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Summary
As the SARS-CoV-2 pandemic unfolds across the globe,
consistent themes are emerging with regard to aspects of
SARS-CoV-2 infection and its associated disease entities
in children. Overall, children appear to be less frequently
infected by, and affected by, SARS-CoV-2 virus and the
clinical disease COVID-19. Large epidemiological studies
have revealed children represent less than 2% of the total
confirmed COVID-19 cases, of whom the majority experi-
ence minimal or mild disease that do not require hospi-
talisation. Children do not appear to be major drivers of
SARS-CoV-2 transmission, with minimal secondary virus
transmission demonstrated within families, schools and
community settings. There are several postulated theories
regarding the relatively low SARS-CoV-2 morbidity and
mortality seen in children, which largely relate to differ-
ences in immune responses compared to adults, as well
as differences in angiotensin converting enzyme 2 distri-
bution that potentially limits viral entry and subsequent
inflammation, hypoxia and tissue injury. The recent emer-
gence of a multisystem inflammatory syndrome bearing
temporal and serological plausibility for an immune-
mediated SARS-CoV-2-related disease entity is currently
under investigation. This article summarises the current
available data regarding SARS-CoV-2 and the paediatric
population, including the spectrum of disease in children,
the role of children in virus transmission, and host-virus
factors that underpin the unique aspects of SARS-CoV-2
pathogenicity in children.

Key words: SARS-CoV-2; COVID-19; paediatrics; transmission; ACE2;
multisystem inflammatory syndrome.

Received 29 June, revised 5 August, accepted 10 August 2020
Available online 19 August 2020
3025/Online ISSN 1465-3931 © 2020 Royal College of Pat
rg/10.1016/j.pathol.2020.08.001
INTRODUCTION
Since its identification in January 2020 to the time of writing,
SARS-CoV-2 has caused coronavirus disease (COVID-19) in
almost 10 million people worldwide and resulted in 500,000
deaths.1 However, COVID-19 morbidity and mortality ex-
hibits significant variation across age groups. Early publica-
tions revealed SARS-CoV-2 could cause a wide spectrum of
illness in adults, and children were seemingly under-
represented with regard to both the total number of cases as
well as the likelihood of experiencing severe disease.2,3

Comprehensive population-based epidemiological studies
have confirmed this finding, revealing a lower prevalence of
SARS-CoV-2 infection in children compared to adults.4–6

Furthermore, if children do acquire SARS-CoV-2, the vast
majority experience mild disease not requiring hospital-
isation,3,7–9 and as SARS-CoV-2 disseminates globally and
chains of transmission are becoming increasingly recognised,
children do not appear to be efficient transmitters of
infection.10–13

There are a number of hypotheses postulated to explain
children’s lower risk of being infected by, and affected by,
SARS-CoV-2. These include differences in viral kinetics, a
mucosal burden of competing pathogens, and alterations in
their immune response including vascular susceptibility to
SARS-CoV-2 infection. Most notably, a hyperinflammatory
state, with features of acute respiratory distress syndrome
(ARDS), appears to be a central feature of the pathogenesis of
acute severe disease in adults. Children are seemingly acutely
protected from this state for reasons that are as yet unclear,
yet one of the leading hypotheses regarding their protection
from acute illness and transmission relates to age-related
differences in expression of angiotensin converting enzyme
2 (ACE2) in different tissue types. ACE2 is a key mediator of
SARS-CoV-2 host cell entry and plays an integral role in the
hologists of Australasia. Published by Elsevier B.V. All rights reserved.
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endothelial inflammatory response. However, with the recent
recognition of potential late multisystem inflammatory
sequelae from SARS-CoV-2 infection, differences in the
immune-mediated response to SARS-CoV-2 is also of
interest.
This article presents an overview of SARS-CoV-2 infec-

tion in children based on the available data to date, including
the spectrum of disease, transmission and immunopatholog-
ical underpinnings, as well the possible multi-system in-
flammatory sequelae that may ensue.
SPECTRUM OF DISEASE
Since the emergence of SARS-CoV-2 as a human pathogen
in the Hubei Province of China, it has become evident that
children are largely spared the acute severe features of
COVID-19. China was the first country to experience intense
community transmission, and a review of 72,314 cases by the
Chinese Center for Disease Control (CDC) revealed that less
than 1% of cases occurred in children aged less than 10 years,
and the vast majority of these cases were well enough to be
managed in the community.14 The United States (US) has
subsequently emerged as the nation with the highest rates of
infection and less than 2% of affected cases are in the pae-
diatric age range,15 which is in keeping with data collated in
Italy16 and Spain.17 In New South Wales, Australia, where
community testing rates have been high, children contribute
only 4% of the known COVID-19 cases in the community,
despite comprising 23% of the population.18

Alongside a low prevalence of diagnosed disease, children
also consistently exhibit mild (if any) illness following
infection with SARS-CoV-2, including some traditionally
‘high risk’ children such as those with cancer,19 bone marrow
transplant recipients,20 immunosuppressed children on bio-
logical agents,21 and those with cystic fibrosis.22

The most common symptom reported in children is fever,
with rhinorrhoea, cough, gastrointestinal symptoms, headache
and myalgia also reported.15,23–25 However, a proportion of
children with SARS-CoV-2 detected by real time polymerase
chain reaction (RT-PCR) have no clinical or radiological
features of disease.24,26 Mild bronchial thickening and
ground-glass opacities are the main radiological findings on
chest X-ray or computed tomography studies, and can be
evident in asymptomatic children.24,27 While there are still
limited data available regarding COVID-19 in infants, case
reports regarding infants with SARS-CoV-2 infection (hori-
zontally or otherwise acquired) have predominantly described
asymptomatic or paucisymptomatic disease, with mild short-
ness of breath the most commonly reported symptom.28

Outcomes have been favourable in the vast majority of in-
fants with SARS-CoV-2 infection, including those presenting
with less common and potentiallymore severe signs, including
encephalopathy.29 While vertical transmission has been
postulated to occur,30 there is evidence suggesting perinatal
acquisition is unlikely in the context of appropriate hygiene
measures (adequate hand-hygiene and the use of a surgical
mask in mothers positive for SARS-CoV-2) at delivery.31

Therefore, it is recommended that infants should continue to
room-in with their mothers and breastfeeding should be
encouraged, with these hygiene measures in place.32

Severe disease requiring admission to intensive care units
(ICUs) in the acute phase of infection is rare in children. Of
1391 children assessed and tested for SARS-CoV-2 at Wuhan
Children’s Hospital, only 12.3% (n=171) were positive, of
whom just three children (1.8%) required ICU admission.24

However, as has been evident in other reports (including a
prospective surveillance study of paediatric oncology units in
France),33 it is uncertain as to whether these children required
ICU admission due to COVID-19 or their comorbid condi-
tions. Whilst a review of 41 children with COVID-19 in
Spain demonstrated a relatively high proportion requiring
hospitalisation (25/41, 61%), only four required admission to
ICU (4/41, 9.8%).17 In North America, the majority of pae-
diatric cases have not required hospitalisation,8,34 and those
requiring ICU admission frequently have a number of
comorbidities and complex medical backgrounds that dictate
their need for intensive care.35

Therefore, extrapolating conclusions from the observa-
tional data available on children who develop moderate to
severe COVID-19 globally is difficult due to possible
confounding by other factors. Published detailed clinical in-
formation is often lacking with regard to whether these
children required high-level care due to COVID-19, or were
simply RT-PCR SARS-CoV-2 positive and admitted due to
an alternative diagnosis or active comorbidity at a time when
community transmission of the virus in their geographic
settings was high.27 Furthermore, a vast array of (not yet
evidence-based) therapeutic options have been utilised in
many of these descriptive studies, including antiviral agents,
traditional medicine, antibiotics, and immunomodulatory
agents, many of which have known adverse effects, further
complicating the ability to ascertain whether complications in
these cases were due to SARS-CoV-2 or other factors
implicated in these presentations.36,37

The direct long-term outcomes for children from SARS-
CoV-2 infection remains to be seen. Aside from the multi-
system inflammatory sequelae potentially associated with
SARS-CoV-2 (see section Multisystem inflammatory
sequelae) there are no outcome data for children with
SARS-CoV-2 infection beyond acute infection. There are
preliminary adult data that raise concerns for the longer-term
respiratory, cardiac and neurological sequelae. Observations
from China in non-critical hospitalised SARS-CoV-2 adult
survivors demonstrated persisting pulmonary function de-
fects on discharge; the most common being diffusion ca-
pacity, followed by restrictive ventilatory defects, both of
which correlated with the severity of acute infection.38

Myocardial involvement (as evidenced by elevated troponin
levels) has been reported in up to 30% of adults hospitalised
with SARS-CoV-2 infection, which may be related to
myocarditis, myocardial ischaemia/infarction, cardiomyopa-
thy or coronary vasculitis.39 The long-term prognosis for
such patients is extrapolated from the long-term outcomes of
other viral-associated myocardial injury (myocarditis, car-
diomyopathy and vasculitis) and general myocardial insults
(e.g., myocardial ischaemia/infarction). One concern that
requires consideration is the long-term cardiac outcomes for
children with SARS-CoV-2 who develop coronary artery
abnormalities in the context of the suspected SARS-CoV-2
associated multisystem inflammatory conditions (see sec-
tion Multisystem inflammatory sequelae). As may occur in
other viral illnesses, there have been case reports of neuro-
logical complications in adults with SARS-CoV-2 including
neuroinflammatory syndromes (such as encephalitis and
acute demyelinating encephalomyelitis), stroke and periph-
eral nervous disorders (including Guillain–Barré syndrome,



SARS-COV-2 IN CHILDREN 803
plexopathies, and cranial nerve palsies) that may lead to long-
term morbidity (with prognoses extrapolated from other viral-
associated and general neurological insults).40–46 However,
as demonstrated in the differences regarding how children are
affected by acute SARS-CoV-2 infection compared to adults,
identifying and prognosticating the long-term outcomes for
children must be independently evaluated to that of adults,
and in the literature to date, there has not been a clear indi-
cation that these neurological complications predominate in
children infected with SARS-CoV-2.
THE ROLE OF CHILDREN IN TRANSMISSION
By analogy to influenza, for which children are known to be
major transmitters, there was initial concern regarding the
potential role of children as ‘silent spreaders’ of SARS-CoV-
2,47,48 and occasional early studies supported this perspec-
tive.49 As SARS-CoV-2 spreads globally, the transmission
chains of SARS-CoV-2 are becoming apparent. Collectively,
data suggest that children with SARS-CoV-2 acquire their
infection from an adult contact, with minimal secondary
transmission from children.50 Droplets are the main mecha-
nism of transmission of SARS-CoV-2, and while some
studies have revealed the presence of SARS-CoV-2 RNA
detected in the stool of patients51 and on environmental
surfaces,52 confirmation of viable virus of sufficient load to
produce infection in other individuals has not yet been
documented. To date, there are no published data confirming
faecal-oral transmission of SARS-CoV-2, despite detectable
virus genetic material documented in the stool of paediatric
patients.53,54

Isolated case reports have suggested transmission from
symptomatic children to household contacts,10,11 however
these are rare. Simultaneously, other case reports support an
absence of transmission even amongst symptomatic children,
including one paediatric index case for whom not one of 172
contacts tested positive for SARS-CoV-2.55 One case series
of household contacts revealed 3/31 (9.6%) clusters involved
a child as a possible source case, compared to H5N1 avian
influenza in which 54% of family clusters had a paediatric
source case.12 Similarly, in school-based transmission studies
in Australia involving 18 index COVID-19 cases, only two of
735 (0.3%) students became secondarily infected: one from
an adolescent student, and another from an infected teacher.13

A systematic review on school closures for coronavirus
control has found no conclusive evidence for a convincing
impact on population-level viral transmission dynamics,56

and in Sweden (where schools and childcare centres have
remained open throughout the pandemic) the prevalence of
SARS-CoV-2 in children has remained very low.57

Concordant with these epidemiological findings, a recent
modelling study demonstrated that susceptibility to SARS-
CoV-2 infection in people under the age of 20 years is
around half that of adults.58 Additionally, only 21% of in-
fections are symptomatic in adolescents (aged 10–19 years),
compared to 69% in older adults (>70 years). As a result,
transmission-based interventions aimed at children, including
school closures, are projected to have a relatively small
impact of SARS-CoV-2 transmission dynamics.58

Indeed, there are now data from many geographic settings
across Europe, Asia and America confirming that the pro-
portion of children infected with SARS-CoV-2 in the com-
munity is low (varying from 1% in young children to 6% in
older children),54 although further adequately powered
seroprevalence studies are necessary to more clearly establish
the transmission dynamics in children.
Despite the weight of evidence suggesting children are not

major drivers of transmission of SARS-CoV-2 at a popula-
tion level, children in many geographic areas have been
subject to the same social isolation rules as adults, including
widespread school closures. These policies have significant
repercussions for education, development and wellbeing.59

Furthermore, reduced economic productivity at household
as well as national levels, and negative impacts on the psy-
chosocial wellbeing of parents and/or caregivers may be
expected corollaries. Limiting transmission from adult source
cases is essential through prioritisation of optimal hygiene
and physical distancing measures; yet the need to enforce
physical distancing in children with the same rigour
(including universal school closures or restrictions) poses a
risk of marked social and emotional morbidity which is not
proportionate to the existing evidence for the role of children
in the transmission of SARS-CoV-2.60
DIAGNOSTIC CONSIDERATIONS
As with other human coronaviruses, the diagnostic gold
standard for SARS-CoV-2 is via RT-PCR, commonly
utilising genes encoding the internal RNA-dependent RNA
polymerase and surface spike glycoprotein.61–63 Higher viral
loads have been documented in the lower respiratory tract,64

consistent with what has been observed for SARS-CoV and
Middle East respiratory syndrome (MERS).65 In some set-
tings, where there is a strong clinical suspicion of SARS-
CoV-2 yet a negative result on nasopharyngeal or throat
swab, lower respiratory tract sampling is recommended;66

however, this should be reserved for the most unwell chil-
dren in light of the risks associated with obtaining lower
respiratory tract samples.
Buccal swabs have been explored as a more tolerable

sampling method than the currently recommended nasopha-
ryngeal or oropharyngeal specimens,67 yet studies investi-
gating this method have included very small numbers of
children and have revealed higher cycle thresholds when
compared with nasal nasopharyngeal specimens, indicating a
lower viral load assessed via this sampling method. Although
saliva specimens have been investigated in studies involving
small numbers of adults with SARS-CoV-2 infection,68 this
has not been evaluated in the paediatric population. Most of
the available data regarding the timing of viral detection via
PCR is based on evidence obtained from the adult population,
and indicates that viral detection via PCR tends to decline
more quickly in upper respiratory tract samples than lower
respiratory tract samples.63 SARS-CoV-2 RNA can be
detected for longer periods in patients with more severe
disease than in patients with mild illness.69

SARS-CoV-2 infection can also be ascertained by the
detection of antibodies to SARS-CoV-2, which may be
helpful in aiding in the diagnosis of post-infectious inflam-
matory syndromes in children. The first detectable serological
marker is total antibodies,70 although IgM and IgG enzyme-
linked immunosorbent assay (ELISA) have been documented
as positive as early as four days after symptom onset.63

Seroconversion typically occurs in the third to fourth week
after illness and ELISA-based IgM and IgG antibody tests
have revealed a high specificity for the diagnosis of SARS-
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CoV-2,63 although false positive results have been
described71 and cross-reactivity between other coronaviruses
may occur.72 While specific sensitivity quantification is
difficult to delineate with regard to serology in children, it is
known that paucisymptomatic patients (which describes the
vast majority of paediatric cases) may have low antibody
concentrations and in these circumstances, false negative
results are more likely to occur.73

MECHANISMS OF DISEASE
Immune response

Similar to SARS-CoV, which caused the 2003 SARS
epidemic, several features of SARS-CoV-2 suggest the
immune response is central to disease pathogenesis. For both
viruses, the delay to onset of significant symptoms points to
the priming of an immune response and high levels of in-
flammatory markers supports an inflammatory pathogenesis,
while the worsening of disease in the presence of decreasing
viral titres suggests that direct viral cytopathic effects may no
longer be of relevance at that time.74

In adults, it has been established that infection with SARS-
CoV-2 results in a robust antiviral CD4 and CD8 T cell
response75 as well as generation of virus-specific antibodies,
including neutralising antibodies.76 Using single cell ribonu-
cleic acid sequencing (scRNA-seq) several studies have now
established the immune profile of adult patients with COVID-
19. One study found that in hospitalised adults with COVID-
19, especially those with ARDS, there is depletion of natural
killer (NK) cells, dendritic cells and CD16+ monocytes, but
expansion of plasmablasts.77 Further analysis revealed that
type I interferon induced signatures were strong (but not uni-
versal) in all patients, although cytokine expression was not
elevated in peripheral blood immune cells, suggesting an
alternative source of inflammatory cytokines in COVID-19.77

Indeed, scRNA-seq of bronchoalveolar lavage immune cells
has revealed the presence of aberrant pro-inflammatory mac-
rophages, especially in patients with severe COVID-19,78

suggesting that perhaps the immune cells of resident tissues
are the source of inflammatory cytokines. Another study
focused on the early recovery phase of COVID-19 and iden-
tified a prominent population of CD14IL1b monocytes in the
peripheral blood of adults seven days after showing a negative
PCR for SARS-CoV-2, which was associated with increased
signalling by inflammatory cytokines (such as type 1 in-
terferons and IL-6 in several immune cell subsets, including
monocytes, T cells and B cells).79

Very little research currently exists regarding the immune
response to SARS-CoV-2 in children. Data from New York
city has shown that severe disease is associated with obesity
in older children, and a pro-inflammatory profile demon-
strated by a high C-reactive protein (CRP) and IL-6 levels at
admission.80 Therefore, it seems that a pro-inflammatory
state in predisposed children may be associated with severe
adult-like COVID-19. Indeed, a key unanswered research
area regarding SARS-CoV-2 is how the immune response in
children differs from adults, and whether this difference may
explain the spectrum of disease susceptibility and severity
associated with COVID-19. Postulated reasons as to why
most children appear to be protected from an acute hyper-
inflammatory response to SARS-CoV-2 include: (i) the ca-
pacity to mount a more controlled and efficient immune
response; (ii) relatively fewer co-morbidities that predispose
to a pre-existing pro-inflammatory state; and (iii) relatively
lower viral loads that may not trigger as intense an inflam-
matory response.
Other host-virus factors

One of the most consistent and biologically plausible theories
emerging in the literature regarding the mild (if any) disease
SARS-CoV-2 causes in children surrounds age-related dif-
ferences in ACE2. Cell entry of coronaviruses depends on the
binding of the viral spike (S) protein to cellular receptors, as
well as the cleavage or priming of this S protein by host cell
proteases (Fig. 1).81 SARS-CoV-2 (and its predecessors
SARS-CoV and the seasonal coronavirus, CoV-NL63)
engage ACE2 for cell entry, and utilise the transmembrane
protease serine 2 (TMPRSS2) for S protein priming.82,83 In
the previous SARS-CoV epidemic, the efficiency of ACE2
usage in viral cell binding was found to be a key determinant
of SARS-CoV transmissibility.84

ACE2 is an enzyme that functions to convert angiotensin II
to its metabolite angiotensin-(1–7), particularly within the
lung microenvironment, where ACE2 levels are intrinsically
elevated.85 Angiotensin-(1–7) has a homeostatic role in the
regulation of the renin-angiotensin-aldosterone system
(RAAS), a finely tuned cascade of vasoactive peptides that
orchestrates key processes of human physiology.86,87 The
RAAS is an important regulatory pathway for the cardio-
vascular system and the counter-regulatory enzymes ACE
and ACE2 have been identified as key elements of the in-
flammatory processes established in conditions such as car-
diac hypertrophy, pulmonary hypertension, lung injury and
sepsis.88 Diminished expression of ACE2 can result in
chronic heart failure and pulmonary compromise, implying a
protective mechanism of ACE2 and alluding to a mechanism
whereby dysregulated ACE2 in COVID-19 may imbalance
the angiotensin-II/angiotensin-(1–7) equilibrium to tend to-
wards inflammation and hypoxia.85

After gaining entry to the host cell, SARS-CoV-2 appears
to down-regulate ACE2 expression on cell surfaces, thereby
minimising the ability of the enzyme to exhibit its protective
effects on organs.87,89,90 While ACE2 expression has been
found throughout the cardiorespiratory and gastrointestinal
systems (with TMPRSS2 expressed even more broadly),
nasal epithelial cells exhibit the highest expression of ACE2/
TMPRSS2 within the entire respiratory tract, which may
explain the prominence of the symptom of anosmia in pa-
tients with COVID-19.91–93

In the lower respiratory tract, where both SARS-CoV and
SARS-CoV-2 appear to have their most acute pathogenic
effects, ACE2/TMPRSS2 expression has been identified in
both type I and type II pneumocytes.83,94,95 In children, a
higher concentration of ACE2 in pneumocytes has been
documented, which may explain the protection for this age
group against the severe clinical manifestations of COVID-
19.85,96 Age-dependent ACE2 gene expression has also been
documented in the nasal epithelium, with the lowest gene
expression evident in younger children and increasing
expression evident with age.97 As this is the first point of
contact for SARS-CoV-2 in the human body, lower ACE2
expression in the nasal epithelium of children may explain the
infrequent infectivity in this age group.
The RAAS derangement that is evident in many underlying

chronic cardiovascular conditions, which normally do not



Fig. 1 Host cell interaction with SARS-CoV-2. ACE, angiotensin converting enzyme; AT1R, angiotensin 1 receptor; RAAS, renin-angiotensin-aldosterone system;
TMPRSS2, transmembrane protease serine 2.
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affect paediatric populations,may be implicated in the severity
ofCOVID-19 seen in older populations. It is becoming evident
that while age is the strongest predictor of COVID-19-related
death, in keeping with findings revealed by prior coronavirus
epidemics, the presence of coexisting conditions—
particularly chronic cardiovascular disease and obesity—are
proving key prognostic determinants for COVID-19.98–101

It has been hypothesised that SARS-CoV-2 may directly
attack vascular endothelial cells expressing high levels of
ACE2, resulting in abnormal coagulation and a sepsis-like
picture.102 Dysfunction of the vascular endothelium tends
to result in organ ischaemia via a shift in the vascular equi-
librium towards vasoconstriction, which further exacerbates
tissue inflammation.103,104 SARS-CoV-2 may facilitate in-
duction of endotheliitis, as autopsy evidence has revealed the
presence of viral inclusion bodies within endothelial cells
alongside an accumulation of inflammatory cells, impairing
microcirculatory function and resulting in clinical ischaemia
of multiple organs.103 Once again, this may explain a pre-
disposition for patients with pre-existing endothelial
dysfunction (as is associated with hypertension, diabetes,
established cardiovascular disease and obesity) to have the
highest risk of adverse outcomes in COVID-19.103

Finally, modified endovascular responses due to develop-
mental differences in clotting factors and endothelial cells
have also been proposed as an explanation for the attenuated
response to SARS-CoV-2 in children.103,105 Indeed, there is
clear evidence that haemostasis is a developmental contin-
uum, with reduced vitamin K dependent coagulation factors
and antithrombin evident in neonates, while lower protein C
and S levels persist throughout childhood.106 This contrasts
to the prothrombotic milieu evident in elderly populations,
which may serve as yet another mechanism for driving severe
disease in this population.107
MULTISYSTEM INFLAMMATORY SEQUELAE
In April 2020, several severely unwell children with fever
and shock were described in the United Kingdom (UK) in
association with SARS-CoV-2 infection.108 No such cases
had been reported prior to this from China, and a solitary case
from the US of Kawasaki disease (KD) with concurrent
detection of SARS-CoV-2 infection had been published.109

Further cases were later identified in the UK and the condi-
tion was labelled ‘paediatric inflammatory multisystem syn-
drome temporally associated with SARS-CoV-2’ (PIMS-
TS).108 Reports subsequently emerged from other high-
burden settings regarding children with fever, shock, rash
and abdominal pain, some of whom met diagnostic criteria
for KD;110–113 many of these children were seropositive for
prior SARS-CoV-2 infection and a minority showed con-
current detection of SARS-CoV-2 via RT-PCR.108,110,111

The US Centers for Disease Control and Prevention (CDC)
has named the syndrome ‘multisystem inflammatory syn-
drome in children associated with COVID-19’ (MIS-C).114

Although the link between SARS-CoV-2 and these
multisystem inflammatory syndromes requires further eluci-
dation, there is a growing consensus that this syndrome may
represent an immune-mediated complication of SARS-CoV-
2 infection in children and adolescents, in light of the pres-
ence of SARS-CoV-2 antibodies in most cases and 4-week
delay in timing between peaks of community SARS-CoV-2
infections and case report clusters of children presenting
with inflammatory syndromes in several locations.110,111
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One of the more comprehensive descriptive studies
regarding this inflammatory syndrome depicted 58 children
who presented with fever, with half having evidence of rash
and gastrointestinal symptoms.115 Twenty-nine of these cases
(50%) developed shock and required intensive care support.
Twelve of these children (20%) met the diagnostic criteria for
KD, while 24 children (40%) showed no features of KD.
However, the patients described were generally older than
KD cohorts and showed higher inflammatory markers than is
common in KD. Eight (14%) cases developed coronary artery
dilation or aneurysms, revealing a possible shared patho-
genesis with KD. Almost all children recovered (1 death),
with the majority receiving systemic immunomodulatory
treatment. Other reports have described a high prevalence of
macrophage activation syndrome in PIMS-TS, which is less
common in endemic KD than in PIMS-TS.110

KD may provide a model for the pathogenesis of PIMS-
TS, not least because KD has a strong association with sea-
sonal infections, but also because it is rarely associated with
intercurrent infection at the time of manifesting the vasculitic
processes (as has been evident in the above described co-
horts). A number of surveillance studies have been estab-
lished to better monitor the emergence of this clinical
entity.116 In Australia, surveillance undertaken by the Pae-
diatric Active Enhanced Disease Surveillance network
(www.paeds.org.au) has not shown an increased frequency of
KD across the period of the COVID-19 epidemic, which may
be anticipated in light of the low community prevalence of
SARS-CoV-2 to date.
Specific, albeit provisional, recommendations for man-

agement of patients with possible PIMS-TS/MIS-C have
been published by a group of specialist clinicians and
endorsed by the Royal Australasian College of Physicians.117

SARS-CoV-2 serological testing during the acute presenta-
tion, and ideally prior to the administration of intravenous
immunoglobulin, is a key priority.

CONCLUSION
Unlike many respiratory viruses, children have been rela-
tively spared by severe illness in the global pandemic caused
by SARS-CoV-2 and appear to be only minor contributors to
virus transmission. These aspects of SARS-CoV-2 in chil-
dren likely result from differences in their immune response
to the virus, including a lower predisposition to pro-
inflammatory states, fewer co-morbidities, and the differen-
tial expression of ACE2 in children, which may attenuate
viral entry, as well as ongoing replication and subsequent
inflammation, hypoxia and tissue injury.
At the time of writing, the multisystem inflammatory

syndromes associated with SARS-CoV-2 (PIMS-TS/MIS-C),
which present with KD-like clinical features, remain under
investigation. Temporal and serological plausibility of a link
with SARS-CoV-2 infection is supported by consistent data,
but further studies are required to refine case definitions,
establish SARS-CoV-2 as an inciting agent, understand the
immune-mediated response to SARS-CoV-2 infection, and
determine optimal management strategies.
There remain significant questions needing to be addressed

regarding the intricate pathogenic mechanisms underlying the
differences in SARS-CoV-2 infection between children and
adults. Research to better define the immune response and
assess the possibility of altered ACE2 tissue distribution and
affinity for SARS-CoV-2 in the paediatric population should
be a focus for future studies. Understanding the nature of
host-virus interactions, and particularly which features of the
paediatric immune system facilitate protection or
(conversely) delayed multi-system inflammation, will shed
light on SARS-CoV-2 pathogenesis and may lead to neces-
sary improvements in therapeutic options. Furthermore, it is
important that future epidemiological and clinical cohort data
describe clinical comorbidities and coinfections in children
with more precision, as well as delineating disease findings
implicated in severe COVID-19 and potential SARS-CoV-2
multisystem inflammatory sequelae more clearly. This will
enable clarification of risk factors for SARS-CoV-2-related
disease and its associated disease entities in children.
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