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a b s t r a c t 

In light of the COVID-19 pandemic that has struck the world 

since the end of 2019, many endeavors have been carried 

out to overcome this crisis. Taking into consideration the un- 

certainty as a feature of forecasting, this data article intro- 

duces long-term time-series predictions for the virus’s daily 

infections in Brazil by training forecasting models on limited 

raw data (30 time-steps and 40 time-steps alternatives). The 

primary reuse potential of this forecasting data is to enable 

decision-makers to develop action plans against the pan- 

demic, and to help researchers working in infection preven- 

tion and control to: (1) explore limited data usage in predict- 

ing infections. (2) develop a reinforcement learning model on 

top of this data-lake, which can perform an online game be- 

tween the trained models to generate a new capable model 

for predicting future true data. The prediction data was gen- 

erated by training 4200 recurrent neural networks (54 to 

84 days validation periods) on raw data from Johns Hopkins 

University’s online repository, to pave the way for generating 

reliable extended long-term predictions. 
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Specifications Table 

Subject Infectious Diseases 

Specific subject area Forecasting COVID-19 ′ s daily infections in Brazil by using deep recurrent 

neural network models with limited pandemic data. 

Type of data - Tables (.csv) 

- metadata files (.json) 

- Graphs (.pdf) 

- Keras saved model files (.h5) 

- Pickle files (.pkl) 

- Python notebook files (.ipynb) 

How data were acquired - The data was generated by training 4200 Deep recurrent neural 

networks RNNs on limited raw data (30 time-steps and 40 time-steps) 

from COVID-19 Data Repository by the Center for Systems Science and 

Engineering (CSSE) at Johns Hopkins University at: 

https://github.com/CSSEGISandData/COVID-19 

The models were built using Keras Library with TensorFlow backend 

version 2.3.0-tf in Python environment and Google Colaboratory: 

https://keras.io 

https://colab.research.google.com 

The prediction tables, graphs, metadata files were generated by writing 

a code for recursive training and inference functions. 

Data format - Raw: The generated prediction data 

Parameters for data collection - The metadata and training - inference settings for the deterministic 

setup are located in the settings folder in the data repository. 

Description of data collection The csv file for daily COVID-19 infection numbers from January 22, 

2020, to several dates – indicated in the metadata - was downloaded 

from COVID-19 Data Repository by the Center for Systems Science and 

Engineering (CSSE) at Johns Hopkins University. 

The csv file was processed, cropped, and divided without scaling into 

training/testing/evaluation sets in the Python environment. Then the 

forecasting data in this article was generated by training recurrent 

neural networks on the aforementioned raw data by using a code that 

was developed specifically for this task. 

Data source location - City: Cairo 

- Country: Egypt 

Data accessibility Repository name: Mendeley 

Direct Mendeley URL to the generated data: 

http://dx.doi.org/10.17632/t2zk3xnt8y.5 

Direct Mendeley URL to the developed and used code: 

http://dx.doi.org/10.17632/yp4d95pk7n.3 

Value of the Data 

• This dataset is useful because it provides researchers with a solid background foundation

for predicting COVID-19 ′ s daily infections by depending on very limited data (30 time-steps

and 40 time-steps alternatives). This facilitates the prediction process by reducing the crucial

need for big data that is required to train deep recurrent neural networks. 

• Government institutions and infection control units can utilize and filter this dataset to esti-

mate and develop the required action plans. As well, researchers can use it in spatial models

related to the geographical distribution of the pandemic and the increase in numbers. 

• The generated dataset represents a data-lake that can help researchers to build a reinforce-

ment learning model that can learn how to classify and select the fittest models against

upcoming infection rates. More importantly, a reinforcement learning model that adjusts and

combines between the best weights in these trained models can be developed to construct a

new prediction model for extended long-term prediction purposes. 

• Although real numbers of infected people are higher than reported as there is a worldwide

limited capacity to provide more tests to people, therefore, this dataset helps in modeling

real numbers more accurately in the studies that perform an estimation of infection preva-

lence. 

https://github.com/CSSEGISandData/COVID-19
https://keras.io
https://colab.research.google.com
http://dx.doi.org/10.17632/t2zk3xnt8y.5
http://dx.doi.org/10.17632/yp4d95pk7n.3
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Table 1 

Metadata, DM1: Deterministic mode 1, DM2: Deterministic mode 2, NDM: Non-deterministic mode. Source: Author. 

ID Items 

DM1 DM2 NDM 

Technical 

validation Technical 

validation 

(control group) 
Values Values Values Values 

Country Brazil Brazil Brazil Brazil India 

0 Start date for training 

data 

07–04–2020 07–04–2020 07–04–2020 08–03–2020 07–04–2020 

1 End date for training 

data 

06–05–2020 06–05–2020 06–05–2020 06–04–2020 06–05–2020 

2 Start date for 

evaluation data 

07–05–2020 07–05–2020 07–05–2020 07–04–2020 07–05–2020 

3 End date for 

evaluation data 

29–06–2020 29–06–2020 29–06–2020 13–06–2020 

29–06–2020 

11–07–2020 

4 Duration of evaluation 

data 

54 days 54 days 54 days 68 days 

84 days 

66 days 

5 Start date for training 

process 

28–06–2020 28–06–2020 03–07–2020 13–06–2020 12–07–2020 

6 End date for training 

process 

30–06–2020 01–07–2020 03–07–2020 13–06–2020 12–07–2020 

7 Number of models 1197 1976 20 1001 1 

8 Number of predictions 2835 7301 53 3619 1 

9 Number of graphs 2835 7301 53 3619 1 

10 Number time-steps 30 40 30 30 30 

11 Processor CPU CPU GPU GPU CPU 

12 Crop-point of input 

data since 

22–01–2020: removing 

data before: 

day: 110 day: 110 day: 110 day: 80 days: (110, 115, 

125, 135) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• This dataset can very useful for social scientists who aim at developing analysis frameworks

that compare and study the social structure and socioeconomic conditions in different coun-

tries and cultures, and the relation of these factors to the prevalence of the pandemic. 

1. Data description 

In the past five months, many non-medical data articles have focused on critical aspects of

transition-related analysis and data of COVID-19 ′ s case, as infections data collection, filtering, ge-

ographical mapping of infections [ 1 , 2 ], and forecasting. In that sense, forecasting studies utilized

various approaches as exponential smoothing models [3] , estimation of the daily reproduction

number [4] , Susceptible-Infectious-Recovered-Dead (SIRD) models [5] , ARIMA models [ 6 , 7 ], and

nonlinear autoregressive artificial neural networks - NARANN models [7] . Furthermore, several

approaches depended on using more or different data as the SEIRQ model [8] , which involved

using seven categories of data, one of them is the number of infected people. Similarly, a re-

search study for predicting cases in China depended on extra data from SARS and MERS diseases

that are fitted on an exponential growth model [9] . As well, an improved version of Suscepti-

ble Exposed Infectious Recovered - SEIR was used with extra data about the intervention and

quarantine strategies against the pandemic [10] . On the other hand, this data article focuses on

long-term forecasting of the daily infections in Brazil by using limited data of infections numbers

only on a recurrent neural network structure that uses Gated Recurrent Unit - GRU mechanism

that is similar to Long Short-Term Memory – LSTM mechanism. The choice of 30- and 40-days’

time windows is made experimentally as explained in the methods section. Although there is

an accompanying uncertainty in the generated predictions, the evaluation of the models’ perfor-

mance over various durations (not less than 54 days as shown in the metadata Table 1 ), shows

the possibility of achieving long-term predictions by using limited data. In that sense, the gener-

ated predictions show polynomial trendlines between orders two and four for the case of Brazil
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ather than developing non-stopping exponential or power trends that grow indefinitely. These

NNs are boosted by an online adversarial linear regression evaluation function, which performs

 day-by-day correction of the models’ generated data over the whole duration. As the prediction

s made till 2020–10–01, this date was selected based on the news of early vaccine release by

eptember 2020 by the British-Swedish pharmaceutical company AstraZeneca [11] among many

ther pharmaceutical firms such as Moderna that announced manufacturing 100 million doses

y the 3rd quarter of 2020 [12] . Similarly, the selection of Brazil is based on the importance of

redicting the infection numbers in one of the world’s populous countries, which is currently

anked as 2nd in the world regarding the number of total infections with COVID-19 [13] (2020–

7–13). Moreover, choosing the second in rank prioritizes having no external factor that can have

 substantial influence over the pandemic’s behavior, which is possible in the case of the USA

ranked as 1st [13] ), where massive demonstrations occurred during June, and July 2020 [14] and

his requires different measures to neutralize the influence. In that sense, 4200 Deep recurrent

eural networks RNNs were built by Keras Library in Python environment and by using limited

ata (30 time-steps and 40 time-steps) from COVID-19 Data Repository by the Center for Sys-

ems Science and Engineering (CSSE) at Johns Hopkins University [13] that includes infections

umbers from January 22, 2020, to several dates – indicated in the metadata in Table 1 . These

rained models are categorized as follows: 3173 in deterministic mode, 20 in non-deterministic

ode, 1001 in a non-deterministic mode for validation, 1 model as a control group for validation

y using the data of India, and 5 models for showing performance of different time-steps. The

sv file that includes the training data was accessed, processed, cropped, and divided without

caling into training/testing/evaluation sets. Subsequently, the long-term prediction data in this

rticle were generated using the trained models. The deterministic setup aspect is explained in

he methods section, as well, the metadata, inference settings, and training settings are located

n csv and json files, which can be accessed at the data repository. 

Overall, the data in this article consist of models, prediction tables, graphs, settings tables,

nd a Python notebook. The data are split into two datasets and both are uploaded in two on-

ine data repositories. Dataset one includes the model files, predictions, graphs, and metadata,

nd Dataset two includes the code as one Jupyter Notebook file in Python programming lan-

uage. Dataset one is divided into three folders: 1) (Deterministic mode), 2) (Non-deterministic

ode), 3) (Technical validation), and one compressed zip file that includes all files and folders

n the dataset. Table 1 shows the associated metadata for Dataset 1. 

In Dataset one, the deterministic folder contains two folders: 1) 30 time-steps, and 2) 40

ime-steps. On the other hand, the Non-deterministic folder and Technical validation folder con-

ain data for 30 time-steps. The generic structure for each time-steps subfolder contains the

ollowing four folders: 

1. (Predictions) folder, including prediction tables (to 2020–10–01) in (.csv) extension. Each csv

file includes the predicted daily infections table that was generated by using a trained model.

Each table includes three columns: 1) date, 2) model prediction, 3) evaluated prediction. The

folder includes an extended evaluation for the best model till 2020–07–11. 

2. (Graphs) folder, including prediction graphs (to 2020–10–01) in (.pdf) extension. Each graph

describes the model’s performance against the true data. The graphs mainly include four

highlighted trendlines: 1) prediction for the period of the time-steps, 2) prediction for all

the validation period, 3) prediction for four steps only, and 4) prediction to the target date.

The folder includes an extended evaluation for the best model till 2020–07–11. 

3. (Settings) folder, including: settings files in (.json) extension. This folder includes all the set-

tings that were used for training the models. The settings folder includes (Metadata) folder,

which comprises four tables in (.csv) extension: 1) (dates_info_to_2020–10–01.csv) file in-

cludes dates of training and prediction processes. 2) (models_accuracy_settings_to_2020–10–

01.csv) file includes models’ settings and accuracy. 3) (gen_data_info_to_2020–10–01.csv) file

includes counts of generated data. 4) (best_model_accuracy_settings_to_2020–10–01_.csv) file

includes settings and accuracy of the best model. 
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Table 2 

Best 10 performing models in the deterministic mode 1. Source: Author. 

ID Model r2_all_duration 

140 model_trained_d46818b3-b5e8–4aed-b379-d9bb56e5d6a4.h5 0.665547468 

2052 model_trained_3664a884–649f-4c54–9b9f-a7450346ba1d.h5 0.589318674 

2739 model_trained_0a220f4e-0b3a-4 9a5-afe6–34 9f3e35c3c2.h5 0.587505583 

590 model_trained_de93114c-7638–4df8-b35d-6b6928edea9f.h5 0.586324501 

2827 model_trained_2ddfbf07–8602–4357–9b5f-d41d366dfb61.h5 0.585366432 

872 model_trained_45ff443b-8380–46c5-b824-d470d5bf5935.h5 0.583010877 

1636 model_trained_bd30a0c6-a93e-441d-b5db-a2a77a18ba90.h5 0.57803346 

1374 model_trained_ba60d0a0–64b2–45c8-bf1d-b158686deef1.h5 0.576606486 

2166 model_trained_a556979b-a212–49bb-b2be-d24f8ca8c48a.h5 0.57569909 

1909 model_trained_cf40d4ca-6cd7–44dc-a1e9-bcb190a5d466.h5 0.574641935 

Table 3 

Settings of third-best model in the deterministic mode 1. Source: Author. 

Settings/ID = 2739 Value 

model model_trained_0a220f4e-0b3a-4 9a5-afe6–34 9f3e35c3c2.h5 

r2_all_duration 0.587505583 

time-steps 15 

epochs 10 0 0 

batch-size 1024 

validation-split 0.3 

rnn recurrent_v2.GRU 

layers [64, 32, 64] 

dropout 0 

conv-rnn TRUE 

seed-python 47 

seed-tf 8 

functional-api TRUE 

t1 6 

r2_time_steps 0.460565672 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. (Trained models) folder, including model files in (.h5) extension. These files are the trained

models and they can be used in inference by using the predict function in the Python note-

book. 

The technical validation folder includes an additional folder named (Control group) for the

model of India. As well, there is an additional folder that includes the data for the performance

of different time-steps – till 2020–06–29. The following tables and figures show a brief about

the results. First, Table 2 shows the best performing 10 models in the deterministic mode 1,

Fig. 1 shows the graph for the third-best performing model that is not showing a non-stopping

exponential growth, and Table 3 shows the settings of this model. On the other hand, Fig. 2

shows different trends in this mode. 

Similarly, Table 4 shows the best performing 10 models in the deterministic mode 2, and

Fig. 3 shows the graph for the second-best performing model in this mode showing a polynomial

growth (the third in the table as first and second models shown in Table 4 are identical in

performance – non-stopping exponential growth – thus, they are ranked together as first). On

the other hand, Table 5 shows the settings of this model, and Fig. 4 shows different trends in

this mode. 

Thirdly, Table 6 shows the best performing 10 models in the non-deterministic mode, Fig. 5

shows the graph for the second-best performing model that shows a polynomial growth, and

Table 7 shows the settings of the second-best performing model in the non-deterministic mode.

On the other hand, Fig. 6 shows different trends in this mode. 
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Fig. 1. Graph of third-best model in the deterministic mode 1. Source: Author. 

Table 4 

Best 10 performing models in the deterministic mode 2. Source: Author. 

ID Model r2_all_duration 

7221 model_trained_3822084a-e528–4571–9796–43acbd33c9c3.h5 0.602340286 

3379 model_trained_8ea50721–243a-4efe-a7a9-cbe0b408cdea.h5 0.602340286 

4726 model_trained_a1c16bba-9203–4a61–89a1-baed9958b947.h5 0.60177885 

5491 model_trained_b5aa1f4e-281d-4413-a9ed-3842957d936c.h5 0.597394405 

4624 model_trained_1671766c-327d-4e18-b4e2-a2619b36bab0.h5 0.59109153 

3304 model_trained_c370645c-37d8–429f-b5bb-de572a6297fb.h5 0.590435975 

3663 model_trained_019628ca-e614–460b-8445-aefaa667f04f.h5 0.589312596 

7095 model_trained_8b5b8f8f-e463–456c-a73e-9b8fc4248cd4.h5 0.58849072 

2976 model_trained_d678e1c1–1452–4d5f-9c72–95c97e93ac57.h5 0.587584874 

2796 model_trained_5cb9ae23–2f1a-4cbf-9bd1-e429a2250f5e.h5 0.587506132 

1

 

fi  

s

.1. Technical validation of the data 

To ensure the reliability of the data, technical validation of the data was performed. The csv

le for daily COVID-19 infection numbers was accessed from COVID-19 Johns Hopkins Univer-

ity’s Data Repository, processed, cropped, and divided into training/testing/evaluation sets. 
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Fig. 2. Graphs of other models with different trends in the deterministic mode 1. Source: Author. 

Table 5 

Settings of second-best model in the deterministic mode 2. Source: Author. 

Settings/ID = 4726 Value 

model model_trained_a1c16bba-9203–4a61–89a1-baed9958b947.h5 

r2_all_duration 0.60177885 

time-steps 20 

epochs 1200 

batch-size 1024 

validation-split 0.3 

rnn recurrent_v2.GRU 

layers [16, 32, 16] 

dropout 0 

conv-rnn TRUE 

seed-python 46 

seed-tf 43 

functional-api TRUE 

t1 10 

r2_time_steps 0.368462128 

r2_sum 0.970240978 
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Fig. 3. Graph of second-best model in the deterministic mode 2. Source: Author. 

Table 6 

Best 10 performing models in the non-deterministic mode. Source: Author. 

ID Model r2_all_duration 

42 model_trained_fe30df8d-1726–4692-a025–3276b035d22d.h5 0.558035054 

26 model_trained_f7762637–038a-4dec-b1ae-fbc05556a5e4.h5 0.54 4 462339 

11 model_trained_29d990e5-ff1f-485b-9a71–10728826e4ab.h5 0.496746963 

12 model_trained_f05990fe-93ab-4634-bb21-eb633bbe8dce.h5 0.4 93894 826 

43 model_trained_fe30df8d-1726–4692-a025–3276b035d22d.h5 0.482351598 

9 model_trained_c6ef4b9c-b473–493d-a388–2e2223183d19.h5 0.467796218 

27 model_trained_f7762637–038a-4dec-b1ae-fbc05556a5e4.h5 0.465112991 

5 model_trained_f7e3ec50–0f24–4ab6–9286-fa4e0c3de866.h5 0.458621676 

7 model_trained_c6ef4b9c-b473–493d-a388–2e2223183d19.h5 0.437672728 

30 model_trained_f3ac1c52–96b3–4e1d-ae21–16b54a0e69e8.h5 0.423220917 

 

a  

p  

m

Predominantly, allowing a relatively large evaluation period (not less than 54 days) reflected

 better understanding of the models’ generalizability without new data, this is particularly im-

ortant in tackling time-sensitive prediction processes with limited data as a basis for decision-

aking. The evaluation periods are shown in the metadata Table 1 . 
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Fig. 4. Graphs of other models with different trends in the deterministic mode 2. Source: Author. 

Table 7 

Settings of second-best model in the non-deterministic mode. Source: Author. 

Settings/ID = 26 Value 

model model_trained_f7762637–038a-4dec-b1ae-fbc05556a5e4.h5 

r2_all_duration 0.54 4 462338 

time-steps 15 

epochs 600 

batch-size 1024 

validation-split 0.3 

rnn recurrent_v2.GRU 

layers [128, 256, 128] 

dropout 0 

conv-rnn TRUE 

seed-python 13 

seed-tf 4 

functional-api TRUE 

t1 7 

r2_time_steps 0.129786299 

r2_sum 0.674248637 
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Fig. 5. Graph of second-best model in the non-deterministic mode. Source: Author. 

Table 8 

Fast growth pattern in the validation model. Source: Author. 

Values 

Date 

5/16/2020 5/31/2020 6/14/2020 6/29/2020 10/1/2020 

Predicted value 7987 16,651 27,513 44,050 1,565,159 

True Value 13,220 16,409 17,110 24,052 NA 

Interval - days −15 0 15 30 110 

Increase - predictions 140.86% 108.48% 65.23% 60.11% 3453.14% 

Increase - true values 169.91% 24.12% 4.27% 40.57% NA 

 

r  

d

 

t  

i  

g  

t  

d  
As well, generating various models within a range of variations of settings serves the explo-

ation of most efficient settings that would benefit future applications and potential reuse of the

ataset. 

In that sense, after carefully looking at the trendline in the generated graphs, the data shows

hat a certain degree of uncertainty is reflected in the generated models while maintaining log-

cal forecasting of the future that doesn’t involve a non-stopping exponential growth trend re-

ardless of the 85% high accuracy in the validation model. The case of the 85% accurate valida-

ion model in Fig. 7 shows a non-stopping exponential growth trend that fits that data – over 68

ays till 2020–06–13 – with fast growth in time-series predictions beyond this date. This rapid
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Fig. 6. Graphs of other models with different trends in the non-deterministic mode. Source: Author. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

growth describes a failing long-term prediction of a total infected people to be 108,095,368 over

110 days from 2020–06–14 till 2020–10–01, which is almost half of Brazil’s population [15] . On

the other hand, the trend that is associated with the true data is approximating a polynomial

trendline. Moreover, when testing this accurate model against new true data till 2020–06–29,

the accuracy drops to a maximum of 68% (84 days evaluation), while maintaining the same steep

exponential growth trendline. The period between 2020–05–31 and 2020–06–29 (30 time-steps)

as indicated in Table 8 , shows that the model is adopting a fast growth pattern that is cannot

maintain logical long-term forecasting. 

The fast growth pattern is repeated on dates before 2020–05–31 and after 2020–06–29. This

pattern has worked as a guideline for identifying logical models that might be less accurate than

85% as in this validation model, but still more applicable than the validation model. The major

difference between this validation model and the other models in the dataset is the cropping

date of the data. This cropping point filters the data fed to the validation model to start from

2020–03–08 and end at 2020–04–06. The error – non-stopping exponential growth – can be

reproduced when setting the crop-point of the data to day 80 since 2020–01–22. Overall, this

validation model provides three main indicators: 1) Around 3 months of validation, indicate that

the exponential growth pattern can fit true data on a long-term basis (more than the used time-
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Fig. 7. Graph for a validation model. Source: Author. 
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teps as input to the model, ex. 30 time-steps or 40 time-steps), but it becomes not reliable

hen it comes to extended long-term predictions. This suggests that a polynomial trendline of

rder 2 to 4 is more probable to describe the data. 2) Crop-points influence the accuracy and the

rowth pattern of the trendlines in the models, which is the reason behind testing many crop-

oints. 3) The exponential growth that is generated by models can be controlled and reduced by

djusting the crop-point to day 110. Fig. 7 shows the prediction graph for one of the validation

odels. 

The complete validation dataset includes 1001 models, by taking 358 models as a sample that

hows a 95% confidence level and 4.15% margin of error, the following Table 9 shows that long-

erm prediction is achievable during 68 days despite exponential growth afterward, as we can

e positive that 77%, 81%, 64%, and 1% of the models can achieve more than 50%, 60%, 70% and

0% accuracy, respectively – by using same settings. Nevertheless, using such settings allowed a

on-stopping exponential growth pattern. 

On the other hand, the deterministic and non-deterministic datasets have fallen into the sec-

nd and third categories (the models have scored an accuracy of 50% to less than 60%, and 60%

o less than 70%). However, two factors have a great influence over the results: the first fac-

or involves the uncontrolled randomness that was eliminated to allow limited reproducibility

hroughout the training session, as this might have limited the achievement of higher accuracy.
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Table 9 

Analysis for the validation dataset against other datasets, DM1: Deterministic mode 1, DM2: Deterministic mode 2, NDM: 

Non-deterministic mode. Source: Author. 

Item Value % of models/ sample size DM1 DM2 NDM 

Confidence level 95% – – – –

Margin of error 4.15% – – – –

Number of models 1001 – 1197 1976 20 

Sample size 358 – – – –

Number of predictions 5208 – 2835 7301 53 

Mean accuracy 48.25% – 26.51% 30.60% 24.49% 

Standard deviation 0.2070 – 0.1506 0.15621 0.1539 

Models with accuracy < 0.4 329 92% 91.73% 91.55% 10 0.0 0% 

0.5 > Models with accuracy > 0.4 260 73% 30.83% 51.32% 35.00% 

0.6 > Models with accuracy > 0.5 275 77% 12.61% 26.87% 10.00% 

0.7 > Models with accuracy > 0.6 289 81% 0.08% 0.15% 0% 

0.8 > Models with accuracy > 0.7 229 64% 0% 0% 0% 

Models with accuracy > 0.8 3 1% 0% 0% 0% 

Crop-point 80 110 

Table 10 

Evaluating performance till 2020–07–11. Source: Author. 

Mode Accuracy till 2020–06–29 Accuracy till 2020–07–11 

Deterministic (30 time-steps) 0.5875 0.6374 

Deterministic (40 time-steps) 0.6018 0.5898 

Non-deterministic (30 time-steps) 0.54 4 4 0.5401 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a result, the desired polynomial curve was achievable at the expense of limiting the higher

accuracy due to controlled randomness. Consequently, the controlled randomness mostly pro-

vides the phases of the logistic function, the initial log phase (slow growth), followed by near-

exponential growth, the transitional phase (the slowdown), the saturation phase (transitional

phase) then the maturity phase – a plateau or stationary phase – (the growth stops). In that

sense, the second factor that influenced the results is the crop-point (a source of randomness

itself) of the data, as the “numbers” of the input data – the daily infections numbers – con-

tain inherited randomness that could lead to a pattern that translates into higher accuracy. This

particularly means that there is a certain correlation between the numbers that allow better

forecasting at a certain crop-point and worse predictions at another crop-point while using the

same settings. However, as this validation dataset is non-deterministic, meaning that there is a

certain degree of randomness, then the most controlling factor is the crop point as the other

three datasets have been tested by using similar settings except for the crop-point (the two

deterministic datasets have shown similar results to the non-deterministic dataset in terms of

growth). This highlights that the crop-point as a source of randomness exceeds in influence the

initial randomness that is created by the neural network to initialize the weights of the network.

Consistently, this certain pattern or correlation can be overcome by allowing a higher level

of randomness and much greater variations of settings. This can be computationally impractical

and time-consuming. Therefore, the objective of creating a data-lake with many variations in

data points and trends, to develop a hybrid leading reinforcement model on top of this data-

lake, is more feasible in terms of speed and efficiency as these variations can ease the process of

assigning or clustering them to reward and penalty classes in the deep reinforcement learning

model. Further validation has been performed over the three best models in the three modes

that are reported in the deterministic and non-deterministic modes, Table 10 shows updated

performance till 2020–07–11. 

The changes in performance are limited, but they reflect the unstable frequency that is inher-

ited in the true data. This unstable frequency can be of natural cause related to the pandemic

or a reflection of difficulties due to high numbers of infections and the implications of this on
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Table 11 

Evaluating performance of India as a control group till 2020–07–11. Source: Author. 

Crop-point Accuracy till 2020–07–11 Duration of evaluation Trendline 

115 0.9557 61 Exponential 

110 0.9404 66 Exponential 

115 0.9286 61 Exponential 

110 0.9107 66 Exponential 

125 0.906 51 Exponential 

115 0.8914 61 Exponential 

135 0.7992 41 Polynomial 

115 0.7251 61 Polynomial 
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he health care system. Overall, this proves the need for highly varied predictions for the case

f Brazil as in this dataset to get a clearer picture of the situation and support future research. 

On the other hand, India was chosen as a control group for validation to compare against

razil in terms of the model’s accuracy by using the same RNN’s architecture and the same

rop-point. In the case of India, a model was capable of achieving 95% accuracy till 2020–07–

1 (61 days), the complete report for achieved accuracy by using different settings is shown in

able 11 , and the models’ files can be found in the data repository. 

The performance of the models of India’s case and the validation of their generated data

how that the exponential trendline is reliable in long-term predictions that seek accurate per-

ormance for periods that do not exceed two months, which can be very useful to decision-

akers. However, it is possibly not credible for longer periods. These accuracy values particu-

arly mean that the inherited randomness in the true input numbers is influencing the results.

s well, the unique case and situation related to every country are inherited in the results of the

odels. However, this also means that extended long-term predictions (more than two months)

an become a possibility while using limited data, which contributes to validating the accuracy

f the models in Brazil’s case. 

Lastly, the following options were tested before starting wide-scale training and saving of the

odels, as they influenced the training: 

1. Although scaling is a normal procedure in feature engineering for RNN applications, however;

it has been found through several validations that it has reduced the accuracy. 

2. The code can generate overlapping time-series sequences to enlarge the training dataset,

however; more accurate models were obtained by using the smaller data. 

3. It was found that shuffling the data during the training of the models helped the training to

generalize the results. 

4. Filtering raw training data that are fed to the models, proved to be essential to avoid mis-

leading the models by ‘zero’ instances that appeared early since 2020–01–22. 

5. The non-deterministic mode can – within a certain range – provide a higher accuracy due to

randomness, however; the patterns of trendlines are similar between the two modes. 

. Experimental design, materials and methods 

The models were built in Python programming language by Keras deep learning library on

he Google Colab platform, and they depend only on numerical data of daily infections in each

ountry, no other data has been added to the models except for the time series input. 

Mainly, to prepare the data and perform feature engineering, the (gen_rnn_data) function

ivides the raw dataset in a csv file for the training and evaluation data into training and testing

ets, with an option to scale the data and to generate overlapping time-series data to enlarge

he data. These two options were found to be not useful during the training of the models, so

hey were not used. As well, no feature engineering was implemented except for cropping the

ata to create the validation dataset and to avoid very small numbers as zero, or one, or two,
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Table 12 

Comparing performance of different time-steps – till 2020–06–29. 

Source: Author. 

Time-steps ( X + Y , ex. 25 + 25 or 5 + 5) R 2 accuracy 

50 −2.770762177 

40 0.531547951 

30 0.599121699 

20 −2.157868562 

10 −2.616230335 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which appeared at the starting point of the data (2020–01–22) till March. The cropping-points

are indicated in Table 1 . 

The architecture of the models is based on predicting 15/20 time-steps (Y) by using 15/20

time-steps for training (X), which is equivalent to using 30/40 time-steps in total for training

and testing the models. The choice of these time windows in the case of Brazil was determined

experimentally. It was found that smaller time-steps such as 5 (5 for each of X and Y) and 10 (10

for each of X and Y) did produce less generalizability, which can be the same case with higher

values as 25. Table 12 below shows different accuracy values for models using the same settings

when trained on 50, 40, 30, 20, 10 time-steps. However, these results differ from one country to

another. 

Generally, the accuracy of all models was calculated using three R squared values (r2 - coef-

ficient of determination): 1) the model’s accuracy over the time-steps, 2) the model’s accuracy

over the whole evaluation period, and 3) the sum of both. The main functions used to train the

models are: 

• (train_rnn): A recurrent neural network was chosen as the main architecture of the mod-

els as it can handle complex relations in time-series forecasting problems. For that, by using

Keras deep learning library, the (train_rnn) function was developed to construct this RNN - by

choosing one of these RNNs types: 1) LSTM (Long-Short-Term-Memory) and 2) GRU (Gated

Recurrent Unit), along with a convolutional layer within a composite autoencoder’s neural

network. The choice of the GRU-CNN composite autoencoder is determined based on both,

1) GRU can provide faster convergence and higher performance than LSTM due to the re-

duced number of parameters in the model and simpler architecture, and 2) the boosted per-

formance when using a hybrid architecture of CNN with RNN, which outperforms RNN alone

without CNN. The latter case can be explained by both, CNN’s capability of feature learn-

ing that identifies the important features in the input sequence as being the first layer, and

RNNs capacity to detect temporal dependencies in the input that enables efficient forecasting

of multivariate time-sequences. These two architectures were merged without batch normal-

ization that is part of the basic block of CNNs and FCNs in certain applications as computer

vision and time-series classification tasks, as it removes – normalizes – the noise in the data,

which in return could destroy the dependencies or the relations between the inputs to the

GRU autoencoder. The hybrid architecture ends with a dense layer and involves using linear

activation function for generating numbers, rather than categorical activation functions such

as softmax or sigmoid in traditional CNNs and FCNS when configured for classification tasks.

• Later after training the model, (predict) recursive function can specify a threshold to include

several time-steps predictions as shown in Fig. 8 , (ex. to keep just the first 2 time-steps pre-

dictions out of the 15 time-steps), then it removes the rest and adds the selected ones to the

end of the previous input sequence that is used to generate this output, while removing the

same number of values at the beginning of the input, to update the input and re-predict the

next 15 steps with the newly added values at the end of the input sequence. This loop can

be repeated depending on how many time-steps we want to generate. This function allows

us to recognize the inherited randomness in the data to explore how the model behaves on

every threshold and to which limit it is accurate, so we can later select the best threshold

that fits the unseen evaluation data. 



16 M. Hawas / Data in Brief 32 (2020) 106175 

Fig. 8. The recursive predict function. Source: Author. 
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• The (adversarial_evaluation) function was developed to take the output of the model, and

train it against daily updated actual numbers to evaluate the predicted numbers as near as

possible to the actual numbers to increase the generalizability of the models. 

• The (predict_select_model) function can be used to test the performance of the models

against many thresholds and each other, then it returns the best model with the best set-

tings. 

• The (recursive_train_predict) function is the user’s interface for the training - prediction pro-

cess. 

• Helper functions, including 1) (eval_predictions) function that is used to evaluate the per-

formance of the models. 2) (plot_predictions) function that is used to plot the graphs. 3)

(train_ml) function that is used within the (adversarial_evaluation) function to perform lin-

ear regression operations. 4) (save_tables) function that is used to save the settings and ac-

curacies of the models into tables of different formats and lengths. 5) (get_settings) function

that is used to extract and process the settings of the models. 6) (save_data_structure) func-

tion that is used to save the folders and files correctly. 7) (select_models_acc) function that

is used to filter models based on the accuracy threshold. 8) (select_best_models_acc) func-

tion that is used to filter out the best models. And 9) (random_seed_changer) function that is

used to change and select a specific random seed across the used libraries in the Python en-

vironment to ensure the reproducibility of the results and the weights of the models during

the training session. 

A note on (random_seed_changer) function: Initially, we should not confuse between deter-

inistic settings and replicability, as the first does not necessarily lead to the latter. Generally,

here are sources of randomness, since different hardware and software versions of used li-

raries in deep learning can produce randomness even when deterministic settings are used.

or instance, there are four main sources for randomness, ex.: 1) GPU’s numerical operations

re mostly non-deterministic, so single-threaded CPU was used. 2) The programming environ-

ent and the initialization of the neural network can be random; therefore, random values were

pecified during the training session. 3) Different versions of deep learning libraries can provide

ifferent results by using the same settings, this was addressed by using “2.3.0-tf” version. 4)

raining on different hardware can introduce randomness, thus, the models were trained on

oogle’s Colab platform at a time-window that is indicated in Table 1 . This deterministic setup

s useful to serve the procedural objective of the dataset, which is to report settings used to

roduce all models that were trained in a training session while using the same software and

ardware. This can allow future work to evaluate the statistical significance based on no factors

nfluenced the training except for changed settings of the models, which is essential later for

niform training of a reinforcement learning - RL model. This can provide further control over

he stochastic process in the neural network, by using the stochastic data that was regulated by

eterministic settings during its training process, as training data for an RL model, which is the

ajor objective of the dataset. Table 13 indicates the number of training sessions and models

enerated in each, and their relevant confidence level, to determine the minimum sample size

eeded to check the statistical significance in future works. 
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Table 13 

Number of training sessions. Source: Author. 

Mode ∗ Population 

Confidence 

level 

Margin of 

error 

Required sample 

size per 

population 

Number of 

training 

sessions s1 s2 s3 s4 s5 s6 

DM1 1197 95% 4% 400 2 404 793 

DM2 1976 95% 4% 461 6 4 355 153 334 600 530 

NDM 

∗∗ 20 95% 4% 20 1 20 

TVM 1001 95% 4% 535 1 1001 

∗ For Non-deterministic modes (NDM and TVM) these values are informative only, as the training sessions are non- 

deterministic by nature. 
∗∗ The 20 models in the Non-deterministic mode were all trained in 1 session. The Google Drive File Stream service 

that syncs files automatically from the training session on Google Colab to Google Drive, has created the designated 

folder on 3 July and indicated correct created date of 9 files out of 20 as: 3 July and incorrect modified date as: 

25 June for these 9 files that even shows 24 June when downloaded. This error can be noticed in the compressed 

zip file. However, the code already included a working second layer of protection against these errors, as there is an 

internal collective settings dictionary file that states exactly all settings used at the beginning of the training process 

for each model before generating individual settings files, which is created on 3 July. The dictionary clarifies that the 

actual creation of settings that were used to initialize each training session of the 9 models, occurred on 3 July, as this 

dictionary creation code is responsible for generating universally unique identifiers as models’ naming convention. 
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