs. CC TT vs. TC+CC 
     TT 79 / 160 1.00 (Reference) 1.36 (0.62–2.98)

1.29 (0.61–2.69)
1.18 (0.71–1.96)

     TC 60 / 165 0.89 (0.52–1.53) 1.21 (0.55–2.67) 1.00 (Reference)
     CC 16 / 54 0.73 (0.34–1.61) 1.00 (Reference) 1.00 (Reference) 

Ptrend =0.435 Ptrend =0.435
OBFC1 rs11191865 (G>A) GG+AG vs. AA GG vs. AG+AA
     GG 84 / 173 1.00 (Reference) 1.90 (0.83–4.37) 

1.57 (0.71–3.49)
1.60 (0.97–2.65)

     AG 56 / 160 0.66 (0.38–1.13) 1.25 (0.53–2.92) 1.00 (Reference)
     AA 15 / 46 0.53 (0.23–1.21) 1.00 (Reference) 1.00 (Reference) 

Ptrend =0.063 Ptrend =0.063
95% CI, 95% confidence interval; OR, odds ratio; a, Adjusted for age, sex and smoking status. 

Table 1. Association between the Telomere-Related Polymorphisms and IPF Risk
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IPF was significantly different from that among controls 
(P = 0.001). 

Association between telomere-related genetic 
polymorphisms and the risk of IPF or COPD

After adjustment for age, sex, and smoking status, the 
OR of the minor homozygote of rs2736100 for IPF was 
0.35 (95% CI = 0.15–0.76) under the codominant model 
(Table 1). Increasing the number of minor alleles of 
rs2736100 significantly decreased the risk of IPF in a dose-
dependent manner (Ptrend = 0.008).  Namely, the major 
allele was an “at-risk” allele.  Rs2736100 was significantly 
associated with increased risk of IPF in the genetic 
models [codominant model (TT vs. GG), OR = 2.88, 
95% CI = 1.31-6.34; dominant model (TT + TG vs. GG), 
OR = 2.41, 95%CI = 1.14–5.09; recessive model (TT vs. 
TG + GG), OR = 1.76, 95%CI = 1.06–2.91]. Increasing 
the number of minor alleles of rs1881984 and rs11191865 
tended to decrease the risk of IPF in a dose-dependent 
manner, although the trend was not statistically significant 

(Ptrend = 0.435, 0.063, respectively).
As shown in Table 2, rs2736100 was associated with the 

increased risk of COPD in dominant model [codominant 
model (TT vs. GG), OR =1.88, 95%CI = 0.97–3.64; 
dominant model (TT + TG vs. GG), OR = 1.99, 95%CI 
= 1.09-3.66]. Both rs1881984 and rs11191865 were not 
associated with COPD risk.

Association between the combination of telomere-related 
genetic polymorphisms and the risk of IPF or COPD

To achieve adequate statistical power, the minor 
homozygote and the heterozygote (reference category) 
were bundled in one group for subsequent analysis 
independent of the genetic model. Table 3 shows the 
association between the combination of telomere-related 
genetic polymorphisms and the risk of IPF. According to 
the recessive model, the homozygotes for the “at-risk” 
allele were scored as 1 (one “at-risk” genotype) in 
each SNP. Increasing numbers of “at-risk” genotypes 
increased IPF risk in a dose-dependent manner (OR for 

Polymorphism No. of cases/ 
controls

Adjusted OR a (95% CI)
Codominant model Dominant model Recessive model

TERT rs2736100 (T>G) TT+TG vs. GG TT vs. TG+GG
     TT 154 / 137 1.00 (Reference) 1.88 (0.97–3.64) 

1.99 (1.09–3.66)
1.08 (0.68–1.72)

     TG 204 / 171 1.12 (0.67–1.83) 2.09 (1.10–4.01)
1.00 (Reference)

     GG 59 / 71 0.53 (0.27–1.03) 1.00 (Reference) 1.00 (Reference) 
Ptrend =0.162 Ptrend =0.162

TERC rs1881984 (T>C) TT+TC vs. CC TT vs. TC+CC
     TT 188 / 160 1.00 (Reference) 1.88 (0.90–3.93) 

1.93 (0.96–3.88)
1.09 (0.69–1.72)

     TC 190 / 165 1.06 (0.65–1.71) 1.99 (0.95–4.16)
1.00 (Reference)

     CC 39 / 54 0.53 (0.25–1.11) 1.00 (Reference) 1.00 (Reference) 
Ptrend =0.244 Ptrend =0.244

OBFC1 rs11191865 (G>A) GG+AG vs. AA GG vs. AG+AA
     GG 170 / 173 1.00 (Reference) 1.09 (0.55–2.17) 

1.15 (0.60–2.17)
0.95 (0.60–1.49)

     AG 189 / 160 1.10 (0.68–1.78) 1.20 (0.61–2.38)
1.00 (Reference)

     AA 58 / 46 0.92 (0.46–1.82) 1.00 (Reference) 1.00 (Reference) 
Ptrend =0.958 Ptrend =0.958

Table 2. Association between the Telomere-Related Polymorphisms and COPD Risk

95% CI, 95% confidence interval; OR, odds ratio; a, Adjusted for age, sex and smoking status.

Presence of "at-risk" genotype Cases/
controls

Adjusted OR a (95% CI) P-value Adjusted OR a (95% CI) P-value
TERC OBFC1 TERT
rs1881984 rs11191865 rs2736100
0 0 0 13/73 1.00 (Reference) 1.00 (Reference)
1 0 0 17/56 1.22 (0.43–3.44) 0.713

1.78 (0.77–4.08)0 1 0 23/69 1.81 (0.69–4.70) 0.224 0.176
0 0 1 20/43 2.42 (0.89–6.55) 0.083
1 1 0 20/44 3.06 (1.02–9.17) 0.046

2.84 (1.20–6.73)1 0 1 21/34 2.31 (0.82–6.47) 0.111 0.018
0 1 1 20/34 3.32 (1.12–9.82) 0.03
1 1 1 21/26 3.50 (1.16–10.62) 0.027 3.51 (1.16–10.59) 0.026

Ptrend = 0.003
95% CI, 95% confidence interval; OR, odds ratio; Based on recessive model; a, Adjusted for age, sex and smoking status. 

Table 3. Association between the Combination of Telomere–Related Genetic Polymorphisms and the Risk of IPF
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one “at-risk” genotype = 1.78, 95%CI = 0.77–4.08; OR for 
two “at-risk” genotypes = 2.84; 95% CI = 1.20–6.73; OR 
for three “at-risk” genotypes = 3.51, 95%CI = 1.16–10.59; 
P trend=0.003).  In the two loci analysis, the ORs for the 
combination including OBFC1 rs11191865 increased 
significantly.

In contrast, there was no dose-dependent relationship 
between COPD risk and the number of “at-risk” 
genotypes, though the OR for three “at-risk” genotypes 
was the highest (OR = 1.34, 95% CI = 0.51–3.54) (SSD 4). 

Discussion

Three telomere-related polymorphisms were examined 
in 572 cases of IPF/COPD cases and 379 controls in this 
case-control study. In controls, the frequencies of the minor 
alleles of rs2736100, rs1881984, and rs11191865 were 
41.3%, 36.0%, and 33.2%, respectively, and the genotypic 
distributions were consistent with HWE (SSD 3). The 
major (T) allele frequency of rs2736100 in our study 
(58.7%) was somewhat lower than that in the HapMap-JPT 
samples from dbSNP (62.4% (Available at https://www.
ncbi.nlm.nih.gov/snp/?term=rs2736100.)) or those in 
previous reports in healthy Japanese (60.1% (Miki et 
al., 2010), 60.0% (Kamatani et al., 2010)).  According 
to the dbSNP database, the T allele frequency is most 
common among Japanese (62.4%) and least common 
among Gujarati Indians (a western Indian population 
living in Texas, 35.5%), with the frequencies in European 
(47.3%) and Han Chinese (56.4%) being intermediate 
between these populations. On the other hand, the 
frequencies of the T allele of rs1881984 (64.0%) and 
the G allele of rs11191865 (66.8%) in our study were 
similar to those of the HapMap-JPT dbSNP (the 
corresponding figures of rs1881984 and rs11191865 
were 61.0% ( Available at https://www.ncbi.nlm.nih.
gov/projects/SNP/snp_ref.cgi?rs=1881984.) and 65.7% 
(Available at https://www.ncbi.nlm.nih.gov/projects/SNP/
snp_ref.cgi?rs=11191865. ) respectively).  

In the present study, the T allele of rs2736100 was 
associated with an increased risk of IPF [adjusted OR for 
the T allele =1.73, 95%CI = 1.18–2.52, P = 0.005 (data not 
shown)]. A GWAS in Japanese reported that rs2736100 
might contribute to the risk of IPF; the OR of IPF for the 
T allele was 1.81 (95% CI= 1.46–2.24) (Mushiroda et 
al., 2008). In non-Japanese populations, the ORs of IPF 
for the T allele were 1.75 (P = 0.17) among Koreans, 
2.00 (P = 0.05) among Mexicans, and 1.37 (P<0.001) 
among non-Hispanic whites (Peljto et al., 2015). It has 
been reported that the T allele is associated with shorter 
telomere length while the G allele is associated with 
longer telomere length (Codd et al., 2013). Although the 
mechanisms of telomere length regulation by rs2736100 
are not currently understood, the SNP lies within a putative 
regulatory region (Landi et al., 2009) and is considered 
to influence TERT expression based on the evolutionary 
and sequence pattern extraction through reduced 
representations (ESPERR) score (Taylor et al., 2006). 
ESPERR, which is a computational method, has been 
developed to create a reduced representation for removing 
noise while keeping useful signals for characterizing 

a class of functional components (Available at https://
omictools.com/esperr-tool.) 

The germline mutations in telomerase components 
such as TERT and TERC are detected in 8%–15% of cases 
of familial IPF but rarely in 1%–3% of cases of sporadic 
IPF (Armanios, 2012). Variations in TERT and TERC 
cause telomerase haploinsufficiency, which results in short 
telomere defect, the most clinically recognized telomere 
dysfunction in autosomal dominant pulmonary fibrosis 
(Armanios, 2012). However, there are few reports about 
the association between rs2736100 and COPD. Stanley 
et al., (2015) reported that the prevalence of deleterious 
variations in TERT was 1% in their cohort of smokers with 
severe emphysema/COPD and that germline mutations 
in telomerase were a genetic risk factor for severe 
emphysema among smokers. Short telomeres reduce the 
threshold for cigarette smoke damage in intraepithelial 
cells, and then the damage causes epithelial senescence.  
Senescence may be an important factor in triggering 
alveolar destruction in telomere-mediated emphysema 
(Stanley et al., 2015). 

Taking these results together, we considered it 
biologically plausible that the T allele of rs2736100 
associated with shorter telomere length was related to 
an increased risk of non-cancerous pulmonary disease.  
Recently, it has been suggested that the common etiology 
of IPF/COPD is a disease category characterized by 
alveolar senescence and lung “early aging” (for IPF 
patients, defects in alveolar epithelial precursor cells; and 
for COPD patients, defects in mesenchymal precursor 
cells) (Ito and Barnes, 2009; Chilosi et al., 2012; Tuder 
et al., 2012). 

TERC rs1881984 and OBFC1 rs11191865 were not 
related to the risk of either IPF or COPD in this study.  
It has been shown a significant association between 
rs11191865 and IPF in non-Hispanics and Mexicans but 
not in Koreans (Peljto et al., 2015). Ethnic differences may 
exist in the association of rs11191865 and IPF and reflect 
different polymorphism-polymorphism interactions, or 
different linkages to the polymorphisms determining the 
IPF risk.  

We also evaluated the relationship between the 
cumulative “at-risk” genotypes of three telomerase-related 
polymorphisms and the risks of IPF and COPD. The 
association between IPF and COPD risk and the pertinent 
combination of multiple “at-risk” genotypes has not been 
explored. Most epidemiological studies on CLDs have 
examined the main effect of each SNP or SNP-environment 
interaction and rarely the SNP–SNP combination.  
Although there were no significant associations in a 
single locus analysis, increasing numbers of “at-risk” 
genotypes increased the IPF risk in a dose-dependent 
manner. In addition, there was no significant association 
in the two risk genotype combination of rs2736100 and 
rs1881984, but the combination including the “at-risk” 
genotype of rs11191865 increased the risk of IPF.  Like 
rs2736100, rs11191865 is present in an intron and has 
been reported to have no effect on OBFC1 expression and 
structure (Fingerlin et al., 2013).  It remains unclear how 
rs11191865 is associated with the risk of IPF. Our study, 
for the first time, combined rs2736100, rs1881984, and 
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rs11191865 polymorphisms with COPD/IPF risk. 
The advantages of the present study included the 

fairly large size of the study population and the higher 
prevalence of the “at-risk” allele of rs2736100 in 
Japanese compared to other ethnic populations because 
a sample size with sufficient statistical power is critical 
to the success of genetic association studies.  Therefore, 
Japanese individuals may be an appropriate population 
for studying the association between rs2736100—either 
alone or with other polymorphisms—and IPF Several 
study limitations should also be discussed. The first was 
the potential for misclassification of the diagnosis. Clinical 
investigators were cautious to exclude other fibrotic lung 
diseases, but we cannot exclude the possibility that a 
small number of non-IPF fibrotic lung diseases may have 
been classified as IPF. Second, case-control studies are 
specifically open to selection bias in the control group.  In 
our study, the controls were grouped separately and were 
not matched to the patients. However, matching solves 
confounding problems during the design phase of the 
study, rather than the analysis phase. In this study, these 
factors were adjusted in a statistical model. Matching is an 
option that can improve the efficiency of the estimation of 
exposure effects in situations where confounding factors 
are substantially different between the cases and controls.  

TERT rs2736100 was associated with both risks of 
COPD and IPF in a Japanese population. Three SNPs 
involved in telomere length had a significant cumulative 
impact on IPF risk.  In the future study, we are going 
to compare the role of these three telomere-related 
polymorphisms among two groups of COPD or IPF 
patients who developed lung cancer and those who did 
not develop lung cancer in our prospective cohort study. 
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