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Abstract

This paper presents an individualized Ensemble Model Predictive Control (EnMPC) algorithm for 

blood glucose (BG) stabilization and hypoglycemia prevention in people with type 1 diabetes 

(T1D) who exercise regularly. The EnMPC formulation can be regarded as a simplified multi-

stage MPC allowing for the consideration of Nen scenarios gathered from the patient’s recent 

behavior. The patient’s physical activity behavior is characterized by an exercise-specific input 

signal derived from the deconvolution of the patient’s continuous glucose monitor (CGM), 

accounting for known inputs such as meal, and insulin pump records. The EnMPC controller was 

tested in a cohort of in silico patients with representative inter-subject and intra-subject variability 

from the FDA-accepted UVA/Padova simulation platform. Results show a significant improvement 

on hypoglycemia prevention after 30 min of mild to moderate exercise in comparison to a 

similarly tuned baseline controller (rMPC); with a reduction in hypoglycemia occurrences (< 70 

mg/dL), from 3.08% ± 3.55 with rMPC to 0.78% ± 2.04 with EnMPC (P < 0.05).
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1. Introduction

Type 1 diabetes mellitus (T1D) is an autoimmune condition resulting in absolute insulin 

deficiency and a life-long need for insulin replacement [1]. Glycemic control in T1D 

remains a challenge, despite the availability of modern insulin analogs [2], the improving 

accuracy of glucose monitoring [3, 4], and the widening use of intensive insulin therapy. 

While new technologies have proven benefits in avoiding diabetes related complications [5] 

and may reduce excess mortality in some populations [6], excess mortality and complication 

rates remain significantly higher in T1D when compared to the general population [7, 8].

Monitoring diet and exercise is of paramount importance for blood glucose (BG) control in 

people with T1D. Exercise has been associated with many health benefits for people with 

T1D, such as reduced cardiovascular risks, improved psychological well-being, and possible 

benefits in bone health [9]. However, exercise can also lead to an imbalance between hepatic 

glucose production and glucose disposal into muscle [10], increased insulin sensitivity 

related to glucose transporter type 4 translocation upregulation, and impaired 

counterregulatory hormonal response [11, 12]. In the absence of sufficient insulin reduction 

and/or carbohydrate supplementation, hypoglycemia often occurs during exercise, as well as 

during early and late recovery [13, 14]. These metabolic perturbations make participating in 

sports or exercise particularly challenging for people with T1D [15, 16]. Despite growing 

awareness of the benefits of exercise, fear of hypoglycemia often results in the avoidance of 

physical activity [17] or treatment behaviors that overcompensate and lead to worsened 

metabolic control [18]. Exercise has also been shown to mask hypoglycemic symptoms, 

thereby facilitating repeated exposure to unrecognized hypoglycemia and potentially causing 

hypoglycemia-associated autonomic failure [12] with all its negative consequences [1]. For 

these reasons, many people with T1D engage in less exercise than their nondiabetic 

counterparts [19]. According to Riddell et al., fear of hypoglycemia, loss of glycemic 

control, and inadequate knowledge about exercise management are the major barriers for 

people with T1D to exercise regularly [20]. Additional reasons why people with T1D may 

not engage in physical activity include insufficient time, limited access to facilities, absence 

of motivation, issues with body image, and general lack of knowledge around exercising. 

This is particularly worrisome since it is estimated that from the entire population of people 

with T1D, 60% are overweight, 40% have hypertension, 60% have dyslipidaemia, and most 

do not engage in physical activities [20].

For adults with diabetes, 150 min of accumulated physical activity is recommended every 

week [21]. However, it is still unclear which form of exercise benefits cardiometabolic 

control in T1D the most [20]. Recent findings indicate that high-intensity interval training 

has multiple benefits for people with T1D, including less hypoglycemia and better BG 

control [22].

Artificial pancreas (AP) technology has become a promising solution to diminish the burden 

of T1D management, offering near optimal BG control and significant reduction in 

hypoglycemic events. In the past decade, AP studies have advanced from short-term 

inpatient investigations using algorithm-driven manual control [23], to long-term clinical 

trials in free-living conditions using wearable, wireless, automated AP systems [24]. 
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Reviews and collections of papers reflecting the progress of the AP field are found 

elsewhere [25, 26], report a significant reduction of glucose variability (GV), particularly 

overnight, and lower risk for for hypoglycemia. In September 2016, the FDA approved the 

first hybrid closed-loop control system, the Medtronic 670G, which is capable of 

automatically adjusting the pump’s basal rate, but still does not automate insulin boluses 

[27]. Unannounced meals and exercise bouts are two major challenges that need to be 

addressed in AP systems [28].

A large volume of AP literature is devoted to the design of MPC-based schemes for 

automated insulin infusion systems [29, 30, 31, 32, 33, 34, 35]. The success of MPC-based 

schemes has largely been from the explicit use of a validated patient models for tailored 

glycemic prediction and the ability to include constraints over the system variables. In this 

regard, MPC implementation relies mostly on the quality of the model used for prediction 

[36]. Since MPC refers to a group of strategies rather than a specific scheme, many possible 

combinations arise. Previous contributions to MPC-based schemes that address 

unannounced exercise bouts have been documented in [37, 38]. In these contributions, two 

control schemes were tested both in silico and in vivo, the Zone Model Predictive Control 

(ZMPC) integrated with the UVA Diabetes Assistant (DiAs) platform and the Enhanced 

Model Predictive Controller (eMPC), an MPC encompassing three innovations: (i) dynamic 

tuning system of the controller’s parameters, (ii) an enhanced set-point algorithm, and (iii) a 

trust index module, which uses prediction accuracy measurements (recent past) to indicate 

trust in current and future predictions.

Our controller falls into the category of hybrid controllers, because meals must be 

announced a priori. However, our approach differs from previous contributions since the 

subject does not need to announce exercise. To this end, our controller utilizes patient-

specific exercise-induced signatures (inputs) based on a personalized, physiologically 

inspired model of glucose homeostasis and the use of regularized deconvolution on historical 

data (net effect method [39]). The core controller is also able to use the patient’s previous 

behavior to predict the impact of future exercise bouts. From these predictions a sequence of 

insulin doses are chosen to avoid hypoglycemia during and after physical exercise. This 

approach is dependent on a record of the patient’s behavior. Once enough data about the 

subject is collected (CGM, pump, meal, and activity tracker records), we characterize the 

subject-specific behavior related to exercise using the net effect method. Then, this 

information is fed to the controller (the times the subject is most likely to exercise) which 

assesses the best insulin pattern through a robust control approach. In this regard, our 

approach does not aim to detect, but rather to anticipate the occurrence of physical activity.

The output-feedback controller is fed by the Unscented Kalman Filter (UKF) algorithm, 

guaranteeing a reliable estimation of the system’s state at every sampling time. To evaluate 

the proposed system, we generated a cohort of 50 virtual subjects exhibiting both intra-

patient and inter-patient variability by means of our FDA-accepted UVA/Padova simulator. 

All subjects underwent a two-day trial that included three meals per day and a mild to 

moderate 30-min exercise bout in the transition from absorptive to postabsorptive state (4:00 

4:30 p.m) on the first day with a later dinner at 7:00 p.m.
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The manuscript is organized as follows. In Section 2, we describe the prediction model for 

the controllers and for the generation of the subject’s specific exercise signatures. The 

method used to characterize the exercise behavior of every subject is presented in Section 3. 

In Section 4, both the treatment controller (EnMPC) and the baseline controller (MPC) are 

presented. The UKF used to close the output-feedback loop, is also described in this section. 

In silico results from the 50 generated virtual patients are presented in Section 5. Finally, 

discussion and conclusions are provided in Section 6.

2. Control-oriented Model

Physiologically based minimal models have been used for many purposes in diabetes 

technology [40]. However, black-box or data-driven models have gained attention in past 

years for automatic control purposes, since they are easier (and cheaper) to obtain than 

physiological models [29, 30, 41, 42, 43, 44].

The debate of the superiority or inferiority of data-driven models in comparison to 

physiology-based models is likely to continue for years to come. Currently, it is hard to 

conclude this argument, because there are no large scale studies directly comparing many 

different available prediction models in an actual clinical study. Most validations of 

prediction models are justified with in silico results [44]. Yet, there are some notable 

differences between the two approaches. Physiology based models, particularly minimal 

models, have a (relative) small number of model parameters and BG can be predicted for a 

given subject using population parameters. Thus, eliminating the need for model 

personalization, but still allowing for it if sufficient amounts of data are available. The 

quality of a data-driven model, on the other hand, is largely dependent on the assumed 

model structure and data that is used to train it and it is unclear how much data is necessary 

to produce accurate prediction values without overfitting. Additionally, an advantage of data-

driven models is that they are highly personalized. Data-driven models are also flexible to 

the addition of other physiological inputs, such as physical activity, whereas most minimal 

models only consider insulin and meals and need to be enlarged/modified to account for 

such additional inputs. Data-driven models informed by physical activity signals have 

garnered success, even in challenging situations where BG is predicted during and after 

exercise [45]. However, the data-driven approach lacks the inherent descriptive ability and 

parameter interpretability of its physiological counterpart. For these reasons, we chose to use 

a physiology-based minimal model that was personalized based on data collected from the 

subject.

In this section, we describe the physiologic model used for behavioral characterization 

(exercise), state estimation, and prediction from the controllers (both rMPC and EnMPC). 

Furthermore, we will discuss how the model can be individualized for each patient.

2.1. The Subcutaneous Oral Glucose Minimal Model

Consider an extended version of the minimal model, known as the Subcutaneous Oral 

Glucose Minimal Model (SOGMM) [39]
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Ġ(t) = − Sg + X(t) ⋅ G(t) + Sg ⋅ Gb + Ra(t)
V g

(1a)

Ẋ(t) = − p2 ⋅ X(t) + p2 ⋅ SI I(t) − Ib (1b)

Q̇1(t) = − kτ ⋅ Q1(t) + ω(t) (1c)

Q̇2(t) = − kabs ⋅ Q2(t) + kτ ⋅ Q1(t) (1d)

İsc1(t) = − kd ⋅ Isc1(t) + Jctrl(t) (1e)

İsc2(t) = − kd ⋅ Isc2(t) + kd ⋅ Isc1(t) (1f)

İp(t) = − kcl ⋅ Ip(t) + kd ⋅ Isc2(t) (1g)

with

Ra = kabs ⋅ f
BW ⋅ Q2(t) (2a)

I = Ip
V I ⋅ BW (2b)

where G, X, Q1, Q2, Isc1, Isc1, and Ip denote the plasma glucose concentration [mg/dl], 
proportion of insulin in the remote compartment [l/min], glucose mass in the stomach [mg], 

glucose mass in the gut [mg], insulin amount in the first compartment [mU], insulin amount 

in the second compartment [mU], and plasma insulin [mU], respectively, and ω and Jctrl 

refer to the rate of mixed-meal carbohydrate absorption [mg/min] and insulin input signal 

[mU/min], respectively. I and Ra stand for insulin concentration [mU/I] and glucose rate of 

appearance [mg/min · kg], respectively. The parameters of (1) and (2) are presented in the 

Appendix in Table A.4 together with population values. Basal glucose, Gb, is found through 

a transformation of the patient’s most recent glycated hemoglobin, HbA1c, value [39]

Gb = HbA1c ⋅ 28.7 − 46.7 (3)

Although the meaning of Gb in T1D is not as clear as it is in health, we consider the whole 

term Sg · Gb as originally conceived. This represents the effects of both glucose disposal and 

endogenous glucose production (EGP).
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2.2. Model individualization

Model individualization was performed using the procedure reported in [46] which is based 

on the structural and practical identifiability analysis of the model. The SOGMM has 13 

parameters, one of which (BW) is easily measured, and another (f) can be fixed based on 

general human physiology. Of the remaining parameters, the following are found to be 

locally structural and practically identifiable and hence used for model individualization

θide = V I SI kcl Sg kd (4)

Using the last version of the FDA-approved UVA/Padova simulator, we collected 30 days 

worth of plasma glucose concentration, insulin, meal, and activity records for the considered 

virtual population. During those days, virtual subjects ate at around 7:00, 13:00, and 19:00 h 

with a carbohydrate content close to 40g, 60g, and 40g, respectively. The meal times and 

carbohydrate amounts were assumed to follow uniform distributions on [t − 20min, t + 

20min] and [CHO − 20g, CHO + 20g], where t and CHO are the meal time and carbohydrate 

content for every meal, respectively. Four times a week, the subjects performed a 30-min 

long moderate-intensity exercise bout at any time from 15:00 to 17:00 h. Bearing the above 

in mind, model (1) is individualized with (4) using regularized root mean square 

optimization on patient specific historical data.

3. Exercise-induced net effect

Modeling the glucose-insulin system has been a primary concern in the field diabetes 

technology over the last 40 years. Numerous investigations have contributed to building up 

the body of knowledge around the mathematical representation of glucose homeostasis in 

healthy people and in people with T1D and T2D [47, 48]. However, there are some effects/

behaviors that are not fully understood, such as eating and exercise behaviors.

There are mathematical models that represent the oral carbohydrate ingestion and glucose 

behavior after exercise bouts, but glucose excursions and variability exhibited in CGM 

records cannot be fully explained from available models. The net effect was conceived and 

has been used as a way of describing these unmodelled glycemic disturbances [39].

The net effect can be defined as the input that best explains the correlated time series of 

CGM values and considered input data, accounting for the model used to describe the 

patient’s physiology. Figure 1 shows the process of estimating the net effect from known 

inputs (in this case insulin and meal intake) and CGM data by means of a regularized 

deconvolution method (Fig. 1a); and the process of CGM reconstruction or replay by using 

the estimated net effect and known inputs (Fig. 1b).

The exercise-induced net effect was used this contribution as a way of estimating the effect 

of a single, moderate-intensity exercise bout on plasma glucose concentration. This 

estimation characterized the exercise bouts (subject’s behavior) as direct disturbances on the 

glucose dynamics and was applied in the controller for prediction purposes. The exercise 

signature informs the controller about the expected glycemic impact of a potential exercise 

bout. In this case, we used a discrete-time linear time-invariant model of (1), because it 
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allowed the net effect estimation problem to be stated as a convex (quadratic) optimization 

problem.

Consider the following discrete-time, linear time-invariant model

xk + 1 = Axk + BIuI, k + BMuM, k + Bwwk (5a)

yk = Cxk (5b)

where xk ∈ ℝn is the system state at time k, yk refers to the CGM measurements, and UI,k, 

UM,k, and wk are the insulin, meal intake, and net effect signature, respectively. The matrices 

A, C and BI, BM, and Bw are the state and measurement matrices and the input matrices 

exhibiting the effects of insulin, meals, and net effect, respectively. Model (5) is the result of 

linearizing and discretizing (1) around xssne = Gss, Xss, Q1, ss, Q2, ss, Isc1, ss, Isc2, ss, Ip, ss
T , 

ussne = Jctrl, ss, ωss
T  with the above coming from the steady-state solution of (1) considering 

Gss = y1 (the first measurement of the dataset), ωss = 0, and Jctrl,ss = ub. The sampling time 

used in the discretization was ts = 5min.

The exercise-induced net effect can be computed as the solution of the following quadratic 

problem

min
e, w

∑
k = 1

Ne
ek Qz

2 + λ1 wk 1 + λ2 Δwk 2
2

s.t. 5
ek = ycgm − yk

(6)

where ycgm is the measured BG from CGM, || · ||1 and || · ||2 represent the 1-norm and 2-

norm of (·), respectively, Ne is the length of the dataset (288/day), e and w are the sequences 

{e1, e2, …, eNe} and {w1, w2, …,wNe} minimizing the cost function, and λ1 and λ2 are 

weighing terms, penalizing the sparse values and high variations of the net effect, 

respectively. By introducing the slack variables Sk the last problem can be reformulated as 

the following constrained convex quadratic problem

min
e, w, s ∑

i = 1

Ne
ek Qz

2 + λ1sk + Δwk 2
2

s.t. 5 ,
ek = ycgm − yk,
− sk ≤ wk ≤ sk,
sk ≥ 0

(7)

with s defined in a similar way as e and w. The traditional formulation of the net effect has 

been used to explain disparities between glucose predicted using the SOGMM and observed 

blood glucose values. The net effect represents the combined effect of disturbances not 

Garcia-Tirado et al. Page 7

J Process Control. Author manuscript; available in PMC 2020 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



captured in the known model inputs. These may include physical activity, circadian rhythm, 

hormonal changes, unreported insulin or meals. In order to inform the controller specifically 

about exercise, the net effect signal was transformed to highlight the effects of physical 

activity by means of the following procedure. First, the net effect was calculated using 

subject-specific SOGMM parameters. Segments of the net effect traces when the patient was 

exercising plus an additional window of observation (2h) were then selected and normalized 

by the value of the net effect 15 minutes prior to activity. Following the observation, the net 

effect value was set to decay exponentially over the next 6 hours. Bearing the above in mind, 

the new exercise-induced signature is defined by

we, k =
wk, tex

− ≤ k ≤ tex
+ + 2ℎ

wk ⋅ e−k/25, k ≥ tex
+ + 2ℎ

0  otℎerwise 
(8)

where tex−  and tex+  are the times of commencement and ending of exercise and k is the last 

sampling point during the observation window.

Figure 2 shows an example of an exercise-induced net effect trace for a given in silico 
subject. It can be seen here that exercise was simulated from 4:30 to 5:15 p.m. As a response 

to this, the exercise net effect is negative during the exercise bout and in the hours following. 

This reflects the impact on BG that is expected for the performed exercise.

The explained procedure can be performed in a clinical setting without major issues. First, 

CGM, pump, meal (carbohydrate counting), and activity tracker records are collected for 

every subject for about 30 days. After preprocessing all the gathered data (cleaning, filtering, 

and gap elimination), the net effect signature can be computed for every day by means of 

(7). Afterward, the exercise-induced signatures for every day are obtained as presented in 

(8). Since every signature would hypothetically inform a controller in the ensemble 

(EnMPC), finding out a trade-off between the number of ensembles and computational 

burden is key. To do so, we leverage a clustering strategy helping to give a reduced but 

representative number of signatures.

4. Ensemble Model Predictive Control

In order to account for behavioral disturbances (e.g., unannounced meals and exercise) our 

group has been working towards a tailored, adapted-to-behavior, advanced controller, known 

as Ensemble Model Predictive Control (EnMPC) [41]. The EnMPC deals with a control 

strategy using a set of regular MPCs, each using a specific behavioral signature. The control 

effort is then computed as a consensus among the MPC’s according to the most likely 

scenario. In this section, we present both the rMPC and EnMPC which use a linearized 

version of SOGMM around the operating target for prediction (to reduce the computational 

burden associated with solving the optimization problem in real time). The state estimation 

problem is solved using an Unscented Kalman Filter (UKF).
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4.1. State Estimation - The Unscented Kalman Filter

The UKF was introduced by Julier et al. in [49] to circumvent precision problems shown by 

the Extended Kalman Filter without increasing its computational burden [50, 51]. The UKF 

is based on the principle that it is easier to perform a nonlinear transformation over a single 

point rather than a complete probability density function (PDF) [50, 51]. In this way, a cloud 

of so-called sigma points are used to approximate the true PDF of the state vector. In this 

work, we use a variation of the UKF detailed in [52]. Since SOGMM is not observable 

(using glucose concentration as the only output), we observe the plasma glucose 

concentration G and proportion of insulin in the remote compartment X. The remaining 

states are estimated in open-loop.

xk + 1 = g xk, uk, dk
yk = ℎ xk, νk

(9)

4.2. Output-feedback Model Predictive Control

Consider xk |k the estimate of xk, computed by the Unscented Kalman Filter (UKF). At each 

time step k, and using xk |k for prediction, the controller must solve the following 

optimization problem [53

min
uk, ηk, νk

ϕmpc
(10a)

s.t. xk + j + 1 k = Axk + j k + BIuk + j k (10b)

yk = Cxk (10c)

umin ≤ uk + j k ≤ umax (10d)

Δumin ≤ Δuk + j k ≤ Δumax (10e)

ymin − yk + j k ≤ ηk + j k (10f)

yk + j k ≤ ymax + νk + j k (10g)

ηk + j k ≥ 0 (10h)

νk + j k ≥ 0 (10i)

with
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uk = uk uk + 1 ⋯ uk + Nc − 1

ηk = ηk ηk + 1 ⋯ ηk + Np − 1

νk = νk νk + 1 ⋯ νk + Np − 1

the control policy and slack variables to be optimized. The cost function is defined as

ϕmpc = 1
2 ∑

j = 0

Np − 1
yk + j + 1 k − rk + j + 1 k

2

2

+ κ1 νk + j + 1 k
2

2

+ κ2 ηk + j + 1 k
2

2

+ ∑
j = 0

Nc − 1
λ1 Δuk + j k

2

2

+ λ2 uk + j k
2

2 (11)

where Np and Nc refer to the prediction horizon and control horizon, respectively, λ1, λ2, 

κ1, and κ2 are weights for the different costs. In this optimization problem, the control input 

and the difference Δuk+j|k = uk+j+1|k − uk+j|k must lie in the intervals [umin, umax] and [Δumin, 

Δumax] ∀j = 1, …, Nc − 1, respectively. The two terms κ1 νk + j + 1|k 2
2 and κ2 ηk + j + 1|k 2

2

correspond to penalty costs for hyperglycemia and hypoglycemia, respectively, and are used 

to soften the hard constraints. The shape of the penalty function is depicted in Figure 3 and 

is intended to avoid the risk of hypoglycemia and to a lesser extent the risk of 

hyperglycemia.

To enhance the safety of the algorithm, an asymmetric time-varying exponential reference 

signal is employed [54]. This reference is used to induce a fast but smooth return to the BG 

target from a hypoglycemic state. The asymmetric time-varying reference signal is given by

rk + j + 1 k =
yk − ysp ⋅ e− tk + j + 1 − tk /τr+, yk ≥ ysp

yk − ysp ⋅ e− tk + j + 1 − tk /τr−, yk < ysp
,  j ∈ [1, ⋯, Np] (12)

with ysp the glucose target or set point and tk the discrete time.

4.3. Output-feedback Ensemble Model Predictive Control

Multi-stage MPC is a type of robust MPC where the model uncertainty is represented by 

means by a finite number of realizations at every sampling time (discrete scenario tree) [55]. 

In turn, the Ensemble Model Predictive Control (EnMPC) is a type of multi-stage MPC 

where the robust horizon is a priori set to 1 and the consistency of the inputs is enforced by 

means of the so-called non-anticipativity constraint [41, 55, 56]. An example of scenario tree 
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for EnMPC can be seen in Figure 4, where a prediction horizon of 4 is presented for 

illustrative purposes.

In order to depict the EnMPC scheme, assume that the specific exercise behavior of a given 

subject is described by means of Nen exercise signatures computed from retrospective data. 

At each time step, k, the ensemble model predictive controller (EnMPC) must solve the 

following optimization problem [41]

min
uk
i , ηk

i , νk
i

ϕempc
(13a)

s.t.  xk + j + 1 k
i = Axk + j k

i + BIuk + j k
i + Bwwk + j k

i (13b)

yk
i = Cxk

i (13c)

umin ≤ uk + j k
i ≤ umax∀i = 1, …, Nen (13d)

Δumin ≤ Δuk + j k
i ≤ Δumax ∀i = 1, …, Nen (13e)

ymin − yk + j k
i ≤ ηk + j

i (13f)

yk + j k
i ≤ ymax + νk + j k

i (13g)

ηk + j k
i ≥ 0 (13h)

νk + j k
i ≥ 0 (13i)

uk
i = uk

j with i ≠ j (13j)

with

uk
i = uk uk + 1 ⋯ uk + Nc − 1 i

ηk
i = ηk ηk + 1 ⋯ ηk + Np − 1 i
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νk
i = νk νk + 1 ⋯ νk + Np − 1 i

the control policy and slack variables to be optimized at the i − th MPC, with i = 1, 2, …, 

Nen. The cost function is defined as

ϕens = 1
2 ∑

i = 1

Nen
∑
j = 0

Np − 1
yk + j + 1 k

i − rk + j + 1 k
i

2

2

+ κ1 νk + j + 1 k
i

2

2

+ κ2

ηk + j + 1 k
2 + ∑

j = 0

Nc − 1
λ1 Δuk + j k

i

2

2

+ λ2 uk + j k
i

2

2 (14)

with the variables defined as before for every MPC. Every model prediction uses xk |k the 

estimate of xk. as the initial condition at every sampling time, computed by the Unscented 

Kalman Filter (UKF). Eq. (13j) is known as the non-anticipativity constraint and ensures that 

the first input will be identical for every considered exercise behavior [41, 56].

5. In Silico Study

The efficacy of the output-feedback EnMPC is demonstrated via an in silico experiment 

using of 50 virtual subjects from our in-house FDA-accepted UVA/Padova metabolic 

simulator. A clinical protocol, similar to ones previously performed by our group, was used 

as the basis of the in silico tests. In this protocol, data (insulin pump, meals and CGM) was 

collected from the virtual subjects over 30 days. The experimental setup dictated that 

subjects perform exercise similar to 30 min of mild to moderate treadmill, static bike, or 

brisk walking activity, on 15 of the 30 days during the data collection period. For the 

admission, subjects were placed under closed-loop control at 6:00 p.m. to stabilize CGM 

values and adjust the AP with the output-feedback EnMPC. During the next two days, 

patients received three meals at around 7:00 a.m, 1:00 p.m, and 7:00 p.m of 40g, 60g, and 

40g of carbohydrates (CHO), respectively. These meals were announced to the controller 

which used patient-specific carbohydrate ratios to address the meal challenges (Hybrid 

Closed Loop control). At around 4:00 p.m of the first full day of closed-loop control, 

subjects underwent a 30 min long mild to moderate exercise challenge (treadmill, static bike, 

or brisk walk). Subjects were monitored during the following night and next day for possible 

exercise-induced hypoglycemia. A timeline summarizing this protocol is shown in Figure 5.

For analysis, the EnMPC controller (the treatment) was compared to a baseline controller, 

rMPC. The selected parameters for both controllers are shown in Table 1, where Im stands 

for the identity matrix of order m. Note that the parameters were held similar in both 

controllers in order to assess the benefit of the intervention. In the same way, the tuning 

parameters for UKF are shown in Table 2.

Figure 6 shows the median and interquartile range (25% - 75%) of all virtual subjects for the 

48-h AP session. This figure shows the benefit of the control scheme in anticipating the 
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exercise bout according to the behavioral profile of the different subjects. Although not 

shown in this figure, almost all subjects needed hypoglycemic treatments (15g fast 

absorption carbohydrates) when using rMPC. Figure 7 shows the time course of BG and 

insulin traces during the trial for subject # 5. The proposed scheme resulted in a significant 

improvement of glycemic control even in presence of exercise, maintaining the subjects in 

the safe zone most of the time.

The results of the in silico experiment, presented in Table 3, show that there was a 

significant reduction in hypoglycemia (% Time < 50, 60, 70 mg/dL) under EnMPC control 

in comparison to the rMPC, without any significant change in time in range (% Time (70, 

140) & (70, 180)) and hyperglycemia (% Time > 180, 250, 300 mg/dL).

While using the EnMPC subjects experienced less hypoglycemia with an improvement of 

time < 70 mg/dL from 3.08% to 0.78%. Additionally, time < 60 was reduced from 1.53% to 

0.25% and < 50 decreased by 0.37% under EnMPC control.

Mean time in range (70, 180 mg/dL) across all in silico subjects using the EnMPC was 

92.81%, which is not significantly different from those using the baseline rMPC controller. 

Both controllers produced similar time in range values (70, 140 mg/dL), with the EnMPC 

achieving 71.78% time in the 70 to 140 mg/dL range. Additionally, there was no increase in 

time > 180, 250, 300 mg/dL. While using the EnMPC on average subjects experienced 

glucose values > 180 mg/dL 6.41% of the time and no values > 250 mg/dL.

6. Discussion

The novel EnMPC-based strategy offers the possibility of anticipating mar jor glycemic 

disturbances, in this case physical activity, leading to significant improvements in 

hypoglycemia protection. Personalization of the underlying model of the EnMPC in 

combinations with the exercise-induced net effect signatures enhances the controller’s 

ability to tackle the daily challenges a person with T1D must face, including exercise which 

is of paramount importance for an optimal long-term glucose control.

The key to the success of the EnMPC approach can be attributed to three main factors, (i) 

individualized insulin-glucose models, (ii) characterization of exercise as a subject-specific 

behavioral and physiological pattern, (iii) a robust MPC approach to account for different 

possible scenarios. Moreover, the EnMPC is equipped with an asymmetric cost function for 

fast recovery when BG values are below the hypoglycemic threshold (70 mg/dL) and a 

smooth but efficient scaling for excursions above the safe-to-control range (150 mg/dL). To 

enhance the safety of the algorithm we employed a time-varying exponential reference 

signal when BG values are out the target range, giving priority to fast recovery from 

hypoglycemic events.

The designed in silico protocol allows for a broad assessment of the proposed control 

strategy and, as such experiments are accepted as replacement for animal trials in pre-

clinical demonstration of safety and efficacy by the US regulatory bodies, can directly lead 

to human subjects experiments. While further experiments testing edge cases and robustness 

would further our understanding of the strategy’s performances, the validity of the presented 
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results is supported by our FDA-accepted simulation platform which includes a model of the 

impact of a mild to moderate exercise on subjects with T1D during the transition from the 

absorptive to the post-absorptive state (> 3–4 h after a meal).

The effectiveness of the proposed scheme was demonstrated both graphically and 

statistically, where a significant improvement on hypoglycemia prevention without a 

significant deterioration of the time-in-range was shown in comparison to the baseline 

controller. It is also worth emphasizing that no hypoglycemic events were recorded while 

using the EnMPC.

While these results are promising, it is important to acknowledge the limitations of the study 

its methods. First, although individualized, the mathematical model used is linearized around 

the set point which may deteriorate the predictive ability of the model. This impacts both the 

controller’s performance and the characterization of the patient’s behavior through the net 

effect. Second, we assumed that the patients consistently exercised around the same time 

(±15 min from the scheduled time), and such limitation in the testing scheme would need to 

be removed prior to use in vivo. Finally, some conditions were not accounted for in silico 
such as meal absorption with different macro nutrient compositions, sensor drift, stress, etc. 

Therefore, additional validations and fine tuning are likely to be necessary before 

transitioning to in vivo studies.

7. Conclusion

This paper presents a personalized control strategy for hypoglycemia avoidance during and 

after a mild to moderate 30-min exercise bout for subjects with T1D. The control algorithm 

was successfully tested in silico using a set of 50 virtual patients with a representative 

parameter distribution from the UVA/Padova metabolic simulator. The success of the 

proposed control scheme lies on the identification of the exercise-related behavioral pattern 

of the individual through the use of the exercise-induced net effect signals and the robustness 

of the EnMPC to account for multiple possible scenarios.

Numerical simulations demonstrate the ability of the EnMPC to predict the exercise and 

hence to avoid hypoglycemia during and after exercise when compared to a baseline 

controller. No significant increase of time in hyperglycemia (> 180 mg/dL) was found in 

spite of the protective action of the controller. Finally, the controller was able to cope with 

the long term effect of exercise on insulin sensitivity (~16/h after the exercise bout). Further 

studies would be required to test greater variability in exercise timing and proportions of 

days of exercise-no exercise in a week to enlarge the domain of validity of the control 

scheme and hence give a step forward towards an ambulatory validation.
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Appendix A.

Table A.4:

Parameters of SOGMM with population values

Symbol Meaning Value Units

Sg fractional glucose effectsiveness 0.01000 1/min

Vg distribution volume of glucose 1.6000 kg/dl

kabs rate constant - oral glucose consumption 0.01193 1/min

kτ time constant related with oral glucose absorption 0.08930 1/min

p2 rate constant of the remote insulin compartment 0.02000 1/min

f fraction of intestinal absorption 0.90000 -

VI distribution volume of insulin 0.06005 1/kg

kcl rate constant of subcutaneous insulin transport 0.16000 1/min

kd rate constant of subcutaneous insulin transport 0.02000 1/min

SI insulin sensitivity 6 × 10−4 1/min per mU/1

BW body weight known kg

Gb basal glucose concentration Eq. (3) mg/dl

Ib Reference value for I(t), associated with the fasting plasma glucose 
concentration

steady-
state

mU/1
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Highlights.

• Subject’s exercise behavior is characterized through the net effect method.

• Hypoglycemia prevention during and after a single moderate exercise bout.

• Asymmetric objective function to cope with hypoglycemia.

• In silico testing through the last version of the FDA-accepted UVa/Padova 

simulator.
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Figure 1: 
Net effect: accounting for BG variability, Ui,k, wk, and yk denote insulin, meal, net effect, 

and measurements at the k − th sampling time, respectively.
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Figure 2: 
Example exercise net effect signal for a representative in silico subject. Moderate exercise 

was simulated between 4:30 and 5:15 p.m. Gray area indicates when exercise occurred.
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Figure 3: 
Asymmetric penalty function. The shadowed area corresponds to the safe-to-control area 

(70–150 mg/dL) and the red line to BG target (120 mg/dL).
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Figure 4: 
Scenario Tree representation of the uncertainty evolution in EnMPC. x0 stands for the initial 

state, ( ⋅ )k
j , corresponds to variable (·) at time k in scenario j. x, u, and w correspond to the 

state, input, and net effect signature, respectively. Nen refers to the number of considered 

ensembles (scenarios).
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Figure 5: 
AP session timeline. Subjects start AP mode at 06:00 p.m.
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Figure 6: 
Blood Glucose control performance of rMPC (baseline) and EnMPC Median and 

Interquartile BG plot for 50 virtual subjects from the UVA/Padova Simulator. Solid black 

line represents the set point (120 mg/dL), dotted black lines the safe glycemic range, gray 

area the exercise period, and blue and black triangles the bolus insulin and meals, 

respectively. Blue and red regions show the space between the 25% and 75% quartiles of the 

BG at every sample for EnMPC and rMPC, respectively.
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Figure 7: 
Blood Glucose control performance of rMPC (baseline) and EnMPC for a representative 

subject (patient # 5). Solid black line represents the set point (120 mg/dL), dotted black lines 

the safe glycemic range (80 – 180 mg/dL), gray area the exercise period, and blue and black 

triangles the bolus insulin and meals, respectively, sample. Hypo treatment is needed for the 

subject under rMPC.
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Table 1:

Tuning parameters for rMPC and EnMPC

Parameter rMPC EnMPC Parameter rMPC EnMPC

Nen N.A. 10 τr+ 90 90

Np 24 24 τr− 20 20

Nc 15 15 umin −ub −ub

Qz INp INp Δumin 0 0

λ1 2 2 Δumax 50 50

λ2 0.1 1 ymin 70 70

κ1 10 10 ymax 150 150

κ2 1 1
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Table 2:

Tuning parameters for UKF

Parameter Value

Po 1 × 10−3⋅ I7
Qe 1 × 10−4⋅ I7
Re 1 × 102
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Table 3:

Time-in-range metrics for the 48-h in silico trial rMPC vs EnMPC.

rMPC EnMPC P

Time <50 mg/dL (%) 0.42 ± 0.98 0.05 ± 0.18 0.0042*

Time <60 mg/dL (%) 1.53 ±2.00 0.25 ± 0.59 0.0000*

Time <70 mg/dL (%) 3.08 ± 3.55 0.78 ± 2.04 0.0000*

Time in range (70, 140) mg/dL 74.05 ± 12.36 71.78 ± 11.41 0.3043

Time in range (70, 180) mg/dL 92.41 ± 8.28 92.81 ± 8.65 0.4239

Time >180 mg/dL (%) 4.51 ± 6.76 6.41 ± 8.16 0.4670

Time >250 mg/dL (%) 0.00 ± 0.00 0.00 ± 0.00 -

Time >300 mg/dL (%) 0.00 ± 0.00 0.00 ± 0.00 -

Variability (SD) 25.4984 ± 9.89 24.4473 ± 10.27 0.5059

Variability (CV) 0.2083 ± 0.08 0.1883 ± 0.08 0.1648

*
(P<0.05)
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