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Abstract

Revolutionary advancements of high-throughput sequencing and metagenomic tools have provided 

new insights to microbiome function, including a bidirectional relationship between the 

microbiome and host aging. The intestinal tract is the largest surface in the human body that 

directly interacts with foreign antigens – it is covered with extremely complex and diverse 

community of microorganisms, known as the gut microbiome. In a healthy gut, microbial 

communities maintain a homeostatic metabolism and reside within the host in a state of immune 

tolerance. Abnormal shifts in the gut microbiome, however, have been implicated in the 

pathogenesis of age-related chronic diseases, including obesity, cardiovascular diseases and 

neurodegenerative diseases. The gut microbiome is emerging as a key factor in the aging process. 

In this review, we describe studies of humans and model organisms that suggest a direct causal 

role of the gut microbiome on host aging. Additionally, we also discuss sex-dimorphism in the gut 

microbiome and its possible roles in age-related sex-dimorphic phenotypes. We also provide an 

overview of widely used microbiome analysis methods and tools which could be used to explore 

the impact of microbiome remodeling on aging.

1. Introduction

Over a century ago, Elie Metchnikoff proposed that age-related dysfunction could result 

from increased colon permeability-driven chronic system inflammation [1]. Recent advances 

in DNA sequencing technologies have allowed investigation of the composition and 

functional dynamics of complex microbial communities with great resolution and without 

the need for cultivation [2]. During the past two decades, microbiome research thrived to 

establish a causal relationship between the microbiome and host aging (Reviewed in [3–6]).
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The microbiota consists of all the microbes (i.e. bacteria, archea, viruses, protozoa and 

fungi) and a distinct profile of microbiota is found on all host surfaces that are in direct 

contact with the outside environment (e.g. gut, skin, mouth, vagina, etc.) [7–15]. The 

microbiota performs essential functions that contribute to the physiology of the host through 

a symbiotic relationship [16, 17]. Consequently, perturbations of microbiomes have been 

proposed to exert negative effects on the host organism. The gut microbiome remains the 

most extensively studied microbiome and will be the main focus of our review.

Intestinal mucosa is the largest surface of the body that directly interacts with environmental 

antigens. Thus, the intestinal mucosal immune system monitors the gut environment through 

a variety of pattern-recognition receptors and is in active communication with the systemic 

immune system via the local mesenteric lymph nodes [18, 19]. The adult human gut 

microbiome, composed of approximately 1013 to 1014 micro-organisms, plays various 

essential roles in the host including degradation of food, lipid storage and metabolism, 

vitamin synthesis, suppression of harmful microbial species and maintenance of intestinal 

barrier integrity [20–25]. Dysbiosis of the gut microbiome is associated with defects in gut 

barrier integrity and enhanced pro-inflammatory cytokines [26, 27]. Thus, aberrant 

alterations of the gut microbiome have been attributed to pathogenesis of various metabolic 

diseases including adiposity, insulin resistance, atherosclerosis and cardiovascular disease, 

as well as multiple sclerosis, depression and anxiety [28–32].

In this review, we describe changes to the gut microbiome throughout lifespan of the host 

and key findings that implicate a central role of the gut microbiome in host aging. In 

addition, we discuss microbiome-relevant biological factors (e.g. sex) that may contribute to 

aging. Finally, we provide an overview of microbiome collection considerations, data 

analysis pipelines and potential confounding factors, that must be considered when 

analyzing and interpreting microbiome data.

2. The microbiome in response to aging and pro-longevity interventions

a. The aging gut microbiome: the human side

The microbiota co-evolves with its host and thus the composition of the microbial 

community within the intestinal tract fluctuates throughout lifespan, in response to genetic 

and environmental stimuli [3, 33–35]. Based on recent studies that reported the presence of 

bacteria in the placenta, amniotic cavity and umbilical cord, microbial colonization may 

initiate as early as in-utero [36–38]. During infancy, the gut microbiome undergoes 

significant fluctuations, which is namely driven by factors including delivery method, 

feeding, antibiotic exposure, maternal diet and environmental factors [39–41]. Colonization 

of microbial species in the gastrointestinal tract during early stages of life is reported to 

affect later health of the host organism [42]. Nonetheless, the microbiome composition 

reaches a stable structure after the first three years, its profile resembling that of an “adult-

like” microbiome [43–45]. After stable recolonization of the microbiome, diet becomes a 

major force shaping the microbiome composition of the host throughout early adulthood [46, 

47].
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In general, healthy adults are reported to present with high levels of bacteria from the 

Bacteroidetes and Firmicutes phyla, and relatively lower proportions of the Proteobacteria, 

Actinobacteria, Fusobacteria and Verrucomicrobia phyla [8, 48–50]. Bacteroidetes found in 

the gut mainly functions in polysaccharide metabolism and calorie absorption, whereas 

Firmicutes are important for production of Short-Chain Fatty Acids [SCFAs] [51–55]. The 

Firmicutes/Bacteroidetes [F/B] ratio is reported to increase from birth to adulthood and 

studies show that high F/B ratios are associated to a dysbiotic microbiome [34, 56]. Studies 

have shown that the F/B ratio can be used as an important indicator of gut microbiome state 

and thus host health [57–60].

Clinical studies have reported significant differences in microbial composition between 

young and elderly human subjects [6, 61]. A key transition from healthy adult to elderly 

microbiota is characterized by a decrease in microbial diversity. Reduced microbiota 

diversity in aged individuals have been suggested to result in the expansion of distinct 

groups of bacteria which has been implicated on the development of age-associated type 1 

diabetes mellitus, rheumatoid arthritis and colitis [62–64]. However, whether reduced 

microbiota diversity directly impacts host aging, or is a mere bystander, remains poorly 

understood.

Generally, in aged individuals, a decrease in Bifidobacterium and Lactobacillus, and 

increase in Enterobacteriaceae are observed [39, 65, 66]. Such changes in the microbiome 

structure are believed to result from changed lifestyle, dietary pattern, reduced mobility, 

weakened immune strength, reduced intestinal functionality, changes in gut morphology, use 

of medication, recurrent infections and more [27, 34, 35, 39, 61, 65, 67]. However, it is 

important to note that these generalizations do not apply to certain aged groups from 

different geological locations or genetic backgrounds [67, 68]. Interestingly, in centenarians 

and supercentenarians, health-associated bacteria genera, including Bifidobacteria and 

Christensenella, are especially abundant [69, 70]. Although these observations are 

correlative, studies in model organisms support pro-longevity and pro-health effects of these 

microbes [71–73]. For example, supplementation of Bifidobacteria to C. elegans resulted in 

reduced accumulation of lipofuscin, a marker of aging, improved locomotor function and 

increased longevity [72]. Additionally, transplantation of Christensenella to germ-free mice 

has been shown to amend obese-associated microbiome and reduce weight gain [73].

b. The aging microbiome in model organisms

Baseline microbial composition of the gut microbiota varies across species and taxa [26, 74–

76]. However, similar to what has been observed in humans, extensive remodeling of the gut 

microbiome during aging has also been observed in a number of model organisms, spanning 

Drosophila melanogaster, the African turquoise killifish Nothobranchius furzeri and mice 

[26, 74–77].

In D. melanogaster, the aging gut microbiome is characterized by an expansion of 

Gammaproteobacteria [74, 75], and microbiota transplantation from aged donors to young 

flies leads to reduced longevity. Metagenomics analysis also showed that age-related 

changes in Drosophila microbial species were somewhat similar to that observed in human 

inflammatory disorder patients and aged human gastrointestinal tract [75]. For example, 
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increased levels of Enterobacteriaceae, the most abundant family of Gammaproteobacteria, 

were also observed in aged humans and mouse model of colitis [78, 79]. In a study of the 

aging microbiome in the African turquoise killifish, the microbiota of young individuals was 

found to be more enriched in species from the Bacteroidetes, Firmicutes, and Actinobacteria 
phyla, whereas the aged microbiota was enriched for species from the Proteobacteria 
phylum [76]. Interestingly, similar to observations in humans, the aging killifish microbiome 

was also characterized by decreased diversity of the gut microbial community [76]. 

Additionally, transplantation of microbiome from young to middle-aged killifish improved 

locomotion and longevity of recipient subjects [76]. The mouse aging microbiome showed a 

number of shifts in relative abundance of bacteria phyla, including increased presence of 

Clostridium and decreased levels of Lactobacillaceae as observed with human aging [80]. 

Increased abundance of Clostridium was also observed in the aging gut microbiome of rats, 

although (contrary to humans) rats seemed to acquire increased microbial diversity 

throughout life [81]. Interestingly, the relative proportion of Firmicutes and Bacteroidetes is 

also altered with aging in the gut microbiome of aging mice [26]. A direct role of the 

microbiome in promoting overall health in mammals is also suggested by the fact that fecal 

microbiota transplants from wild-type mice can significantly improve the health and lifespan 

of progeroid mice [82]. Together, these studies provide a strong rationale for microbiome-

based interventions against age-related decline and pathologies.

c. Effects of pro-longevity interventions on the aging microbiome

Modulation of the microbiota is emerging as a potential mechanism underlying pro-health 

and longevity effects of various interventions (Table 1). Interestingly, a number of pro-

longevity interventions seem to have rejuvenating effects on the microbiome. A recurrent 

effect is the expansion of bacteria from the Lactobacillae taxa, which occurs in the context 

of independent interventions [83, 84]. Interestingly, a study reported that weight loss in the 

context of calorie restriction in mice seems to require an intact microbiome [83]. Thus, it 

will be important to determine whether microbial community remodeling in the context of 

pro-longevity interventions is a mere bystander, or an actual mediator of pro-health effects.

3. A bidirectional relationship between the gut microbiome and aging?

During the past two decades, studies have provided evidence that age-associated shifts in the 

gut microbiome contributes to increased predisposition of aged individuals to certain 

diseases, including cardiovascular diseases, cancer, obesity, cancers, diabetes and 

neurodegenerative diseases [3, 4, 85–87]. Aging is a complicated process that affects 

physiological, metabolic and immunological functions of the organism and thus is 

accompanied by inflammation and metabolic dysfunctions [88]. The overall age-related 

increase in chronic inflammation and deterioration of systemic immune system led to 

coining the term “inflamm-aging” [89]. A direct causal role of the gut microbiome on host 

aging has been suggested by a number of studies using various experimental models [76, 

90]. In this section, we discuss studies that suggest the existence of a bidirectional 

relationship between the gut microbiome and host aging.
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a. Interaction between the host immune system and the gut microbiome

Through millions of years of evolution, the host and its surrounding microbial environment 

have co-evolved into a complex organism [17, 18, 91]. Microbes beneficial to the host are 

able to reside within the host in a state of immune tolerance, whereas those that exert a 

pathogenic effect activates robust immune responses of the host [17]. The symbiotic co-

existence between the host and microbiota is feasible due to the anatomical separation of 

microbial species from the host by a physical barrier. The intestinal barrier is responsible for 

adjusting metabolic homeostasis and systemic antimicrobial responses by detecting 

microbial-cell components and metabolites through its extensive repertoire of innate 

immune receptors [92–96]. For example, activation of pattern-recognition receptors (e.g. 
Toll-like receptors) by the gut microbe or its products induces the production of 

antimicrobial peptides and mucus [92]. Perturbations of such receptors have been reported to 

result in intestinal inflammation and susceptibility to enteric infections [97].

Relevant to aging, decline of the immune system in the aged intestinal epithelium have been 

suggested to contribute to age-onset dysbiosis [98, 99]. An important characteristic of age-

onset dysbiosis is reduced microbiota diversity, which is suggested to lead to an expansion 

of distinct groups of bacteria [39, 100, 101]. Concurrently, bacteria that is reported to be 

involved in maintenance of immune tolerance in the gut, such as Bifidobacteria and 

Lactobacilli, are found in reduced level in aged groups, whereas those that are found in 

increased levels, such as Enterobacteriaceae and Clostridium, are involved in infection and 

intestinal inflammation stimulation [27, 66, 102, 103]. Together, these studies suggest that 

the host immune system shapes not only the host’s immune response to microbiome 

changes, but also the structure of the microbiome itself [104].

Cumulative evidence has implicated a close functional relationship between the immune 

system of the host and the microbiome, to an extent that the gut microbiome is important for 

proper development and expansion of intestinal mucosal and systemic immune system [105, 

106]. Supporting the notion that the microbiome can directly shape the immune states of the 

host, the transcriptomic profile of African turquoise killifish guts derived from animals that 

received young or old gut microbiota transplants showed clear differences, especially in 

expression of immune-related genes [76]. Interestingly, studies using germ-free mice models 

also suggest a bidirectional relationship between the host immune system and the gut 

microbiome. Germ-free mice showed significant alterations in innate immune system 

composition compared to classical Specific-Pathogen Free [SPF] mice, including 

deficiencies in macrophage, monocyte and neutrophil populations [107]. Such alterations of 

the immune system in germ-free mice were partially rescued when mice were treated with 

specific bacteria and/or bacterial components (i.e. bacterial polysaccharide), demonstrating a 

direct role of the gut microbiome on immune system establishment of the host [108]. 

Interestingly, experiments using germ-free mice also revealed that, in addition to regulating 

the abundance of immune cells, the microbiome may also regulate bactericide properties of 

macrophages [26].
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b. Increased intestinal barrier permeability with age

Increased permeability of the intestinal barrier with age has been described across animal 

species, including worms, flies, mice and rats [26, 74, 75, 109–111]. Age-related 

deterioration of intestinal barrier function has been proposed to result in leakage of gut 

microbes into the systemic circulation, and ultimately lead to increased antigenic load and 

systemic immune activation [112, 113] (Figure 1). For example, age-associated remodeling 

of the gut microbiome in mice was shown to result in increased production of pro-

inflammatory cytokines and intestinal barrier failure [26]. Consistently, the blood of aged 

mice contained increased levels of muramyl-dipeptide, a component of Gram-positive and 

Gram-negative bacteria cell wall [26]. Additionally, in a clinical study on aged type 2 

diabetes patients, live gut bacteria were found to translocate into the blood stream, 

suggesting perturbations of the intestinal barrier integrity [114]. In Drosophila, the age-

related increase in Gammaproteobacteria was suggested to lead to increased intestinal 

permeability, inflammation and mortality [74, 75]. The study showed that regardless of 

chronological age, intestinal dysbiosis serves as an indicator of age-onset mortality in flies 

[75].

A number of molecular mechanisms has been suggested to underlie intestinal barrier 

permeability with age. Mouse studies suggest that host cytokine signaling may play a key 

role in barrier function breakdown [26]. Indeed, TNF-α signaling was found to play a role in 

age-related intestinal barrier breakdown, as (i) Tnfa knock-out mice did not accumulate 

bacteria byproducts in their blood with aging, and (ii) anti- TNF-α therapy led to significant 

remodeling of the gut microbiota [26]. Mechanistically, age-associated epithelial tight-

junctions permeability and declined function of Paneth cells of the intestinal mucosa have 

been speculated to result in intestinal barrier permeability [115, 116]. However, further 

research will be needed to fully understand the mechanisms of age-associated increase in gut 

permeability.

c. Changes in production of microbiome-derived metabolites with age

The gut microbiome plays various essential roles in the host including degradation of food, 

lipid storage and metabolism, vitamin synthesis, suppression of harmful microbial species 

and maintenance of intestinal barrier integrity [25]. Microbiome-derived SCFAs, including 

butyrate, propionate, acetate and valerate, are important energy source for the epithelium and 

ultimately affects hypoxia-inducible factor-mediated fortification of the epithelial barrier 

[117]. Interestingly, a decline in SCFA levels, including that of butyrate, were observed in 

aged humans, whereas centenarians presented with a rearrangement in the population of 

specific butyrate-producing bacteria [70, 118]. Additionally, the blood and intestine of germ-

free mice presented with significantly lower levels of SCFAs compared to conventionally 

raised mice, supporting a role of the microbiota in regulating host SCFA levels [119–121]. 

For example, studies have shown that administration of butyrate restores the observed 

abnormal absorptive colonic motor activity and blood-brain barrier permeability in germ-

free mice [122, 123]. Microbiota-derived metabolites has also been reported to play a role in 

intestinal epithelial stem cell proliferation [4]. For example, butyrate and nicotinic acid, both 

by-products of the gut microbiota, are involved in suppression and promotion of stem cell 

proliferation in the colon, respectively [124]. In addition, microbiota-derived 
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neurostimulators, including serotonin, glutamate, gamma-aminobutyric acid, have been 

reported to regulate proliferation of intestinal epithelial stem cells through the enteric 

nervous system [125]. Collectively, functional products of the microbiota have been 

implicated in the regulation of intestinal barrier integrity and function.

Other microbiota-derived metabolites have been shown to directly affect numerous systems 

of the host, although their functions in relation to host aging is in need of further 

investigation [126]. For example, Trimethylamine N-Oxide [TMAO], a byproduct of 

microbial metabolism, is associated with cardiometabolic diseases, such as atherosclerosis 

and type 2 diabetes [127, 128]. Interestingly, microbial metabolites may also affect the host 

through epigenetic alterations: indeed, microbiota-derived butyrate can affect the immune 

response of colonic macrophages through the inhibition of histone deacetylases [129, 130]. 

The microbiome has also been shown to contribute to various neurological conditions 

through the so-called “microbiota-gut-brain axis” [131]. It is noteworthy that the 

microbiome can influence behavioral aspects of the host – the level of SCFAs is reported to 

affect feeding behavior of the host and thus energy homeostasis [132]. Given that diet is a 

key factor in remodeling of the microbiome structure, an integrative assessment of various 

physiological conditions of the host is required to precisely understand the functions and 

effects of the microbiome.

4. Sex-dimorphism in the gut microbiome, and possible impact on aging

Although aging is a conserved process across species and biological sex, accumulating 

evidence has shown that many age-related phenotypes are sex-dimorphic, and may thus 

modify aspects of aging between animals of opposite sex [133]. Concurrently, disparities 

between the sexes are observed in manifestation of certain age-associated diseases, including 

obesity, multiple sclerosis and Alzheimer’s disease [134, 135]. However, due to 

experimental pragmatism, still few studies systematically evaluate how sex interacts with 

aging phenotypes, including age-related microbial dysbiosis. Fundamentally, key phenotypic 

sex differences are driven by genetic and/or hormonal mechanisms of the host [136]. 

Intriguingly, recent studies suggest that there may be substantial involvement of the gut 

microbiome in tuning sex-dimorphic phenotypes.

a. Sex-dimorphism in the gut microbiome

Mouse model studies have shown that the composition of the microbiome starts to diverge 

between male and female individuals after the onset of puberty [137, 138]. As described 

above, the gut microbial composition of healthy human adults is reported to consist of high 

levels of Bacteroidetes and Firmicutes [8, 48, 49]. Interestingly, studies have shown females 

present with higher F/B ratio compared to that of males [16, 139]. Additionally, 

Proteobacteria, Veillonella and Blautia are found in higher levels in females compared to 

males, but in much lower proportions [16, 140]. Although increased F/B ratio is associated 

with gut dysbiosis, a systematic analysis of such disparities between the two sexes and 

understanding of its physiological implications are still lacking [34, 56].

Interesting sexually dimorphic phenotypes have been described in studies using germ-free 

mice models. For example, Non-Obese Diabetes [NOD] model female mice are more prone 
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to spontaneously develop type 1 diabetes compared to NOD model male mice [137]. 

However, such difference between sexes disappeared when mice were raised in germ-free 

conditions [141]. In support of this finding, microbiota transplantation of conventionally 

raised NOD male mice microbiota to germ-free NOD female mice reduced the rate of type 1 

diabetes incidence in the recipient mice [137].

b. Sex-dimorphism in host-microbiome communication?

In addition to observed sex differences in microbial communities’ composition, emerging 

evidence is suggesting that the microbiome may potentiate the expression of sex-dimorphic 

phenotypes in the hosts. For instance, a recent study utilizing germ-free mice suggested that 

the microbiome is required to establish sex-dimorphic gene expression patterns in the liver 

[142]. Another study, also comparing germ-free to SPF mice, found that presence of 

microbes was required for sex-dimorphic regulation of lipid metabolism in the small 

intestine of mice [143]. Consistent with sex-dimorphic modulation of the immune system by 

the microbiome, the transcriptional response of adult microglia – the resident macrophages 

of the brain – to chronic (i.e. germ-free vs. SPF husbandry) or acute (i.e. antibiotic 

treatment) microbiota depletion was found to be sex-dimorphic [144]. Intriguingly, a recent 

study showed that microbiota depletion through antibiotic treatment rescued a number of 

brain phenotypes only in males in a mouse model of Alzheimer’s disease [145]. 

Reestablishment of the microbiota reversed the rescue, supporting a direct implication of the 

microbiota in this phenomenon [145]. Thus, host responses to commensal microbes can be 

sex-dimorphic, revealing that the microbiome interacts with the biological sex of the host. 

However, how these sex-dimorphic interactions are modulated during aging remains largely 

unknown. Future studies investigating the impact of the microbiome on the aging process 

should systematically include sex as a variable to address this complex question.

c. Interactions between the microbiome and sex-steroid metabolism

The gut microbiome has been proposed to drive estrogen metabolism and regulate the 

proportions of recirculated and excreted estrogens and estrogen metabolites in the host 

organism [146–148]. The term “estrobolome” has been coined to define “the gene repertoire 

of the microbiota of the gut capable of metabolizing estrogens” [149, 150]. Indeed, the 

human gut microbiome is able to hydrolyze estrogen sulfate and glucuronide conjugates 

[151]. Thus, through manipulation of the gut microbiome, circulating estrogen levels can be 

shifted in a dosage-dependent manner [148]. Consistently, in a recent study, germ-free 

female mice presented with significantly lowered levels of 17-β estradiol, the major form of 

estrogens in females, compared to conventionally raised mice [142]. In the same study, 

transcriptome analysis of sexual development marker genes and histological studies of 

follicle development in germ-free female mice indicated that sexual maturation is perturbed 

in microbiota-depleted mice [142].

Interestingly, estrogens have been shown to impact gut microbiome structure and contribute 

in gut homeostasis maintenance [152]. In a metabolic syndrome study, the microbiome 

structure of males and ovariectomized [OVX] females were observed to share similar 

profiles [153]. When the two test groups were supplemented with 17-β estradiol, both males 

and OVX females showed alteration of the gut microbiome and suppression of Western diet-
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induced obesity phenotypes. Collectively, these findings demonstrate a close bidirectional 

relationship between the gut microbiome and female sex hormones in affecting host health.

5. Microbiome data analysis: experimental and analytical “omics” 

pipelines

Traditionally, research on microbial interactions was focused on single pathogenic 

organisms through culture-based methods that capture only a small proportion of the 

bacterial microbiota [154]. However, recent findings suggest that disease pathogenesis is 

dependent not only on single pathogens, but also on global changes in the host microbiome 

[155, 156]. Advancements in next-generation sequencing techniques have enabled culture-

independent analyses to capture the global changes in the microbiome. In addition, the 

advent of various model organisms and experimental tools, including germ-free rodent 

models and microbiota transplantation methods, have helped characterize microbial 

communities as key factors in not only dietary metabolism and host nutrition, but also in the 

pathogenesis of a number of chronic age-associated disease, including diabetes, 

cardiovascular diseases and neurodegenerative disorders [157–161].

As the field expands, microbiome analysis methods and standards are rapidly advancing to 

allow accurate characterization and interpretation of the microbiome data. This section will 

provide a primer on microbial sample collection guidelines and widely used microbiome 

data analysis methods: marker gene, metagenomics and metatranscriptomics analysis (Table 

2).

a. Guidelines for microbiome sample collection

For human studies, oral, skin and vaginal samples are generally collected by a physician 

during a clinic visit – microbial samples can be collected by swabbing the appropriate area 

using a sterile soft cotton tip or nylon swab [162]. For model organisms, the same type of 

swab can be used for sample collection. Samples should be immediately flash-frozen and 

stored at −80°C until further processing [162]. Among various microbial samples, fecal 

sample collection for gut microbiome analysis presents with the most challenges because on 

demand collection of fecal samples is difficult. For human fecal samples, various 

transportation kits, including the Fisherbrand™ Commode Specimen Collection System 

(Fisher Scientific), OMNIgene Gut kit (DNA Genotek) and Cary Blair Transport Medium 

(Remel), have been developed in order to preserve microbial composition during shipping 

from site of sample collection to laboratories for further analysis [163–165].

For mouse studies, gut microbiome samples can be collected by picking freshly defecated 

fecal pellets or extracting fecal pellets from the distal colon after euthanasia. When 

collecting from the distal colon, fecal pellets need to be homogenized in order to ensure even 

distribution of microbial species of the colon. Immediate freezing of fecal samples is crucial 

– storage of microbiome samples at room or higher temperature for extended times results in 

expansion of specific microbes, such as aerobic microbes but not anaerobes, introducing bias 

to the data [166]. Studies have shown that microbiome samples are stable for 2 years after 
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being frozen at −80°C [162, 167]. Additionally, it is important to avoid multiple freeze-thaw 

cycles as it has been shown to affect microbial sample stability [168].

Due to the nature of the microbiome, microbiome data can be significantly affected by 

external factors, such as lifestyle, diet, medication and physiology. For example, for mice, 

housing conditions (single- or group-housed), time of cage/bedding change and fasting prior 

to sample collection can have significant effects on the microbial composition [169]. 

Additionally, technical variability is a critical issue in microbiome data analysis. Indeed, 

technical aspects, from DNA extraction to the choice of sequencing platform, have been 

found/ to substantially affect data reproducibility [170, 171]. Studies have also reported that 

the choice of DNA extraction kits, contaminants from carriers and storage methods may 

contribute to data variability [172–175]. Thus, standards and controls must be carefully 

chosen, and complete metadata should be provided along with the raw microbiome 

sequencing data in order to promote reproducibility and translatability of microbiome 

research.

b. Microbiome data analysis pipelines: Marker gene, metagenomics and 
metatranscriptomics analysis

Development of various microbiome-related experimental protocols and analytical tools 

have provided great opportunities in age-related microbiome research. In this section, we 

provide a general overview of widely used microbiome data analysis pipelines: marker gene, 

metagenomics and metatranscriptomics analysis (Table 2). Additionally, we discuss age-

related microbiome studies that utilize each analytical method.

Marker gene analysis: high-level, low-resolution overview of microbial 
composition—Marker genes are conserved genes that contain a highly variable region, 

flanked by highly conserved regions that serve as primer binding sites, that can be used for 

detailed identification of microbial species: 16S rDNA PCR amplification is commonly used 

for bacteria and archaea, and ITS (internal transcribed spacer) for fungi. Marker gene 

analysis is well-tested, fast and cost-effective. Consequently, a significant proportion of 

microbiome research, not limited to age-related studies, is based on marker gene analysis 

data [176]. Additionally, its quantification generally correlates well with genomic content of 

microbial species [177–179]. However, it is important to note that marker gene data is 

susceptible to biases rising from variable region selection, amplicon size and number of PCR 

cycles [180, 181]. Thus, choice of amplicon primer will have significant effect on the 

resolution of data [182], and it is highly recommended to review primers used in the Earth 

Microbiome Project [183]. Marker gene analysis has been extensively reviewed elsewhere 

[184]. PhyloChip is another 16S rRNA gene-based method for tracking microbial 

communities – this microarray-based technique analyzes all nine variable regions of the 16S 

rRNA gene [185]. In terms of aging research, PhyloChip was used in a study to analyze age-

associated changes in the microbial composition in hoatzin, a South American strict 

folivorous bird [186].

Typically, similar sequences detected from the marker gene analyses are clustered together 

into Operational Taxonomic Units [OTUs]. This process, called OTU picking, consolidates 
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similar sequences into single features and thus, merges sequence variants and may lose 

subtle - but real - biological sequence variants. Recent studies have started to prefer the 

oligotyping method to capture position-specific information from marker gene sequencing 

data [187]. In this method, exact sequence variants are used to distinguish between closely 

related, but distinct, taxa. Widely used algorithms such as Deblur and DADA2 implements 

this method to allow detection of subtle variations between sequences and thus enable 

greater sensitivity in microbiome analysis from the marker gene method [188, 189]. Marker 

gene data can also be used to infer putative biological functions of the identified microbial 

community through predictive functional profiling [179, 190, 191]. This analysis method 

links the feature-abundance data from the marker gene analysis with available microbial 

genomes to predict the metagenome content and biological functions. A variety of open 

source microbial genome references are available, including Silva, Greengenes, and iMGMC 

[192–194]. It is important to note that different microbial genome references are reported to 

show varying degrees of sensitivity towards different microbial composition arising from 

specific host organism and/or sampling site [194, 195]. Thus, choice of genome reference 

can have substantial differences on the final result (Figure 2).

Metagenomics: high-resolution with genome-level information—Metagenomics 

is used to sequence all the microbial genomes within a given sample. This technique 

captures all the DNA molecules present in the sample, spanning not only bacteria, but viral 

and eukaryotic DNA (including that of the host). Compared to marker gene analysis, 

metagenomics data yields more detailed genomic information and taxonomic resolution. 

Additionally, this technique allows detection of microbial species to strain level and enables 

de novo metagenome assembly using short DNA sequence reads, if desired [196, 197]. In 

addition, metagenomic studies directly enable the detection of the actual gene products 

present in the sample, thus giving a true window into the biological functions that the 

microbiome may perform [198, 199]. However, it is substantially more expensive than 

marker gene analysis, and thus more challenging to scale up to bigger comparative studies. 

For a thorough review of metagenomics analysis, refer to [200, 201].

Relevant to aging, metagenomic profiling of gut microbiome from young and elderly 

individuals and centenarians revealed distinct characteristics of microbiome structure and 

function of the different age groups, identifying 116 microbial genes that significantly 

correlated with aging [202]. For example, the study showed that a key feature of the gut 

microbiome profile of centenarians is the overall increase in Proteobacteria and a re-

arrangement in Firmicutes compared to young adults [202]. Proteobacteria has been reported 

to contribute to systemic inflammation [203, 204]. In support of these findings, high levels 

of plasma interleukin-6 and interleukin-8 were detected in centenarians, although a possible 

pro-longevity effect of the abundant Proteobacteria in centenarians needs further 

investigation [70]. Additionally, a study by Pasolli E. et al. conducted a large-scale 

metagenomic analysis of human microbiome data from 9,316 metagenomes spanning 46 

datasets from various populations, body sites, including oral cavity, gut, skin and vagina, and 

host ages, spanning ages of less than 1 to over 65 [205]. Utilization of such resources will 

provide new insights and comprehensive understanding of the functional relationship 

between the microbiome and host aging.
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Metatranscriptomics: characterization of microbial gene expression—
Metatranscriptomics uses RNA-sequencing technique to profile transcription of 

microbiomes present in a sample. Metatranscriptomics has been argued to best represent 

functionality of live microbiome and thus can provide unique insights of the sample [206]. 

When preparing metatranscriptomics libraries, a number of considerations are required due 

to host RNA contamination, such as from abundant host rRNA, and preservation of RNA 

quality. To note, metatranscriptomics may miss the activity of rare species in the samples, 

due to relatively lower gene expression. For a more thorough review, refer to [207, 208].

To our knowledge, there are only a limited number of metatranscriptomics studies that have 

been performed in the context of aging. In 2018, a large-scale investigation on 372 human 

male fecal metatranscriptomics was published [209]. The study involved male subjects from 

varying age groups, from 18 to 81 of age. Interestingly, the study revealed noticeable 

differences between metatranscriptomic and metagenomic data [209]. Such finding suggests 

the importance of multi-omics in microbiome research to accurately characterize taxonomic 

profiles and interpret physiological effects.

c. Multi-omics and multi-site analysis of the microbiome

Characterization and analysis of the microbiome have revealed immense taxonomic and 

genomic diversity of the microbiome and implicate more important functions of the 

microbiome to be revealed in future studies. However, due to the complex functional 

interaction between the host and the microbiome, establishment of a causal function of the 

microbiome should be done with caution [210]. A multi-omics approach involving analyses 

of transcriptomes, proteomes, metabolomes, and immunomes along with microbiome data 

analysis pipelines discussed above will provide unique insights in characterizing and 

understanding the roles of the microbiome. Additionally, a comprehensive analysis of 

different microbiomes, such as skin, oral and vaginal, will be fundamental in elucidating 

causal functions of the microbiome on host health and longevity.

The human skin is reported to possess a distinctive microbial composition and is estimated 

to inhabit approximately one billion bacteria per square centimeter of skin [12, 211]. Similar 

to other microbiomes, the skin microbiome has been shown to undergo various changes in 

composition throughout lifespan of the host [212]. For example, in a study of cheek 

microbiomes, specific genera of the Bacteroidetes and Firmicutes phyla were found on the 

young and specific genera of the Actinobacteria phyla were found only in the older age 

group [212]. Interestingly, Shibagaki, N. et al. suggested that the age-associated changes in 

the skin microbiome is largely influenced by the oral bacteria [213]. More specifically, 

microbial species that were found in greater abundance in the older age group, and thus 

contributed to differentiate the skin microbiomes of the different age groups, were identified 

as bacteria frequently found in the oral cavity, including Streptococcus, Rothia and 

Veillonella [213]. The oral microbiome has been shown to affect the whole body of the host 

and has been associated with a number of systemic diseases [214]. As an initiation point of 

digestion, the oral microbiome has been shown to impact the gut microbial composition 

[215]. Interestingly, the gut microbiome has been shown to affect appetite and feeding 

behavior of the host through the release of SCFAs [132]. Consequently, in term, the gut 
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microbiome can affect microbial composition of the oral cavity. Together, these studies 

indicate a functional network among the different microbiomes on a single host and 

emphasize the importance of systematic investigation in microbiome research.

6. Summary and Perspective

Recent availability of methodological and analytical tools has prompted researchers around 

the world to investigate the functions of the microbiome and their effects on the well-being 

of its host. For example, a recently published study developed a human gut microbiome 

aging clock based on a gut metagenomics data-trained deep learning model [216]. The 

model was shown to achieve the mean absolute error of 5.91 years, demonstrating that 

generalizable indicators of age can be derived from microbiome data [216]. With increasing 

understanding of the importance of the gut microbiome in host longevity, it is anticipated 

that we will be able to identify and predict risk factors of age-onset gut dysbiosis in the near 

future.

In this review, we described general changes in the microbiome with age and key findings 

that implicate a bidirectional relationship between the host and the microbiome. We also 

discussed sexual dimorphism and various confounding technical factors that must be 

considered when analyzing and interpreting microbiome data. Over a century ago, Elie 

Metchnikoff hypothesized that frailty might be delayed by manipulating the gut microbiome 

with host-friendly bacteria found in yogurt [217]. Intriguingly, a study of yogurt 

consumption in Japanese individuals observed significant disparities between the two sexes 

in terms of induced changes to the gut microbiome, emphasizing widespread sex-

dimorphism in host physiology [218]. Although it is certain that rigorous and reproducible 

characterization of microbiome data will offer great opportunities to develop new diagnostic 

biomarker in aging, key confounding (or biologically-relevant) factors, including sex-

dimorphism, will need to be carefully considered. Finally, a comprehensive analysis of 

different microbiomes (e.g. oral, skin) and how they interact with each other, will be 

fundamental in elucidating causal functions of the microbiome on host health and longevity.
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[Figure 1]. The bidirectional relationship between the gut microbiome and aging
(Left panel) In a healthy gut, balanced microbial composition and intestinal barrier integrity 

maintains gut homeostasis and contains the microbiota in the intestinal lumen. Microbiota-

derived metabolites, including SCFAs, participate in a feedback mechanism with the host 

immune system to fortify the barrier function, produce mucus and promote intestinal stem 

cell proliferation. An efficient immune system tolerates the host immune responses to avoid 

excessive activation. (Right panel) In gut dysbiosis (such as with aging), declined intestinal 

barrier integrity results in translocation of microbes and microbial particles through the 

intestinal epithelial cell lining. Reduced microbiota diversity leads to overgrowth of distinct 

microbes and metabolism instability. Aberrant levels of microbiota-derived metabolites 

instigate abnormal immune responses resulting in chronic inflammation. SCFA: Short-chain 

fatty acid.
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[Figure 2]. General workflow for marker gene analysis.
For general marker gene analysis, after sample and metadata collection, choice of primer set 

should be carefully considered for library preparation. Quality control of sequenced raw 

data, such as primer and barcode sequence removal, is strongly recommended for accurate 

data analysis. Features (exact sequence variants) are denoised/clustered to produce a feature-

abundance matrix. Feature-abundance matrix can be used for high-level analysis, including 

taxonomy classification, diversity and differential abundance analysis and predictive 

functional profiling.
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[Table 1]

Impact of pro-longevity interventions on the aging microbiome.

Pro-longevity 
intervention

Organism Site Effect on microbiome Microbiome profiling Reference

Calorie 
restriction

M. musculus Gut - Gut microbiota required for CR-induced 
weight loss
- Significant increases in Lactobacillus, 
Bifidobacterium
- Decreased B/F ratio

V4 16S
V3-V4 16S

[83, 84, 219]

R. norvegicus Gut - Increase of Lactobacillus
- Increased B/F ratio
- Changes in microbial SCFA production 
(Increased propionogenesis, decreased 
butyrogenesis and acetogenesis)

V4 16S
Full length 16S
Metaproteomics

[220, 221]

Dwarfism
(Ames)

M. musculus Gut - Increased B/F ratio V4 16S [219]

Metformin C. elegans Gut
(food 
source)

- Changes the E. coli metabolism of folate and 
methionine
- E. coli required for longevity extension

N/A [222]

H. sapiens Gut - Increased E. coli abundance
- Increased production of SCFAs

V4 16S
Metagenomics

[223–225]

M. musculus Gut - Increased B/F ratio- Increased abundance of 
Lactobacillus

V4 16S [226]

Rapamycin M. musculus Oral - Rejuvenation of the oral microbiome V4 16S [13]

M. musculus Gut - Increased prevalence of segmented 
filamentous bacteria
- Remodeling of specific OTUs
- No change in B/F ratio
- Renders microbiome more similar to that of 
HFD-treated mice

V4 16S
Full length 16S 
(Sequencing and 
PhyloChip)

[227–229]

Resveratrol M. musculus Gut - No change in B/F ratio
- Reverses HFD-induced changes in bacterial 
abundances

Full length 16S [229]

Mediterranean 
diet

H. sapiens Gut - Increased taxa associated to lower frailty in 
aged humans
- Predicted increase in microbial SCFA 
production

V3-V4 16S [230]

Acarbose M. musculus Gut - Increased abundance in Muribaculaceae
- Increase in microbial SCFAs, including 
propionate

V4 16S [231]

HFD: High-fat diet

B/F: Bacteroidetes/ Firmicutes

Transl Med Aging. Author manuscript; available in PMC 2020 August 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim and Benayoun Page 31

[Table 2]

Pros and cons of marker gene analysis, metagenomics and metatranscriptomics.

Method Cost Analysis Use in aging 
research

Pros Cons

Marker gene 
analysis

Low Simple +++++ - General overview of microbial 
communities
- Large public datasets available

- Cannot discriminate among live, dead 
or active features
- Low resolution (genus level)
- Primer choice significantly affect data

Metagenomics High Complex ++ - High resolution (species and 
strain level)
- Direct measure of functional 
microbial genes
- Assemble novel microbial 
genomes

- Cannot discriminate among live, dead 
or active features
- Prone to host contamination-derived 
errors

Meta-
transcriptomics

Medium Complex + - Measure actively transcribing 
microbial genes
- Directly observe microbial 
activity changes

- Prone to host mRNA and rRNA 
contamination
- May fail to detect rare species or low 
expressed microbial genes
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