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SUMMARY

Sprouty-related, EVH1 domain-containing (SPRED) proteins negatively regulate RAS/mitogen-

activated protein kinase (MAPK) signaling following growth factor stimulation. This inhibition of 

RAS is thought to occur primarily through SPRED1 binding and recruitment of neurofibromin, a 

RasGAP, to the plasma membrane. Here, we report the structure of neurofibromin (GTPase-

activating protein [GAP]-related domain) complexed with SPRED1 (EVH1 domain) and KRAS. 

The structure provides insight into how the membrane targeting of neurofibromin by SPRED1 

allows simultaneous interaction with activated KRAS. SPRED1 and NF1 loss-of-function 

mutations occur across multiple cancer types and developmental diseases. Analysis of the 

neurofibromin-SPRED1 interface provides a rationale for mutations observed in Legius syndrome 

and suggests why SPRED1 can bind to neurofibromin but no other RasGAPs. We show that 

oncogenic EGFR(L858R) signaling leads to the phosphorylation of SPRED1 on serine 105, 
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disrupting the SPRED1-neurofibromin complex. The structural, biochemical, and biological 

results provide new mechanistic insights about how SPRED1 interacts with neurofibromin and 

regulates active KRAS levels in normal and pathologic conditions.

Graphical Abstract

In Brief

Yan et al. describe the structure of neurofibromin (GAP-related domain) in complex with 

SPRED1(EVH1) and KRAS and suggest a mechanism by which this interaction is regulated 

during normal cell signaling and in cells with activated receptor tyrosine kinase oncogenes. The 

neurofibromin-SPRED1 interaction interface provides a rationale for mutations observed in Legius 

syndrome.

INTRODUCTION

The NF1 tumor suppressor gene encodes the cytoplasmic protein neurofibromin that acts as 

a RAS-specific GTPase-activating protein (GAP) and promotes the conversion of the active 

guanosine triphosphate (RAS-GTP) form to the inactive guanosine diphosphate (RAS-GDP) 

form, thereby downregulating its biological activity (Bos et al., 2007; Cherfils and Zeghouf, 

2013; Scheffzek et al., 1997). Oncogenic mutations in RAS genes commonly lead to 

impaired GAP-mediated GTPase activity, which, in turn, results in constitutive activation of 

downstream signaling pathways (DeClue et al., 1992; Hobbs et al., 2016; Simanshu et al., 
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2017). Mutations in the NF1 gene can also alter cellular growth and neural development, 

resulting in neurofibromatosis type 1, an autosomal dominant disorder that affects 

approximately one in 3,500 newborns worldwide (Philpott et al., 2017; Stumpf et al., 1988). 

Characteristic clinical features that are associated with neurofibromatosis type 1 include 

hyperpigmentary abnormalities of the skin (café-au-lait macules; CALM), inguinal/axillary 

freckling, skeletal abnormalities, Lisch nodules, and growth of benign peripheral nerve 

sheath tumors (neurofibromas) in the skin (Gerber et al., 2009). In addition to 

neurofibromatosis type 1, the NF1 gene is often mutated in a variety of sporadic human 

malignancies, including glioblastoma, lung adenocarcinoma, acute myeloid leukemia, and 

ovarian and breast cancers (Blatt et al., 1986; Cancer Genome Atlas Research, 2008; Korf, 

2000; Kresak and Walsh, 2016; Upadhyaya, 2011). The recently identified Legius syndrome, 

caused by germline mutations in the SPRED1 gene, shares milder symptoms with 

neurofibromatosis type 1, including CALM, axillary freckling, and sometimes macrocephaly 

(Brems and Legius, 2013). Both syndromes are characterized as RASopathies, congenital 

developmental syndromes caused by germline mutations affecting the RAS/mitogen-

activated protein kinase (MAPK) pathway (Aoki et al., 2016).

Neurofibromin (the protein is referred to here as NF1, encoded by the NF1 gene) is a large, 

320-kDa, multidomain protein that has been proposed to interact with multiple proteins 

(Donovan et al., 2002; Ratner and Miller, 2015). The GAP-related domain (GRD) located in 

the middle segment of NF1 is responsible for its RasGAP activity (Ballester et al., 1990; 

Martin et al., 1990; Xu et al., 1990). The GRD has a central portion called the minimal 

catalytic domain (GAPc) and an extra domain (GAPex) formed by residues that flank the 

GAPc. Although the apo structure of the NF1(GRD) was solved more than 2 decades ago 

(Scheffzek et al., 1998), our recent structural work on GMPPNP-bound KRAS in complex 

with the GAPc of NF1(GRD) provided structural insights into NF1-mediated GTPase 

activity (Rabara et al., 2019). In that study, we showed that, unlike G12 and Q61 mutants, 

G13 mutants of KRAS are frequently co-mutated with NF1 and that NF1 hydrolyzes GTP 

directly in complex with KRAS-G13D. Besides RAS, SPRED (Sprouty-related, EVH1 

domain-containing) proteins have been shown to bind NF1 directly and negatively regulate 

the RAS/MAPK pathway via this interaction (Stowe et al., 2012).

In mammals, the SPRED family consists of three members: SPRED1, SPRED2, and 

SPRED3 (Wakioka et al., 2001). All three variants can negatively regulate the RAS/MAPK 

pathway, and, unlike SPRED1 and SPRED2, SPRED3 has much weaker ERK-suppression 

activity (Kato et al., 2003). Gene-disruption studies have shown the functional similarity 

between SPRED1 and SPRED2, as SPRED1 and SPRED2 single-knockout mice were 

viable, while SPRED1/2 double-knockout mice were embryonically lethal (Taniguchi et al., 

2007). The SPRED1 gene encodes a 50-kDa SPRED1 protein, which comprises an N-

terminal Ena/VASP Homology 1 (EVH1) domain and a C-terminal Sprouty-related domain 

(SPR) separated by a central c-Kit binding domain (KBD).

The EVH1 domain of SPRED1 interacts with NF1 (Stowe et al., 2012; Wakioka et al., 

2001). This interaction is essential for NF1’s ability to suppress RAS activity. Mutations that 

cause Legius syndrome disrupt SPRED1-NF1 binding (Führer et al., 2019). The SPR 

domain undergoes palmitoylation, causing SPRED proteins to localize in the membrane 
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fraction (Nonami et al., 2005). Epidermal growth factor (EGF) stimulation or galectin-1-

mediated induction of RAF dimers has also been shown to translocate SPRED1 to the 

plasma membrane (Siljamäki and Abankwa, 2016). Pathogenic mutations in the SPR 

domain prevent membrane localization of the SPRED-NF1 complex (Stowe et al., 2012). 

Based on these data, a model was proposed in which SPRED proteins act as chaperones that 

are necessary to translocate NF1 to RAS on the plasma membrane (McClatchey and 

Cichowski, 2012; Stowe et al., 2012). This model explains why Legius syndrome resembles 

neurofibromatosis type 1 and explains the role of SPRED proteins in suppressing the RAS/

MAPK pathway. Milder phenotypes associated with Legius syndrome relative to 

neurofibromatosis type 1 may be due to partial redundancy between SPRED1 and SPRED2 

proteins. Recent studies have shown that SPRED1(EVH1) interacts with NF1(GRD) via the 

GAPex domain of NF1 and does not interfere with RAS binding or RasGAP activity 

(Dunzendorfer-Matt et al., 2016; Hirata et al., 2016). However, the structural details of the 

SPRED1-NF1 complex and the effects of the pathogenic mutations observed in Legius 

syndrome on SPRED1’s interaction with NF1 remain to be clarified.

The model in which SPRED proteins are essential for NF1’s ability to inactivate RAS raises 

questions of how these interactions are regulated and what is the structural basis for these 

interactions. In this study, we describe the structure of a ternary complex formed by the 

NF1(GRD) with the SPRED1 (EVH1 domain) and the active KRAS (GMPPNP bound). We 

show that SPRED1 and KRAS interact with NF1 via two separate interfaces, and we provide 

structural insights into how SPRED1 inhibits the RAS-ERK pathway by recruiting NF1 to 

RAS through the EVH1-GRD interaction. Our study also provides a structural explanation 

for the pathogenic mutations in SPRED1 and NF1 responsible for Legius syndrome and 

neurofibromatosis type 1, and it explains why SPRED1 interacts with NF1 GAP but not 

RASA1 GAP. Furthermore, we report that oncogenic EGF receptor (EGFR) disrupts the 

interaction between SPRED1 and NF1 by promoting phosphorylation on serine 105 within 

the EVH1 domain. These data suggest that oncogenic signals prevent NF1 from 

downregulating RAS, thus allowing sustained signaling without negative feedback.

RESULTS

Crystal Structure of NF1(GRD) in Complex with SPRED1(EVH1) and GMPPNP-Bound KRAS

To gain structural insight into how neurofibromin interacts with SPRED1 without affecting 

KRAS inactivation and to understand the structural basis of pathogenic SPRED1 and NF1 
mutations in Legius syndrome and neurofibromatosis type 1, we attempted to solve the 

structure of the ternary complex composed of NF1(GRD), SPRED1(EVH1), and GMPPNP-

bound KRAS (Figure 1A). Binding affinity measured using isothermal titration calorimetry 

(ITC) showed a dissociation constant (KD) of 224 nM between SPRED1(EVH1) and 

NF1(GRD), as well as a KD of 1.3 μM between GMPPNP-bound KRAS and NF1(GRD) 

(Figures S1A and S1B). Since the Q61L mutant of KRAS binds to NF1(GRD) with 5-fold 

higher affinity than wild-type KRAS, we carried out crystallization of the ternary complex 

using wild-type as well as the Q61L mutant of KRAS (Figure S1C) and solved the crystal 

structures at resolutions of 2.75 Å and 2.55 Å, respectively (Table S1). The NF1, SPRED1, 

and KRAS domains used for the crystallization are highlighted in Figure 1A. The overall 
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structure of the ternary complex is indicated in ribbon and surface representation in Figure 

1B. As seen in the structure, NF1(GRD) acts as a scaffold and uses different interfaces to 

interact with KRAS and SPRED1. We see no interaction between KRAS and SPRED1, as 

suggested earlier (Dunzendorfer-Matt et al., 2016). NF1(GRD) shows an all-helical, 

crescent-shaped structure that interacts with KRAS primarily through its GAPc region, 

which forms the “belly” part of the crescent. In contrast, the residues that flank the GAPc 

region form the GAPex region present at one end of the crescent, which is the major 

interaction domain for SPRED1(EVH1) (Figure 1B), as proposed previously based on 

biochemical studies (Dunzendorfer-Matt et al., 2016; Hirata et al., 2016). Besides 

NF1(GAPex), the GAPc region of NF1(GRD) is also involved in the NF1-SPRED1 

interaction. The structure of the ternary complex obtained with the KRAS-Q61L mutant 

aligns precisely with the ternary complex structure solved with wild-type KRAS (Figures 

S1D and S1E). Unlike the previously solved apo-NF1(GRD) structure where more than 20% 

of the residues were disordered (Scheffzek et al., 1998), most of the NF1(GRD) residues are 

observed in the structures described here, except residues C1465–S1476 as well as S1502–

R1512, for which weak electron density was observed. The structural superposition of 

NF1(GRD) in the ternary complex and apo-NF1(GRD) (PDB: 1NF1) shows no structural 

rearrangement at the NF1-KRAS interface, suggesting that KRAS binding does not cause 

any major allosteric effects on NF1.

Structure-Guided Mutational Analysis Confirms Key Residues Involved in Neurofibromin-
KRAS Interaction

At the NF1-KRAS interface, KRAS residues in and around the switch I and II regions–

specifically, residues from Q25 to R41, and from D54 to Q70–interact with multiple NF1 

residues spread across the shallow groove of the GAPc region of GRD (Figures 2A-2C and 

Table S2). The interaction between NF1 and KRAS appears to be stabilized mainly by polar 

contacts, including five salt-bridge interactions involving the following pairs: K1283(NF1) 

and E62(RAS), R1391(NF1) and E63(RAS), K1419(NF1) and E37(RAS), K1423(NF1) and 

D38(RAS), and R1325(NF1) and D54(RAS) (Figures 2A-2C, S2A, and S2B). The NF1-

KRAS interface also contains hydrogen bonds formed by the side-chain atoms between 

R1325(NF1) and S39(RAS) and between T1286(NF1) and E63(RAS). Point-mutation 

studies suggest that the residues located in the central part of the NF1-KRAS interface play a 

more significant role in the complex formation than the residues located on the edge of the 

interface (Figures 2D, S2C, and S2D). When KRAS residues located at the edge of the 

interface, like Y32 or R41, were mutated to alanine, the binding affinity (measured by ITC) 

decreased from 1.3 μM to 11.9 μM and 6.9 μM, respectively. On the other hand, when the 

KRAS residues present in the central part of the interface, such as D38, Y40, E63, and Y64, 

were mutated to alanine, the binding affinity decreased approximately 40-fold for Y40A and 

E63A mutations and to undetectable binding for D38A and Y64A mutations. These results 

are consistent with the previous observation where D38Aand E63H mutations in HRAS 

result in significant loss of RASA1-mediated GAP activity (Gideon et al., 1992).

We observed a similar trend when NF1 residues located at the NF1-KRAS interface were 

mutated to alanine (Figures 2E and S2E). NF1 residue substitutions, such as R1276A (the 

catalytic arginine finger), K1283A, and R1391A (of the FLR motif and expected to co-
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stabilize switch II during the transition state), located on the edge of the interface, had a 

marginal effect on NF1-KRAS interaction. Previously, mutation of R1276 wa shown to 

result in complete loss of GAP activity (Ahmadian et al., 1997b; Sermon et al., 1998), 

whereas mutation of R1391 to Ala results in a 400-fold reduction in GAP activity compared 

to the wild-type NF1. Unlike R1276, which acts as an arginine finger, R1391 plays a 

structural role by stabilizing the catalytic pocket and plays a secondary role in GAP activity. 

Unlike the substitution of residues located on the edge of the interface, point mutants of NF1 

residues present in the center of the protein-protein interface had a significant effect on NF1-

KRAS interaction. The NF1 mutation K1419A, which abolishes the salt-bridge interaction 

with E37 on KRAS, showed 30-fold weaker affinity than wild-type NF1(GRD). Similarly, 

when NF1 residue K1436, which points the terminal nitrogen atom toward the gamma-

phosphate of KRAS-GMPPNP, was mutated to alanine, the binding affinity decreased by 

approximately 20-fold. Previously, NF1-K1423 was shown to be mutated to Glu and Gln in 

neurofibromas and solid tumors, and these mutations were shown to result in 200- to 400-

fold lower GAP activity than the wild-type (Li et al., 1992). When the NF1 lysine residues 

(K1423 and K1436) involved in polar contacts at the interface were mutated to negatively 

charged glutamate, the interaction between NF1 and KRAS was completely abolished.

In addition to polar interactions, the NF1-KRAS interface also contains hydrophobic 

interactions formed by nonpolar residues. The partly hydrophobic nature of the interface 

provides an explanation for the higher affinity of the KRAS-Q61L oncogenic mutant with 

NF1(GRD), even though this mutant is unable to hydrolyze GTP efficiently. In the ternary 

complex formed by KRAS-Q61L, the side chain of L61 forms hydrophobic interactions with 

L1390 from NF1. Unlike KRAS-Q61L, a KRAS-Q61R mutation would disrupt this 

hydrophobic interaction and cause charge repulsion with arginine finger NF1-R1276. This 

explains why the KRAS-Q61R mutant binds to NF1 with a much lower affinity than KRAS-

Q61L (Rabara et al., 2019).

The Active Site Pocket in Neurofibromin-KRAS(GMPPNP) Complex and Comparison with 
RASA1-HRAS(GDP-AlF3) Complex

Unlike the previously solved structure of the RASA1-HRAS complex in which a GDP-AlF3 

module was used as a transition-state mimic (Scheffzek et al., 1997), the ternary complex 

described here was obtained in the presence of a slowly hydrolysable GTP analog, GMPPNP 

(GppNHp), corresponding to a ground-state conformation of the NF1-KRAS complex. This 

allows a comparison between the transition-state structure of HRAS-RASA1(GAP334) and 

the ground-state structure of KRAS-NF1(GAP328). Despite relatively low sequence identity 

between the GRD of RASA1 and NF1, the two structures share a common fold with a root-

mean-square deviation (RMSD) of 1.7 Å (for the Cα atoms) and show a similar mode of 

binding to KRAS, suggesting that these two GAP proteins carry out GTPase activity in 

KRAS through a similar mechanism. In the ground-state structure, RAS-Y32 occupies the 

position of the arginine finger NF1-R1276 (R789 in RASA1) that points away from the 

active site (Figures 3A and 3B). Structural superposition of the ground- and transition-state 

complexes suggest that the GAPex region of NF1(GRD) undergoes a rotation of 

approximately 8.5° toward KRAS while shifting from the ground-state to a transition-state 

conformation (Figure 3A). Similar structural changes were observed in the ground-state 
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structure of the NF1-GAPc domain in complex with wild-type and G13D mutant KRAS 

(Rabara et al., 2019). Structural transition from the ground state to the transition state would 

rearrange RAS-Y32 and arginine finger NF1-R1276 by swapping their positions. This 

enables the arginine finger to interact with the beta and gamma phosphates of GMPPNP and 

stabilize the negative charge in the active site pocket. Similar rotation and conformational 

changes, allowing effective placement of the arginine finger in the active site pocket, have 

been observed in Rho GTPases where structural information is available for both ground and 

transition states (Rittinger et al., 1997a, 1997b). The structural comparison between NF1-

KRAS(GMPPNP) and RASA1-HRAS(GDP-AlF3) complexes showed the presence of five 

strong salt-bridge interactions in the NF1-KRAS complex spanning the protein-protein 

interface, whereas the RASA1-HRAS complex has only two such interactions at its interface 

(Figures 3C and 3D). It is tempting to speculate that the additional salt bridges present at the 

NF1-KRAS interface contribute to the higher affinity interaction of KRAS with NF1 

compared to RASA1 GAP (Ahmadian et al., 1997a).

The SPRED1-Neurofibromin Interface and a New Mode of Protein-Protein Interaction 
Formed by the EVH1 Domain

Previous biochemical studies suggested that the EVH1 domain of SPRED1 interacts with the 

GAPex domain of NF1 (Dunzendorfer-Matt et al., 2016; Hirata et al., 2016). In the ternary 

complex structure described here, the SPRED1(EVH1) domain interacts with both the 

GAPex and the GAPc regions of NF1(GRD). The overall structure of SPRED1 resembles 

the apo structure of SPRED1 solved previously from Xenopus tropicalis (RMSD = 1.04 Å 

for Cα atoms) and Homo sapiens (RMSD = 0.94 Å for Cα atoms). The total surface area 

buried upon SPRED1(EVH1)-NF1(GRD) complex formation is 849.8 Å2 for 

SPRED1(EVH1) and 887.3 Å2 for NF1(GRD), accounting for 12.5% (SPRED1) and 5.4% 

(NF1) of the total surface areas. The N-terminal residues L1211–E1220 of the NF1-GAPex 

domain undergo a structural change to form a long, finger-like loop that inserts itself into the 

pocket present on SPRED1 (Figures 4A, 4B, 5A, and 5B). Residue D1217 in NF1 forms a 

salt bridge with a conserved arginine (R24) in SPRED1, and the SPRED1 residue W31 

forms hydrogen bonds with NF1 residues D1217 and M1215 (Figure 4C). The main-chain 

atoms of M1215 in NF1 form hydrogen bonds with the backbone atoms of G30 and W31 

from SPRED1. Unlike the residues present at the N-terminal end of NF1(GRD), the residues 

located at the C terminus have less direct interaction with SPRED1 and act as a structure-

supporting module to maintain the overall architecture between GAPc and the GAPex 

domains. A hydrophobic interaction exists between the aliphatic part (alkyl chain before the 

terminal amino group) of NF1-K1517 and the Cβ carbon atom of residues S27 and S28 in 

SPRED1, and a weak hydrogen bond is also present between the side-chain atoms of 

K1517(NF1) and S27(SPRED1). The SPRED1 region forming the SPRED1-NF1 interface 

in the crystal structure is consistent with the recently reported chemical shift changes 

observed in the 15N-labeled SPRED1(EVH1) mutant when it was titrated with the unlabeled 

NF1(GRD) in an NMR experiment (Führer et al., 2019).

As mentioned earlier, the structure shows that the NF1-GAPc region also interacts with 

SPRED1(EVH1) and contributes to complex stabilization mainly via hydrophobic 

interactions (Figure 4B and Table S3). This part of the NF1-SPRED1 interface is formed by 
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interaction among residues R1250–W1258 and S1363–H1366 from the NF1-GAPc region 

and residues V85–H91 and T102–A107 from the SPRED1(EVH1) domain, which includes a 

hydrogen bond between Q1255(NF1) and T88(SPRED1) (Figure 4B; Table S3). The EVH1 

domain has previously been shown to recognize proline-rich peptides in partner proteins 

using the grooves present on its surface (Peterson and Volkman, 2009). Since there is no 

proline-rich motif in NF1(GRD), and SPRED1(EVH1) interacts with NF1(GRD) via a 

narrow cleft, our results show a new binding mode for EVH1-domain-containing proteins.

Structural Implications of Pathogenic Mutations Seen in Legius Syndrome and 
Neurofibromatosis Type 1

Although many of the Legius-syndrome-associated mutations found in the SPRED1 gene 

result in premature stop codons, those that result in non-truncating missense mutations are 

often located within the EVH1 domain (Brems et al., 2012) (Figure 4D). Considering the 

phenotypic similarity between Legius syndrome and neurofibromatosis type 1, as well as the 

observation that NF1 is recruited to the plasma membrane by SPRED1, it has been 

hypothesized that mutations in SPRED1(EVH1) could cause Legius syndrome due to an 

inability to form the NF1-SPRED1 complex (Stowe et al., 2012). Recently, this hypothesis 

was supported by mutational studies in SPRED1 and NF1 using the yeast two-hybrid system 

(Hirata et al., 2016). To understand the structural basis of the pathogenicity of Legius 

syndrome mutations, we mapped various mutations observed in this RASopathy on the 

ternary complex structure described here (Figure S3A). Most of the missense mutations 

observed in the SPRED1(EVH1) domain are located on the NF1-SPRED1 interface (Figure 

S3C). We mutated several of these residues in SPRED1 that cause Legius syndrome in order 

to test the relationship between the disease phenotype and NF1 binding by measuring the KD 

using ITC (Figures 4E, S3B, and S3D). The mutation R24Q (Sumner et al., 2011), which 

abolishes the salt bridge with residue D1217 of NF1, shows a 20-fold weaker binding 

(Figures 4A, 4E, and S3D). Two other mutants, G30R (Sumner et al., 2011) and T102R 

(Messiaen et al., 2009), which disrupt a hydrophobic interaction by introducing a relatively 

large side chain and charged amino acid arginine, result in an over 100-fold decrease in KD 

and undetectable binding, respectively, between SPRED1 and NF1 (Figures 4A, 4B, 4E, and 

S4D). We also checked two other mutants at the interface: W31C (Denayer et al., 2011) and 

G100D (Brems et al., 2012), which have been reported to abolish the interaction between 

SPRED1 and NF1 in vivo (Hirata et al., 2016; Stowe et al., 2012). These two mutants failed 

to yield soluble and stable proteins, suggesting that they are likely to reduce the stability of 

the EVH1 domain of SPRED1 and may not undergo proper protein folding (Figures 4C and 

4E).

We also mapped various pathogenic mutations observed in neurofibromatosis type 1 

diseases, which include L1208W, L1211R, D1217G, and deletion of M1215 at the N-

terminal end, and L1490P, Q1494R/E, and G1498E at the C-terminal end of the GAPex 

region in NF1 (Figures S3A and S3E). Among these–except NF1 residues M1215 and 

D1217, which are located at the NF1-SPRED1 interface–all other hydrophobic residues are 

located in the core of the GAPex domain (Figure S3A). The mutations of these hydrophobic 

residues to residues with bulky or charged side chains are likely to destabilize the folding of 

the GAPex region. We examined the D1217A(NF1) mutation using our ITC binding assay, 
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and this mutant showed more than 50-fold weaker affinity to SPRED1(EVH1) (Figures 4F 

and S3F). Previously, it has been shown that the deletion mutant of M1215 fails to 

coimmunoprecipitate with SPRED1 and to localize to the membrane upon SPRED1 

overexpression (Dunzendorfer-Matt et al., 2016).

We also noticed that the NF1 mutation R1250Q seen in cancer patients is located at the NF1-

SPRED1 interface. In our binding assay, the R1250A(NF1) mutant showed a 5-fold reduced 

binding with SPRED1(EVH1), suggesting its involvement in NF1-SPRED1 interaction 

(Figures 4F, S3E, and S3F). To find out which NF1 residues present at the NF1-SPRED1 

interface play an important role in NF1-SPRED1 complex formation, we carried out our 

point-mutational study of NF1 residues such as M1214, Q1255, H1366, and K1517, as they 

form a key interaction at the interface. Single point mutation of these NF1 residues to 

alanine/valine had no significant effect on the binding affinity between NF1 and SPRED1, 

suggesting that these NF1 residues individually do not contribute significantly to NF1-

SPRED1 interaction (Figures S3E and S3F).

Why Doesn’t SPRED1 Bind to the RASA1 GAPex Domain?

Like SPRED1(EVH1), RASA1(GRD) contains a GAPex domain. Previous studies have 

shown that SPRED1 binds to NF1(GRD) but not RASA1(GRD) (Hirata et al., 2016; Stowe 

et al., 2012). To understand the structural basis for the lack of interaction between SPRED1 

and RASA1, we carried out sequence and structural comparisons of GRD of NF1 and 

RASA1, focusing on the GAPex region. Sequence alignment of GRD of NF1 and RASA1 

shows 30% sequence identity in the GAPc domain (Figure S4A). However, these two 

proteins share almost no sequence similarity in the GAPex domain. Most of the NF1-GAPex 

residues that interact with SPRED1 are not conserved in RASA1. Importantly, the region 

from G1216–G1219 in NF1 (including the NF1 residue D1217 that forms a salt bridge with 

R24 in SPRED1), which forms the loop to bind to SPRED1, is missing in RASA1 (Figures 

5A, 5B, and S4A). This makes it unlikely that RASA1 will undergo a similar conformational 

change to bind to SPRED1. Structural alignment of NF1(GRD) from the ternary complex 

structure described here and RASA1(GRD) from the previously solved RASA1-HRAS 

complex shows that though the GAPc regions align well between these two proteins, the 

GAPex regions show significant structural differences (Figures 5C and 5D). Thus, sequence 

and structural differences between the GRD of NF1 and RASA1 provide a rationale for 

SPRED1 binding to NF1 but not RASA1 (Ahmadian et al., 1996; Hirata et al., 2016; Stowe 

et al., 2012).

SPRED1 Phosphorylation Disrupts SPRED1-Neurofibromin Interaction

Oncogenic receptor tyrosine kinases (RTKs) promote proliferation through sustained 

activation of the RAS/MAPK pathway. To do this, they presumably overcome negative 

feedback that normally turns this pathway off as part of the normal process of cellular 

signaling. NF1 has been implicated in this feedback process. We speculated that, in cells 

expressing constitutively active oncogenic tyrosine kinases, the interaction between NF1 and 

SPRED1 might be disrupted. Since gain-of-function EGFR mutations tend to be mutually 

exclusive with loss-of-function SPRED1 and NF1 mutations in lung adenocarcinoma 

(Collisson et al., 2014) (Figure S5A), we used oncogenic EGFR(L858R) as a model system. 
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Expression of EGFR(L858R) disrupted SPRED1-NF1 binding, as shown by FLAG 

immunoprecipitation (IP) of the NF1(GRD) domain and western blot for endogenous 

SPRED1 in HEK293T cells (Figure 6A). To identify phosphorylation sites on SPRED1 that 

may disrupt SPRED1-NF1 binding, we co-expressed oncogenic EGFR(L858R) and 

SPRED1, immunoprecipitated SPRED1, and performed liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) (Figure S5B). Five SPRED1 phosphorylation sites were 

identified (Figure 6B), including serine 105 in the EVH1 domain. Serine 105 is also in close 

proximity to threonine 102, which is mutated to arginine in Legius syndrome (Messiaen et 

al., 2009). SPRED1(T102R) is unable to bind NF1 and suppresses RAS-GTP following EGF 

stimulation (Stowe et al., 2012). Furthermore, in the crystal structure, both T102 and S105 

are located in a hydrophobic region of SPRED1 that is part of the interacting area between 

NF1 and SPRED1; therefore, it is likely that the negative charge of the phosphate group on 

the hydrophobic surface of SPRED1 sterically repels NF1. The region flanking human 

SPRED1(S105) is also conserved across multiple species, from mouse to fish, further 

supporting the importance of this phosphorylation site (Figure 6C). To interrogate the 

potential disruption of NF1 binding by the phosphorylation of SPRED1(S105), we generated 

phosphomimetic and phosphodeficient SPRED1(S105) mutants and performed IP 

experiments. Phosphomimetic residues (aspartic and glutamic acid) decreased NF1 binding, 

while phosphodeficient (alanine) residues increased NF1 binding (Figure 6D). Using 

purified phosphomimetic SPRED1(S105D) and SPRED1(S105E) mutant proteins, we 

measured the binding affinity with NF1 (GRD) using ITC experiments. Mutation of 

SPRED1-S105 to Asp led to 10-fold weaker affinity, whereas mutation to Glu showed no 

measurable binding using ITC (Figure 6E). These experiments identify serine 105 as a 

critical phosphorylation site on SPRED1 that disrupts the SPRED1-NF1 complex.

Phosphomimetic and Phosphodeficient SPRED1 Alters RAS-GTP Signaling after EGF 
Stimulation and K562 Proliferation

In addition to the biochemical effect of SPRED1(S105) phosphorylation on NF1 binding, we 

were also interested in the biological effects of this process. We have previously 

demonstrated that SPRED1 overexpression decreased RAS-GTP following EGF stimulation 

in HEK293T cells and that SPRED1 mutants found in Legius syndrome were unable to 

decrease RAS-GTP (Stowe et al., 2012). As expected, the phosphomimetic 

SPRED1(S105D) is compromised in its ability to suppress RAS-GTP following EGF 

stimulation (Figure 7A). To determine whether the phosphomimetic SPRED1(S105D) also 

alters cancer cell proliferation, we used a cancer cell line dependent on RAS/MAPK 

signaling for proliferation with functional SPRED1-NF1 feedback. Recently, using an 

unbiased whole-genome CRISPRa screen, Boettcher et al. (2018) discovered that SPRED2 

and NF1 overexpression inhibits K562 proliferation. K562 is a chronic myeloid leukemia 

(CML) cell line with the BCR-ABL oncogene, which is dependent on RAS-GTP for 

proliferation. Therefore, we expected that the K562 cell line would be an ideal model system 

to test the biological effects of phosphomimetic SPRED1(S105D), since in these cells, 

SPRED proteins, which are poorly phosphorylated on S105 (data not shown) can interact 

with NF1 to suppress growth. We infected K562 cells with SPRED1-IRES-GFP-expressing 

retrovirus and performed a competition assay between infected (GFP-positive) and 

uninfected (GFP-negative) cells (Figure 7B). Representative flow cytometry GFP histograms 
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show similar infection rates and expression levels (Figure S6A). SPRED1 wild-type, GFP-

positive cells were outcompeted by GFP-negative cells, while the empty vector controls 

were not. Likewise, the S105A mutant of SPRED1 behaved like wild-type, whereas the 

phosphomimetic SPRED1(S105D)-infected cells were compromised in their ability to 

inhibit proliferation. SPRED1 Legius syndrome patient mutants W31C and T102R that fail 

to bind NF1 did not affect proliferation (Figure 7B).

In addition to oncogenic EGFR(L858R)-mediated phosphorylation of SPRED1(S105) in 

HEK293T overexpression assays, we tested whether SPRED1 is phosphorylated in cancer 

cells with oncogenic EGFR mutations. We tested four EGFR mutant cancer cell lines and 

found that they all have elevated SPRED1(S105) phosphorylation (Figure 7C). While it is 

difficult to determine the stochiometry of phosphorylation using MS, we have estimated 

relative levels of phosphorylation by measuring the ratio of average measured retention 

times of modified and unmodified peptides (Figure S6B). We also analyzed phosphorylation 

on S107 and several other sites on SPRED1 in a wider panel of cancer cell lines expressing 

activated RTKs (Figures S6C and S6D). In addition to oncogenic EGFR, expression of other 

oncogenic RTKs, especially the D816V mutant of c-Kit, also increases SPRED1(S105) 

phosphorylation and other phosphorylation sites, broadening the scope of this finding.

DISCUSSION

Although a number of interacting partners of neurofibromin have been reported in recent 

years (Ratner and Miller, 2015), the biological significance of these protein–protein 

interactions is still being investigated. RAS and SPRED are two families of proteins that 

bind to NF1, both at the GRD. While the ability of RAS proteins to interact with multiple 

effectors and regulators has been well documented (Simanshu et al., 2017), protein 

interactions with SPRED proteins are poorly understood. Here, we describe the structure of 

NF1(GRD) in complex with SPRED1(EVH1) and active KRAS and suggest a mechanism 

by which this interaction is regulated during normal cell signaling and in cells with activated 

RTK oncogenes. In the ternary complex structure of SPRED1-NF1-KRAS, GMPPNP-bound 

KRAS is bound to the GAPc domain of NF1(GRD) and provides the ground-state 

conformation of the NF1-KRAS complex. A comparison of the ground-state conformation 

of the NF1-KRAS complex with the transition-state conformation of the RASA1-HRAS 

complex shows conformational changes and rearrangement of the side chains in the active 

site pocket during the transition.

In humans, the NF1 gene contains 60 exons and expresses multiple tissue-specific isoforms 

via alternative splicing with additional exons (9a, 10a-2, 23a, and 48a) (Barron and Lou, 

2012). Among these NF1 isoforms, isoform types I and II differ by alternative splicing of 

exons 23a and 23b, respectively, present in the center of the GRD region. Unlike NF1 

isoform II, which is described here, isoform I contains an additional 63-bp insertion (exon 

23a) that encodes 21 amino acids in the center of the GRD region. Mapping the insertion site 

on the SPRED1-NF1-KRAS complex suggest that the inserted region does not directly 

affect either the NF1-SPRED1 interface or the NF1-KRAS interface. However, among the 

two protein-protein interfaces on NF1, the insertion site is proximal to the KRAS-binding 

site and thus likely to lead to steric hindrance, which may reduce its ability to inactivate 
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RAS. NF1 isoform I is expressed in Schwann cells and is suggested to have a reduced GAP-

stimulated GTPase activity (Hinman et al., 2014). This observation is supported by our in 
vitro measurements of protein affinities. The binding affinity of NF1 isoform I (GRD 

containing additional 23 residues) with SPRED1(EVH1) is similar to that of NF1 isoform II, 

whereas the affinity of NF1 isoform I for KRAS was 3-fold less than for NF1 isoform II 

(Figures S7A and S7B). Compared to NF1 isoform II, the relatively weaker interaction of 

NF1 isoform I with KRAS provides a rationale for the reduced RasGAP activity of NF1 

isoform I. The specific expression patterns of the NF1 isoforms have been studied in several 

organs and cells and provide a basis for implicating differential expression of NF1 isoforms 

in the regulation of neuronal differentiation and development. Studies on sporadic colon, 

ovarian, and breast cancers have shown increased expression of isoform I relative to isoform 

II in tumor samples compared to normal tissue (Yap et al., 2014).

NF1, RASA1, and SynGAP are well characterized multidomain RasGAP proteins that 

contain a GRD domain with GAPex regions that flank the core catalytic region, GAPc. 

Although these RasGAP proteins share limited sequence and structural similarity in the 

GAPc region and use similar mechanisms for GAP-stimulated GTP hydrolysis, they use 

different domains and mechanisms for membrane anchoring. As shown previously, NF1-

GAPex interacts with SPRED1 for membrane recruitment, whereas RASA1 and SynGAP 

use SH2 and PH domains, respectively, to anchor themselves to the membrane, presumably 

in response to specific signals (Kaplan et al., 1990; Pena et al., 2008; Stowe et al., 2012). For 

RASA1, these signals are thought to be phosphorylation of tyrosine kinases during growth-

factor-induced signal transduction. After phosphorylation, RASA1 is recruited to the plasma 

membrane through its SH2 domains. It is then positioned to turn off RAS signaling through 

its GAP activity. It remains to be determined whether NF1 and SynGAP are regulated by 

analogous processes. The SPR domain of SPRED1 is essential for recruiting NF1 to the 

plasma membrane, but the signals that regulate this process are not yet understood. SPRED1 

and SPRED2 bind to the c-Kit RTK (Wakioka et al., 2001): this may be critical to membrane 

recruitment. SPRED1 also binds to B-Raf and Galectin-1: these interactions regulate 

SPRED1 plasma membrane translocation and affect signaling from KRAS, but not HRAS 

(Siljamäki and Abankwa, 2016). Although the GRD domains of RASA1 and SynGAP 

contain GAPex regions, the differences in amino acid composition and tertiary structure 

provide a rationale for their inability to bind to the SPRED1(EVH1) domain. Further studies 

are needed to understand the role, if any, of the GAPex domain in RASA1 and SynGAP.

Previous biochemical studies have suggested that both the N- and C-terminal regions of 

NF1-GAPex are essential for SPRED1 binding (Dunzendorfer-Matt et al., 2016; Hirata et 

al., 2016). In the crystal structure, the N-terminal region of NF1-GA-Pex is the primary 

module that directly binds to SPRED1; the key residues, including M1214 and D1217, are 

all located in this region. The C-terminal region of GAPex interacts with SPRED1 indirectly, 

and the mutations in this region show a milder effect. Considering that NF1 fails to interact 

with SPRED1 when the C-terminal residues in the NF1-GAPex domain are deleted, the C-

terminal residues likely serve to stabilize the GAPex domain.

SPRED proteins share significant sequence similarity in the EVH1 domain, and most of the 

EVH1 residues involved in SPRED1-NF1 interaction are conserved among them (Figures 
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S4B and S4C). This explains why all three SPRED proteins are able to bind NF1, as shown 

previously (Stowe et al., 2012). The ability of three functionally overlapping SPRED 

proteins to bind NF1 is likely responsible for the relatively benign phenotype of Legius 

syndrome. Sequence alignment of SPRED family members shows that, unlike SPRED1 and 

SPRED2, SPRED3 has a smaller N terminus and contains a three-amino-acid insertion in 

the β4 strand. These insertions and deletions likely cause minor changes in the tertiary 

structure of SPRED3(EVH1) domain and, thus, may be responsible for the weaker ERK-

suppression activity of SPRED3 compared with SPRED1 and SPRED2.

The EVH1 domain is a well-studied module that exists in multiple signaling proteins 

(Gertler et al., 1996; Reinhard et al., 1995). The EVH1 family of proteins has been classified 

into three major subfamilies: Ena/VASP, Homer/Vesl, and WASP (Ball et al., 2002; Beneken 

et al., 2000). The EVH1 domain recognizes proline-rich peptides, including FPPPP peptides 

(Ena/VASP), PPxxF (Homer/Vesl), and the LPPPEP motif (WASP) (Peterson and Volkman, 

2009). A triad of aromatic residues, including a conserved tryptophan and phenylalanine as 

well as another hydrophobic residue, form a groove on the surface of the β strand, through 

which the proline-rich peptide can penetrate to bind EVH1. Because there is no proline-rich 

motif in NF1(GRD) and because SPRED1 contains a narrow cleft in contrast to other 

members of EVH1, it was proposed that SPRED1 binds to NF1 through a new interface 

(Harmer et al., 2005). The structural work presented here shows that the SPRED1(EVH1) 

domain interacts with NF1(GRD) in the ternary complex via a new mode of protein-protein 

interaction that may exist in other proteins containing an EVH1 domain. Interestingly, 

residue R24 of SPRED1 is conserved among all SPRED proteins but is replaced by tyrosine 

or isoleucine in the EVH1 domains of WASP and Homer/Vesl proteins, suggesting that this 

residue likely plays an important role in specificity toward different interacting partners of 

EVH1-containing proteins.

We also show that phosphorylation regulates the interaction between NF1 and SPRED1, 

which is essential for the RasGAP activity of NF1. Results presented here support our 

previous model predicting that the ability of NF1 to downregulate RAS requires interaction 

with SPRED proteins (Stowe et al., 2012). We now report that this interaction can be 

disrupted in cells in which the EGFR is activated and results in phosphorylation of S105 on 

SPRED1 (Figure 7D). SPRED1(S105) phosphorylation has been reported before in HeLa 

cells following synchronization and EGF stimulation as part of a phospho-proteome analysis 

(Sharma et al., 2014). In our studies, we also expressed an activated form of EGFR, 

EGFR(L858R), which occurs in several types of cancer, including non-small-cell lung 

adenocarcinoma. Furthermore, we detected phosphorylation of SPRED1 on S105 in several 

other cancer cell lines (PC9, U2OS, A431, and H1975). In cells expressing EGFR (L858R), 

phosphorylation on SPRED1-S105 disrupts high-affinity binding to NF1 and allows RAS 

proteins to remain in their active state without negative feedback. The Legius syndrome 

patient mutations SPRED1(W31C) and (T102R) are unable to inhibit cell proliferation, 

presumably because they fail to bind NF1. Likewise, the phosphomimetic mutant S105D is 

compromised in its ability to suppress growth. Our preliminary data suggest that CDK1 is 

the kinase responsible for this regulatory phosphorylation, consistent with the observation of 

Sharma et al. (2014) that inhibitory phosphorylation sites on CDK1 are downregulated 

following EGFR activation. Although the full significance of this discovery is beyond the 
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scope of this study, it - raises the possibility that the direct interaction between SPRED 

proteins and NF1 is normally regulated in response to signals that determine levels of RAS-

GTP and downstream signal transduction. This interaction may also be regulated by the 

levels of SPRED and NF1 proteins, additional posttranslational modifications, and 

association with other proteins, such as c-Kit, to which SPRED proteins bind. Considering 

the central importance of RAS signaling in cell biology, we believe that structural, 

biological, and biochemical analysis of Ras-GAPs with their regulators will continue to shed 

light on how RAS proteins are regulated in normal and pathologic conditions.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Dhirendra Simanshu 

(dhirendra.simanshu@fnlcr.nih.gov).

Materials Availability—Plasmids, proteins and other unique martials generated in this 

study will be made available on request by the Lead Contact with a completed Materials 

Transfer Agreement (MTA). A list of common commercial reagents used in this study can 

be found in the Key Resources Table.

Data and Code Availability—The X-ray structure data and atomic coordinates during 

this study have been deposited at the Protein Data Bank with accession codes PDB: 6V65 

for KRAS(GMPPNP)-NF1(GRD)-SPRED1(EVH1) complex, and PDB: 6V6F for KRAS-

Q61L(GMPPNP)-NF1(GRD)-SPRED1(EVH1) complex.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The BL21 STAR (DE3) E. coli strain containing rare transfer RNAs (pRare plasmid, CmR) 

was transformed with either KRAS or NF1 expression plasmids. Bacteria were cultured in 

Dynamite medium for protein expression (Taylor et al., 2017). SPRED1 was expressed in 

the baculovirus expression vector system using Tni-FNL cells (Talsania et al., 2019).

For cellular assay, SPRED1 was cloned into the pMIG (Addgene, #9044) MSCV-IRES-GFP 

vector. Retrovirus was generated using the VSV-G envelope expressing plasmid pMD2.G 

(Addgene #12259) and the packaging plasmid gag/pol (Addgene #14887). HEK293T cells 

were cultured in DMEM, high glucose (Thermo Fisher Scientific, 11965-084) and K562 

were cultured in RPMI 1640 Medium (Thermo Fisher Scientific 118775-093). Media was 

supplemented with 10% FBS (Atlanta Biologicals S11550H) and Penicillin-Streptomycin 

(Thermo Fisher Scientific, 15140-122).

METHOD DETAILS

Escherichia coli expression constructs—The DNA constructs for the expression of 

wild-type and point mutants NF1(GRD; 1198–1530 or 1203–1530) and KRAS4b(1–169) 

were created using the previously outlined protocols (Taylor et al., 2017) for expression in 

the format of His6-MBP-tev-POI (MBP, maltose-binding protein; tev, tobacco etch virus 
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protease recognition sequence; POI, protein of interest). Two DNA constructs were used for 

the production of KRAS (1–169): one in the form of His6-MBP-tev-POI as described above, 

and one in the same form but under the control of the tac promoter rather than the T7 

promoter. The DNA construct for the expression of NF1(1203–1530) was created using the 

previously outlined protocols (Taylor et al., 2017) for expression in the format of His6-

MBP-tev-POI. Insect expression constructs. The DNA constructs for the expression of 

SPRED1(13–125) wild-type and point mutants for use in the baculovirus insect expression 

system were cloned in the baculovirus Destination vector pDest-635 (pFastBac1 with N-

terminal His6 tag) in the form of His6-tev-POI using the previously described protocols 

(Sherekar et al., 2020).

Protein expression—All KRAS and NF1 proteins were expressed following protocols 

(Dynamite media protocol, 16°C induction) previously described for expression in E. coli 
(Taylor et al., 2017). Essentially, an overnight 37°C culture (non-inducing MDAG-135 

medium) of the E. coli strain harboring the expression plasmid of interest, is used as seed 

culture to inoculate (2% v/v) expression-scale cultures of Dynamite medium. The expression 

culture is grown at 37°C until OD600 reaches 6-8, protein expression is induced with 0.5 mM 

IPTG, the culture is incubated at 16°C for 18-20 hours, and the cells are harvested by 

centrifugation. All SPRED1 proteins were expressed in the baculovirus expression vector 

system, as described previously (Agamasu et al., 2019). Essentially, the protein of interest is 

expressed from a viral promoter after infection of Tni-FNL cells with virus produced from 

engineered bacmids. Infected cells are incubated at 21 °C for 72 hr and harvested by 

centrifugation.

Protein purification—All proteins were purified in a similar manner. Specifically, frozen 

cell pellets were thawed and resuspended in lysis buffer containing 20 mM HEPES (pH 7.3), 

300 mM NaCl, 1 mM TCEP, and 1:200 (v/v) protease inhibitor (PI) cocktail (P8849, Sigma-

Aldrich, St. Louis, MO). All lysis and purification buffers for KRAS proteins were amended 

with 5 mM MgCl2. For E. coli expression material, cells were resuspended in 10 mL of lysis 

buffer per 1,000 optical density (OD) units. OD was measured at cell harvest at A600. For 

insect expression materials, cells were resuspended with 100 mL of lysis buffer/liter of 

expression culture. Homogenized cells were lysed by passing twice through an M-110EH 

Microfluidizer (Microfluidics Corp., Westwood, MA) at 9,000 psi for E. coli and 7,000 psi 

for insect cells. E. coli lysates were clarified by centrifugation at 7,900 x g (RCF average) 

for 90 minutes at 4°C. Insect cell lysates were clarified by centrifugation at 100,000 x g 
(RCF average) for 30 minutes at 4°C. Clarified lysates were filtered through 0.45 μM 

Whatman polyethersulfone syringe filters (GE Healthcare, Chicago, IL) and either used 

immediately or frozen at −80°C for future use. All proteins were purified on NGC 

chromatography systems (Bio-Rad Laboratories, Hercules, CA). Clarified lysates were 

thawed, adjusted to 35 mM imidazole, and loaded at 3 ml/minute onto immobilized metal 

affinity chromatography (IMAC) columns (Ni Sepharose High-Performance nickel-charged 

resin, GE Healthcare, Chicago, IL) equilibrated in an IMAC equilibration buffer (EB) of 20 

mM HEPES (pH 7.3), 300 mM NaCl, 1 mM TCEP, 35 mM imidazole, and 1:1000 PI 

cocktail. The columns were washed to baseline with EB and proteins were eluted with a 20-

column volume gradient from 35–500 mM imidazole in EB. Elution fractions were analyzed 
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SDS-PAGE and Coomassie staining. Positive fractions were pooled, and His6-TEV protease 

(approximately 4 mg/ml lab stock prepared using plasmid #92414 from Addgene, and 

protocols referenced therein) was added at a 1:20 (v/v) protease:substrate ratio. The 

digestion proceeded while dialyzing to 20 mM HEPES (pH 7.3), 300 mM NaCl, and 1 mM 

TCEP for two hours at room temperature (approximately 22°C), then overnight at 4°C. The 

digested samples were processed by a second round of IMAC similar to the first round, 

except that the equilibration and wash buffers did not contain imidazole. Column flow-

through and column wash were collected as fractions, and the columns were developed with 

a five-column volume gradient to 50 mM imidazole. After analysis of fractions by SDS-

PAGE and Coomassie staining, appropriate fractions (the target proteins eluted either in the 

flow-through or at approximately 10–20 mM imidazole) were pooled and, if necessary, 

concentrated in 10K MWCO Amicon centrifugation units (MilliporeSigma, Burlington, 

MA). Pooled proteins were exchanged into final buffers (see below) by size-exclusion 

chromatography using appropriately sized columns packed with Superdex 75 resin (GE 

Healthcare, Chicago, IL). After SDS-PAGE and Coomassie staining were used to analyze 

fractions from the size-exclusion chromatography, appropriate fractions were pooled, 

concentrated in 10K MWCO Amicon centrifugation, filtered with a 0.22-μM syringe filter 

(low protein binding), assayed for protein concentration by measuring A280 (Nanodrop 

2000C spectrophotometer, Thermo Scientific, Waltham, MA), dispensed as 0.25 mL 

aliquots, and snap-frozen in liquid nitrogen. The final buffer for all NF1 and SPRED1 

proteins was 20 mM HEPES (pH 7.3), 150 mM NaCl, and 1 mM TCEP. The final buffer for 

KRAS proteins was 20 mM HEPES (pH 7.3), 150 mM NaCl, and 1 mM TCEP, which was 

amended with 1–5 mM MgCl2, depending on the protein concentration. The nucleotide 

exchange to replace GDP by GMPPNP in the purified wild-type and Q61L mutant of KRAS 

were carried out using the protocol described previously (Dharmaiah et al., 2019).

Complex formation, crystallization and data collection—To form a stable ternary 

complex of SPRED1-NF1-KRAS proteins, NF1(1198–1530), SPRED1(1–125), and 

KRAS(1-169) loaded with GMPPNP were mixed in a ratio of 1:1.2:1.2 and incubated on ice 

for an hour. This mixture was then loaded on the size-exclusion column to remove the 

unbound proteins, and peak fractions were pooled and concentrated for crystallization 

screening at a concentration of 12 mg/ml. Since both wild-type and Q61L mutant KRAS 

bind to NF1 with high affinity, we attempted the crystallization of the ternary complex using 

wild-type as well as Q61L mutant KRAS. Crystallization screenings were carried out using 

the sitting-drop vapor-diffusion method by mixing the ternary complex with an equal 

volume of reservoir solution. We obtained no crystallization hits at 20°C, so we next 

attempted crystallization at 4°C, which gave small crystals. Crystallization hits from initial 

screens at 4°C were optimized by systematically varying the pH, individual component 

concentrations, and the presence of additive and detergents. The best crystals of the ternary 

complex containing wild-type and Q61L mutant KRAS were obtained in 100 mM Tris (pH 

7.8), 100 mM ammonium sulfate, 300 mM sodium formate, 3% PEG3350, and 3.5% PGA-

LM in the presence of 10% detergent ANAPOE®-80 premixed with protein buffer. Sheet-

like crystals were visible after seven days. Crystals were harvested for data collection and 

cryoprotected with a 25% (v/v) solution of ethylene glycol or glycerol mixed with 

crystallization solution before being flash-cooled in liquid nitrogen. Diffraction datasets 
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were collected on the 24-ID-C/E beamlines at the Advanced Photon Source, Argonne 

National Laboratory. Crystallographic datasets were integrated and scaled using XDS 

(Kabsch, 2010). The crystal parameters and the data collection statistics are summarized in 

Table S1.

Structure determination and analysis—Structures of SPRED1-NF1-KRAS 

complexes were solved by molecular replacement using Phaser as implemented in the 

Phenix/CCP4 suite of programs, with a protein-only version of PDB entries 1NF1 (apo-

structure of human NF1(GRD)), 3SYX (apo-structure of human SPRED1(EVH1)) as well as 

the structure of KRAS-GMPPNP (Adams et al., 2010; McCoy et al., 2007; Winn et al., 

2011). The initial solution was refined using phenix.refine, and the resulting Fo-Fc map 

showed clear electron density for three proteins. The model was further improved using 

iterative cycles of manual model building in COOT (Emsley et al., 2010) and refinement 

using phenix.refine (Adams et al., 2010). After ligands were placed, potential sites of solvent 

molecules were identified by the automatic water-picking algorithm in COOT and 

phenix.refine. The positions of these automatically picked waters were checked manually 

during model building. Secondary structural elements were assigned using DSSP (https://

swift.cmbi.umcn.nl/gv/dssp/). Figures were generated with PyMOL (Schrödinger, LLC), and 

surface electrostatics were calculated with APBS (Jurrus et al., 2018). Crystallographic and 

structural analysis software support was provided by the SBGrid Consortium (Morin et al., 

2013).

Isothermal titration calorimetry (ITC) measurements—Binding affinities of point 

mutants of NF1, SPRED1, and KRAS were measured using ITC. Protein samples were 

prepared by dialyzing them in a buffer (filtered and degassed) containing 20 mM HEPES 

(pH 7.3), 150 mM NaCl, 5 mM MgCl2, and 1 mM TCEP. Before titration, all proteins were 

centrifuged at 14,000 x g for 5 minutes to remove any debris and air bubbles. Protein 

concentration was measured using absorbance at 280 nm. ITC experiments were performed 

in a MicroCal PEAQ-ITC (Malvern) out at 25°C using 19 injections of 2.2 μL administered 

at 150 s intervals. Data analysis was performed based on a binding model containing “one 

set of sites” by using a nonlinear least-squares algorithm incorporated in the MicroCal 

PEAQ-ITC analysis software (Malvern).

Plasmids and transient transfections—SPRED1 plasmids were generated as 

previously described (Stowe et al., 2012). Additional mutants were generated by PCR-

directed mutagenesis and confirmed by sequencing. Transient transfection in HEK293T cells 

was performed with Lipofectamine 2000 Transfection Reagent (Thermo Fisher Scientific, 

11668019) and Opti-MEM Reduced Serum Medium, with GlutaMAX Supplement Thermo 

Fisher Scientific, 51985091) following manufacturer’s recommendation. Fresh media was 

added 16 hours after transfection and cells were lysed the follow day in lysis buffer 

containing 20mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1 mM 

DTT, protease (Sigma Aldrich, P8340) and phosphatase inhibitors (Sigma Aldrich, P0044 

and P5726). Immunoprecipitations were performed with 20 μl of EZview Red Anti-Flag M2 

Affinity Gel clone M2 (Sigma-Aldrich, F2426).
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RAS-GTP and Fractionation Assays—RAS-GTP assays were performed with the 

RAS Pull-down Activation Assay Biochem Kit (Cytoskeleton, BK008). Cells were serum 

starved for 16 hours and stimulated with 10 ng/ul EGF (Thermo Fisher Scientific, 

PHG0311). Fractionation was performed using NE-PER Nuclear and Cytoplasmic 

Extraction Reagents (Thermo Fisher Scientific, 78835)

Antibodies—Flag 1:1,000 (Sigma, V8137), SPRED1 1:1,000 (Cell Signaling, 94063), α/

β-Tubulin (Cell Signaling 2148), EGFR 1:200 (Santa Cruz Biotech, 1005, SC-03), 

Neurofibromin (Santa Cruz Biotech, sc-67), RAS 1:200 (Cytoskeleton, AESA02), β-Actin 

1:10,000 (Sigma-Aldrich, A5441).

K562 Competition—SPRED1 was cloned into the pMIG (Addgene, #9044) MSCV-IRES-

GFP vector. Retrovirus was generated using the VSV-G envelope expressing plasmid 

pMD2.G (Addgene #12259) and the packaging plasmid gag/pol (Addgene #14887). 

HEK293T cells were transfected with Lipofectamine 3000 Transfection Reagent (Thermo 

Fisher Scientific, L3000015) as described above. 16 hours after transfection fresh media was 

added containing ViralBoost Reagent (Alstem, #VB1000). 24 hours later virus was filtered 

(0.45 μM), polybrene (Sigma Aldrich, H9268) at 4 μg/ml. was added, and K562 cells were 

infected by spinfection at 2,000 RPM for 1 hour. GFP positive cells were analyzed on the 

Sony Cell Sorter SH900Z.

SPRED1 Mass Spectrometry—One 10 cm plate of HEK293T cells per condition was 

transfected with plasmids as above. Immunoprecipitations were carried out using 60 μl of 

anti-FLAG antibodies coupled to magnetic beads (Anti-FLAG M2 Magnetic Beads, Sigma, 

M8823). Rotating at 4°C for 2 hours and washed three times with TME. Two final washes 

with ice-cold 20 mM TrisHCl pH8 + 2 mM CaCl2 were carried out on ice. The beads were 

then resuspended in 9 μL of 20 mM Tris-HCl pH 8.0. The proteins were reduced by adding 

0.4 μL of 100 mM DTT and incubating at room temperature for 30 min with agitation and 

alkylated by adding 0.6 μL of 100 mM iodoacetamide and incubating at room temperature 

for 10 min with agitation. Digestion with 500 ng of trypsin (Sigma Trypsin Singles, T7575) 

was carried out at 37°C overnight with mild agitation. The digest was stopped by adding 

formic acid to a final concentration of 2%. The samples were desalted using ZipTipu-C18 

pipette tips (Millipore) according to the manufacturer’s protocol and reconstituted in 12 μL 

of 0.1% formic acid.

Five μL of each digest was analyzed by liquid chromatography tandem mass spectrometry 

(LC-MS/MS) on a Q Exactive Plus instrument (Thermo Fisher Scientific) online with 

Waters NanoAcquity UPLC system (Waters). Reversed-phase chromatography was 

performed on a 15 cm silica-C18 EasySpray column (Thermo Fisher Scientific) at 45°C with 

a binary buffer system (Buffer A = 0.1% formic acid in water; Buffer B = 0.1% formic acid 

in acetonitrile) and a flow rate of 400 nL/min. The sample was loaded at 2% B for 20 min 

followed by a 2%–60% B gradient over 60 min, followed by a brief wash at 80% B and 

equilibration at 2% B. The Q Exactive Plus instrument was operated in Full-MS/ddMS2 

mode with one survey scan (350-1500 m/z, R = 70,000 at 200 m/z, AGC target of 3e6), 

followed by up to 10 data-dependent HCD MS2 scans (AGC target of 5e4, max IT 120 ms, 

R = 17,500 at 200 m/z, isolation window 4.0 m/z, NCE 25%, 4% underfill ratio, and 10 s 
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dynamic exclusion). Raw data files were converted to peak list files using Proteome 

Discoverer v. 1.4 (Thermo Fisher Scientific) and searched using Protein Prospector (Baker 

and Chalkley, 2014; Chalkley et al., 2005) version 5.14.0 against human SwissProt database 

(Bairoch and Apweiler, 2000) downloaded on 07/29/2013 and corresponding random 

concatenated decoy database with default “ESI-Q-high-res” parameters, including up to two 

allowed missed cleavage sites, Carbamidomethyl-C constant modification, default variable 

modifications plus phosphorylation at STY, up to 3 modifications per peptide, and 20 ppm 

precursor mass and fragment mass accuracy. False discovery rate of < 1% was used as the 

cutoff for peptide expectation values. Quantitation of relative phosphorylation at the S105 

site in SPRED1/2 was carried out in Skyline v 3.0 (MacLean et al., 2010) by quantifying 

MS1 precursor peak areas of the S105-containing peptides and normalizing them by the sum 

of abundances of all unmodified peptides detected in the same protein.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was determined for differences in K562 proliferation comparisons 

between control, SPRED1 wild-type, and SPRED1 mutants using a two-way ANOVA using 

GraphPad Prism. ***p < 0.001. ITC Data analysis was performed based on a binding model 

containing “one set of sites” by using a nonlinear least-squares algorithm incorporated in the 

MicroCal PEAQ-ITC analysis software (Malvern) to give the binding constants (KD), 

reaction stoichiometry (N), enthalpy (ΔH) and entropy (ΔS) for the KRAS-NF1 interaction 

as well as NF1-SPRED1 interaction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Crystal structure of the SPRED1-NF1-KRAS complex

• The NF1(GRD) uses different interfaces to interact with KRAS and SPRED1

• The SPRED1-NF1 interface provides a rationale for mutations seen in Legius 

syndrome

• SPRED1 phosphorylation at S105 disrupts SPRED1-neurofibromin 

interaction
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Figure 1. Domain Organization and Overall Structure of the Ternary Complex Formed by 
Neurofibromin (GRD), SPRED1(EVH1), and KRAS Proteins
(A) Domain organization of KRAS, neurofibromin (NF1), and SPRED1 showing the 

presence of various domains in the full-length protein. The red line drawn above each 

protein indicates the domains involved in complex formation and used for our structural 

studies. In NF1, the GAPc and GAPex regions are highlighted in light and dark green, 

respectively.

(B) The overall structure of the complex formed by GMPPNP-bound KRAS (light brown), 

NF1(GRD) (light green), and SPRED1(EVH1) (light pink) proteins. In the left panel, the 

ternary complex is indicated in ribbon representation, whereas in the right panel, proteins are 

indicated in surface representation. In both panels, GMPPNP and Mg2+ bound to KRAS are 

indicated as sticks and spheres, respectively.

See also Figure S1 and Table S1.
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Figure 2. Structural Analyses of the NF1-KRAS Interaction Interface in the Ternary Complex 
and the Impact of Point Mutations in KRAS and NF1 on the NF1-KRAS Interaction
(A and B) Enlarged view of the NF1-KRAS interaction interface formed by residues present 

in the (A) switch I and (B) switch II regions of KRAS. KRAS and NF1 are colored light 

brown and green, respectively. The nucleotide GMPPNP and residues that participate in the 

protein–protein interaction are indicated in stick (yellow) representation. Intermolecular 

hydrogen bonds and salt bridges are indicated by dashed black lines.

(C) Schematic representation of the NF1-KRAS interaction interface as identified by 

PDBSum (http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?

pdbcode=index.html). The interactions are indicated using the following notation: hydrogen 

bonds, blue solid lines; salt bridge, red solid lines; non-bonded contacts, striped lines (width 

of the striped line is proportional to the number of atomic contacts).

(D) Binding affinities (measured using ITC) for KRAS point mutants (stick representation) 

located at the NF1-KRAS interaction interface. NF1 is indicated in an electrostatic surface 

representation.

(E) Binding affinities (measured using ITC) for NF1 point mutants (stick representation) 

located at the NF1-KRAS interaction interface. KRAS is indicated in an electrostatic surface 

representation.

See also Figure S2.
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Figure 3. Structural Comparison between Ground-State and Transition-State Structures of 
RAS-RasGAP Complexes
(A) The ground-state structure of GMPPNP-bound KRAS (light brown) in complex with 

NF1(GRD) (light green) superposed over the transition-state structure of GDP+AlF3-bound 

HRAS (cyan) in complex with RASA1(GRD) (hot pink). Structures were superposed using 

the RAS molecules present in these complexes.

(B) Enlarged view of the active site pocket showing structural changes that occur between 

the ground state and the transition state.

(C and D) Protein-protein interaction interface highlighting the presence of salt-bridge 

interactions in (C) NF1-KRAS and (D) RASA1-HRAS complexes. The color coding is the 

same as in (A).
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Figure 4. Details of the SPRED1-NF1 Interaction Interface in the Ternary Complex and the 
Impact of Pathogenic Mutations in SPRED1 and NF1 on the SPRED1-NF1 Interaction
(A and B) Enlarged view of the SPRED1(EVH1)-NF1(GRD) interface formed by residues 

present in the (A) GAPex and (B) GAPc regions of NF1 in the ternary complex. 

SPRED1(EVH1) and NF1(GRD) are colored light magenta and green, respectively. The 

residues that participate in the protein-protein interaction are indicated in stick 

representation. Intermolecular hydrogen bonds and salt bridges are indicated by dashed 

black lines.

(C) Schematic representation of the SPRED1-NF1 interaction interface as identified by 

PDBSum (http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?

pdbcode=index.html/). The interactions are indicated in colors using the notation described 

for Figure 2C.

(D) The missense mutations reported in the SPRED1(EVH1) domain in Legius syndrome. 

The text color represents the mutation type: red, confirmed pathogenic; yellow, suspected 

pathogenic; black, unclassified or uncertain. The mutations tested in this study are indicated 

in bold.

(E) Binding affinities (measured using ITC) for Legius syndrome pathogenic mutations 

(stick representation) in SPRED1. NF1 is indicated in an electrostatic surface representation.
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(F) Binding affinities (measured using ITC) for neurofibromatosis type 1 pathogenic 

mutations (stick representation) in NF1. SPRED1 is shown in an electrostatic surface 

representation.

See also Figure S3.
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Figure 5. Structural Changes in NF1 upon Binding to SPRED1, along with Comparison of the 
GAPex Domains of NF1 and RASA1
(A) The NF1(GRD) (light green) present in the ternary complex superposed on the 

previously solved structure of the apo-form of NF1(GRD) (light blue).

(B) Enlarged view of the GAPex region of NF1 that undergoes conformational change upon 

binding to SPRED1. SPRED1 is shown in an electrostatic surface representation, whereas 

NF1(GAPex) from the apo and ternary complexes are indicated in ribbon representation and 

colored light blue and green, respectively. The residues that undergo conformational changes 

are indicated in stick representation.

(C) The NF1(GRD) (light green) present in the ternary complex superposed on the 

previously solved structure of RASA1(GRD) (hot pink).

(D) Enlarged view of the superposed structures shown in (C), highlighting the structural 

differences between the GAPex region of NF1 and RASA1.

See also Figure S4.
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Figure 6. Identification of SPRED1 Phosphorylation that Disrupts SPRED1-NF1 Interaction
(A) Proteins precipitated from extracts of HEK293T cells transiently transfected with 

FLAG-NF1 and EGFR(L858R) constructs were assessed by western blot for endogenous 

SPRED1 binding. WCL, whole-cell lysate; IP, immunoprecipitation.

(B) Identification of SPRED1 phosphorylation sites downstream of EGFR(L858R) in 

HEK293T cells by SPRED1-FLAG and EGFR(L858R) transient transfection, anti-FLAG IP, 

and LC-MS/MS.

(C) Amino acid sequence alignment of SPRED1 flanking serine 105 across indicated species 

shows evolutionary conservation.

(D) Proteins precipitated from extracts of HEK293T cells transiently transfected with 

phosphomimetic and phosphodeficient SPRED1(S105) mutant constructs were assessed by 

western blot for endogenous NF1 binding.

(E) Enlarged view of the NF1 electrostatic surface that interacts with SPRED1(S105). The 

S105E mutation results in a significant loss of binding affinity between SPRED1 and NF1.

See also Figure S5.
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Figure 7. Phosphomimetic and Phosphodeficient SPRED1(S105) Alter RAS-GTP Signaling 
following EGF Stimulation and K562 Proliferation, along with a Model of SPRED1(S105) 
Phosphorylation
(A) HEK293T cells were transiently transfected with indicated SPRED1-FLAG constructs, 

serum starved for 16 h, and stimulated with 10 ng/mL EGF for the indicted time points. 

Downstream signaling was then assessed by western blot and RAS-GTP pull-down assay.

(B) K562 cells were infected with SPRED1-IRES-GFP, SPRED1-IRES-GFP mutants, and 

empty vector expressing retrovirus. Three days after infection, baseline GFP-positive cells 

were measured by flow cytometry and normalized to 1. During this competition assay, GFP-

positive cells were monitored over time to measure the effect of SPRED1 expression on 

proliferation. The statistical significance of the difference between indicated samples was 

determined using a two-way ANOVA: ***p < 0.001.

(C) Cancer cell lines were infected with SPRED1-FLAG-expressing retrovirus, selected with 

1 μg/mL puromycin, anti-FLAG IP, and LC-MS/MS as described above. The y axis: MS1 

chromatographic peak areas, arbitrary units relative to control.

(D) Oncogenic EGFR-mediated SPRED1(S105) phosphorylation model. Phosphorylated 

SPRED1(S105) is unable to bind NF1 and inhibit RAS-GTP signaling.

See also Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Flag 1:1,000 Sigma V8137

SPRED1 1:1,000 Cell Signaling 94063

α/β-Tubulin 1:2,000 Cell Signaling 2148

EGFR 1:200 Santa Cruz Biotech 1005, SC-03

Neurofibromin 1:200 Santa Cruz Biotech SC-67

RAS 1:200 Cytoskeleton AESA02

β-Actin 1:10,000 Sigma-Aldrich A5441

Bacterial and Virus Strains

BL21 STAR (DE3) Thermo Fisher C601003

Tni-FNL insect cells FNLCR Tni-FNL

Baculovirus, Bac-to-Bac Thermo Fisher AcMNPV

Retrovirus: pMD2.G Addgene 12259

Retrovirus: gag/pol Addgene 14887

Biological Samples

HEK293T UCSF Cell and Genome 
Engineering Core

CCLZR076

K562 UCSF Cell and Genome 
Engineering Core

CCLZR466

Chemicals, Peptides, and Recombinant Proteins

protease inhibitor (PI) cocktail Sigma-Aldrich P8849, P8340

ANAPOE®-80 Molecular Dimensions APT080 500 ML

PGA-LM Molecular Dimensions MD2-250-108

PEG3350 (50% w/v) Hampton Research HR2-527

DMEM, high glucose Thermo Fisher 11965-084

RPMI 1640 Thermo Fisher 118775-093

FBS Atlanta Biologicals S11550H

Penicillin-Streptomycin Thermo Fisher 15140-122

Opti-MEM Reduced Serum Medium Thermo Fisher 51985091

phosphatase inhibitors Sigma Aldrich P0044, P5726

EGF Thermo Fisher PHG0311

Nuclear and Cytoplasmic Extraction Reagents Thermo Fisher 78835

Lipofectamine 3000 Transfection Reagent Thermo Fisher L3000015

ViralBoost Reagent Alstem VB1000

trypsin Sigma Trypsin Singles T7575

Critical Commercial Assays

RAS Pull-down Activation Assay Biochem Kit Cytoskeleton BK008

Lipofectamine 2000 Transfection Reagent Thermo Fisher 11668019

Deposited Data

Crystal structure of KRAS-NF1-SPRED1 This study PDB:6V65
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REAGENT or RESOURCE SOURCE IDENTIFIER

Crystal structure of KRAS(Q61L)-NF1-SPRED1 This study PDB:6V6F

Experimental Models: Cell Lines

HEK293T UCSF Cell and Genome 
Engineering Core

CCLZR076

K562 UCSF Cell and Genome 
Engineering Core

CCLZR466

Spred1(S105A)-Forward PrimerGGTCTTACGTTTCAAGCTCCTGCTGATGCTAGG Sigma-Aldrich N/A

Spred1(S105A)-Reverse 
PrimerCCTAGCATCAGCAGGAGCTTGAAACGTAAGACC

Sigma-Aldrich N/A

Spred1(S105D)-Forward 
PrimerGTTTGGTCTTACGTTTCAACATCCTGCTGATGCTAGGGC

Sigma-Aldrich N/A

Spred1(S105D)-Reverse 
PrimerGCCCTAGCATCAGCAGGATGTTGAAACGTAAGACCAAAC

Sigma-Aldrich N/A

Spred1(S105E)-Forward PrimerGGTCTTACGTTTCAAGAACCTGCTGATGCTAG Sigma-Aldrich N/A

Spred1(S105E)-Reverse PrimerCTAGCATCAGCAGGTTCTTGAAACGTAAGACC Sigma-Aldrich N/A

Spred1(W31C)-Forward PrimerCTCAAGTGGTGGATGCTTACCACTTGGAGGG Sigma-Aldrich N/A

Spred1(W31C)-Reverse PrimerCCCTCCAAGTGGTAAGCATCCACCACTTGAG Sigma-Aldrich N/A

Spred1(T102R)-Forward 
PrimerCAAGAAGTTTGGTCTTAGGTTTCAAAGTCCTGCTG

Sigma-Aldrich N/A

Spred1(T102R)-Reverse 
PrimerCAGCAGGACTTTGAAACCTAAGACCAAACTTCTTG

Sigma-Aldrich N/A

Recombinant DNA

pDZ2087 (Expresses TEV protease in E. coli) Addgene 92414

pMIG Addgene 9044

pMD2.G Addgene 12259

SPRED1 expression plasmid for cellular assay (Stowe et al., 2012) N/A

Software and Algorithms

XDS (Kabsch, 2010) N/A

Phaser (McCoy et al., 2007) N/A

Phenix (Adams et al., 2010) N/A

COOT (Emsley et al., 2010) N/A

DSSP https://swift.cmbi.umcn.nl/gv/
dssp/).

N/A

PyMOL Schrödinger, LLC Ver: 2.3.2

SBGrid Consortium (Morin et al., 2013) N/A

PDBSum http://www.ebi.ac.uk/thornton-
srv/databases/cgi-bin/pdbsum/
GetPage.pl?pdbcode=index.html/

N/A

MicroCal PEAQ-ITC analysis software Malvern N/A

Proteome Discoverer Thermo Fisher Ver: 1.4

Protein Prospector (Baker and Chalkley, 2014; 
Chalkley et al., 2005)

Ver: 5.14.0

SwissProt database (Bairoch and Apweiler, 2000) N/A

Skyline v 3.0 (MacLean et al., 2010) V 3.0

Other

Immobilized metal affinity chromatography columns GE Healthcare 18-1174-40
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REAGENT or RESOURCE SOURCE IDENTIFIER

NGC chromatography system Bio-Rad Laboratories NGC-100

10K MWCO Amicon centrifugation units MilliporeSigma UFC901008

MicroCal PEAQ-ITC Malvern N/A

Anti-FLAG antibodies coupled to magnetic beads Sigma M8823

Liquid chromatography tandem mass spectrometry Thermo Fisher N/A

Silica-C18 EasySpray column Thermo Fisher N/A
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