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Abstract

Two-photon calcium imaging is now widely used to infer neuronal dynamics from changes in fluorescence of
an indicator. However, state-of-the-art computational tools are not optimized for the reliable detection of fluo-
rescence transients from highly synchronous neurons located in densely packed regions such as the CA1 py-
ramidal layer of the hippocampus during early postnatal stages of development. Indeed, the latest analytical
tools often lack proper benchmark measurements. To meet this challenge, we first developed a graphical user
interface (GUI) allowing for a precise manual detection of all calcium transients from imaged neurons based on
the visualization of the calcium imaging movie. Then, we analyzed movies from mouse pups using a convolu-
tional neural network (CNN) with an attention process and a bidirectional long-short term memory (LSTM) net-
work. This method is able to reach human performance and offers a better F1 score (harmonic mean of
sensitivity and precision) than CaImAn to infer neural activity in the developing CA1 without any user interven-
tion. It also enables automatically identifying activity originating from GABAergic neurons. Overall, DeepCINAC
offers a simple, fast and flexible open-source toolbox for processing a wide variety of calcium imaging data-
sets while providing the tools to evaluate its performance.
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Significance Statement

Inferring neuronal activity from calcium imaging data remains a challenge because of the difficulty in obtain-
ing a ground truth using patch clamp recordings and the problem of finding optimal tuning parameters of in-
ference algorithms. DeepCINAC offers a flexible, fast and easy-to-use toolbox to infer neuronal activity from
any kind of calcium imaging dataset through visual inspection.

Introduction
In vivo calcium imaging is widely used to study activity

in neuronal microcircuits. Advances in imaging now al-
lows for the simultaneous recording of several thousands
of neurons (Stringer et al., 2019). One difficulty resides in
how to infer single neuron activation dynamics from
changes in fluorescence of a calcium indicator. A chal-
lenge is therefore to offer an analytical tool that would be
scalable to the wide variety of calcium imaging datasets
while providing reliable analysis.

State-of-the-art computational tools to infer neuronal
activity (such as CaImAn; Pnevmatikakis et al., 2016;
Giovannucci et al., 2019) are based on the deconvolution
and demixing of fluorescence traces from segmented
cells. However, to optimize the deconvolution parame-
ters, a ground truth based on simultaneous targeted
patch-clamp recordings and two-photon imaging is nec-
essary (Chen et al., 2013; Evans et al., 2019).
Moreover, an analysis based on the fluorescence traces

even after a demixing process can still be biased by
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overlapping cells (Gauthier et al., 2018). In a recent study
from Gauthier and collaborators (Gauthier et al., 2018) an-
alyzing calcium imaging data recorded in the region CA1
in adult rodents (Gauthier and Tank, 2018), 66% of the
cells were reported as having at least one false transient,
and overall, among 33,090 transients (from 1325 sources),
67% were considered as true, 13% as false, and 20%
were unclassified. Those contaminations increase the risk
of misinterpretation of the data. Inferring neuronal activity
from the developing hippocampus in vivo is even more
challenging because of several factors: (1) recurring net-
work synchronizations are a hallmark of developing neu-
ronal networks (Provine, 1972; Galli and Maffei, 1988;
Ben-Ari et al., 1989; O’Donovan, 1989), which results in
frequent cell co-activations, (2) the somata of pyramidal
neurons are densely packed which results in spatial over-
lap, (3) different calcium kinetics are observed in the same
field of view (because of different cell types and different
stages of neuronal maturation; Allene et al., 2012). All
these points are illustrated in Movie 1, Movie 2 (region
CA1 of the hippocampus from mouse pups). In addition,
most methods do not offer solutions to evaluate the per-
formance of neuronal activity inference on user datasets.
To meet those challenges, we have developed a graphical
user interface (GUI) that allows for such evaluation
through data exploration and a method based on deep
learning to infer neuronal activity. Even if several deep-
learning-based methods to infer neuronal activity from flu-
orescence signals have already been developed (Berens
et al., 2018), none proposes a method directly based on
raw two-photon imaging signals.
Our goal was to train a classifier to recognize cell acti-

vation directly from a movie which falls into the domain of
action recognition. Action recognition from videos has
seen recent important progress thanks to deep learning
(Bin et al., 2019). Using a similar approach, we have
trained a binary classifier on calcium imaging movies (al-
lowing us to explore both the forward and backward tem-
poral information among the whole sequence of video
frames) to capture the fluorescence dynamics in the field
of view and then predict the activity of all identified cells. It
gave us the opportunity to take full advantage of the infor-
mation contained in the movie in terms of dynamics and
potential overlaps or other sources of contamination that

might not be accessible when working only on fluores-
cence time courses.
To train the classifier, a ground truth was needed. To

our knowledge, no calcium imaging datasets from the
developing hippocampus in vivo with simultaneous elec-
trophysiological ground truth measurements are avail-
able. The most accurate ground truth would require
targeted patch-clamp recordings with two-photon imag-
ing on all the different hippocampal cell types with differ-
ent calcium dynamics. This is technically difficult, time
consuming, and even more during development as the
ground truth must be obtained from cells at various
stages of maturation. As a result, we decided to base the
ground truth on the visual inspection of raw movies
using a custom-made GUI. It gives the advantages to
work on any kind of calcium imaging dataset and to offer
an easy tool to benchmark methods that infer neuronal
activity.

Movie 1. In vivo two-photon imaging in the CA1 region of the
hippocampus in a 12-d-old mouse pup. Field of view (FOV) is
80 � 80 mm, frame rate is 8 Hz, and video is speeded up 10
times. The video shows recurrent periods of neuronal activa-
tions recruiting a large number of adjacent neurons leading to
spatial and temporal overlaps. [View online]

Movie 2. In vivo two-photon imaging in the CA1 region of the
hippocampus in a 7-d-old mouse pup. Field of view (FOV) is
100 � 100 mm, frame rate is 8 Hz, and video is speeded up 10
times. The Video shows different cell types (i.e., interneurons
and pyramidal cells) with different calcium dynamics. [View
online]
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The GUI offers a tool to precisely and manually detect
all calcium transients (from onset to peak, which is the
time when cells are active). We collected and combined a
corpus of manual annotations from four human experts
representing 37 h of two-photon calcium imaging from 11
mouse pups aged between five and 16 postnatal days in
the CA1 region using GCaMP6s. Almost 80% of the labeled
data were used to train the model, while the rest was kept to
benchmark the performance. Then, movies were processed
using a convolutional neural network (CNN) with an attention
mechanism and a bidirectional long-short term memory
(LSTM) network (LeCun and Bengio, 1995; Hochreiter and
Schmidhuber, 1997; Vaswani et al., 2017).
To evaluate the method, we used the ground truth as a

benchmark. We found that this method reached human
level performance and offered a better sensitivity and
F1 score than CaImAn to infer neuronal activity in the de-
veloping hippocampus without any user intervention.
Overall, DeepCINAC (Calcium Imaging Neuronal Activity
Classifier) offers a simple, ergonomic, fast, and flexible
open-source toolbox for processing a wide variety of
calcium imaging data while providing the tools to evalu-
ate its performance.

Materials and Methods
In this section, we will describe all the necessary steps

to build a deep learning neural network “DeepCINAC.”
This toolbox was developed to analyze in vivo two-photon
calcium imaging data acquired in the developing hippo-
campus (see below, Experimental procedure and data ac-
quisition). As a first step, we needed to set a ground truth
that was established on the visualization of the recorded
movie by three to four human experts (see below, Ground
truth). Then, data are preprocessed (see below, Data pre-
processing, feature engineering, and model description)
and used to train the network (see below, Computational
performance). As a final step, we used labeled data to
evaluate the performance of DeepCINAC (see below,
Performance evaluation). Tutorials and the source code
are freely available online (see below, Toolbox and data
availability).

Experimental procedure and data acquisition
All experiments were performed under the guidelines of the

French National Ethic Committee for Sciences and Health
report on Ethical Principles for Animal Experimentation in
agreement with the European Community Directive 86/609/
EEC.

Viral injection
To induce widespread, rapid and stable expression of the

calcium indicator GCaMP6s in hippocampal neurons at early
postnatal stages, we intraventricularly injected a viral solution
(pAAV.Syn.GCaMP6s.WPRE.SV40, Addgene #100843-
AAV1) at P0 (Postnatal day zero) in mouse pups of ei-
ther sex (Fig. 1A,B). This injection protocol was adapted
from already published methods (Kim et al., 2013,
2014). Mouse pups were anesthetized on ice for 3–
4min, and 2 ml of the viral solution were injected in the
left lateral ventricle which coordinates were estimated at
the 2/5 of the imaginary line between the l and the eye at a
depth of 400mm. Expression of GCaMP was checked on
slices and was sufficient for in vivo imaging as early as P5,
which is consistent with already published data (Kim et al.,
2014). In addition, GCaMP expression, brightness, and ki-
netics of the reporter was then stable throughout all devel-
opmental stages used (data not shown).

Surgery
The surgery to implant a 3-mm-large cranial window

above corpus callosum was adapted from described
methods (Dombeck et al., 2010; Villette et al., 2015).
Anesthesia was induced using 3% isoflurane in a mix of
90% O2-10% air and maintained during the whole sur-
gery (;1:30 h) between 1% and 2.5% isoflurane. Body
temperature was controlled and maintained at 36°C.
Analgesia was controlled using Buprenorphine (0.025mg/
kg). Coordinates of the window implant were estimated
by eyes. The skull was removed and the cortex was gently
aspirated until the external capsule/alveus that appears
as a plexus of fibers was visible. Surface of the corpus
callosum was protected with QuickSil (WPI) then the can-
nula with the window was implanted and fixed to the hea-
plate of the animal.

Figure 1. Experimental paradigm. A, Experimental timeline. B, Intraventricular injection of GCaMP6s on pups (drawing) done at P0.
C, Schematic representing the cranial window surgery. D, top left, Imaged field of view. Scale bar: 100 mm. Top right, Activity of five
random neurons in the field of view (variation of fluorescence is expressed as Df/f). Scale bar: 50 s. Bottom, Drawing of a head fixed
pup under the microscope.
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Imaging
Two-photon calcium imaging experiments were per-

formed on the day of the surgery (Fig. 1C,D) at least 1 h
after the end of the surgery. A total of 12,500-frames-long
image series from a 400� 400mm field of view with a re-
solution of 200� 200 pixels were acquired at a frame rate
of 10.6Hz (Fig. 1D). We then motion corrected the ac-
quired images by finding the center of mass of the corre-
lations across frames relative to a set of reference frames
(Miri et al., 2011) .

Cell segmentation
To detect cell contours, we used either the segmentation

method implemented in suite2p (Pachitariu et al., 2017) or
the Constrained Nonnegative Matrix Factorization (CNMF)
implemented in CaImAn.

Activity inference
To infer activity, we used the Markov chain Monte Carlo

(MCMC) implemented in CaImAn on cell contours ob-
tained from the CNMF of the toolbox. The MCMC spike
inference was done as described (Pnevmatikakis et al.,
2016). We used DeepCINAC predictions on both contours
from suite2p and CaImAn.

Data visualization: GUI
To visualize our data and explore the results from any

spike inference method, we designed a GUI that provides
a visual inspection of each cell’s activity (Fig. 2). The GUI
offers a set of functionalities allowing visualization of (1)
calcium imaging movies centered and zoomed on the cell
of interest during a time window that includes a given
transient; (2) sources, transient profiles, and their correla-
tions (as developed by Gauthier and collaborators); and
(3) transient fluorescence signal shape.
Additionally, the GUI can be used to (1) display the

spike times from an inference method (Fig. 2A1,A2), (2)
establish a ground truth (Fig. 2B), and (3) visualize
DeepCINAC predictions (Fig. 2C).
The GUI was developed using Python and Tkinter pack-

age. It can read data from several formats including neuroda-
ta without borders files (Teeters et al., 2015; Rübel et al.,
2019). More details on the GUI and a complete tutorial are
available on GitLab (https://gitlab.com/cossartlab/deepcinac).

Ground truth
Electrophysiological ground truth
Ground truth data from experiments previously de-

scribed were taken from crcns.org. (Chen et al., 2013;
GENIE Project, 2015). Briefly, visual cortex neurons ex-
pressing the calcium indicator GCaMP6s were imaged
while mice were presented with visual stimuli; 60-Hz two-
photon imaging and loose cell-attached recordings at
10 kHz were performed simultaneously. Using ImageJ
software, we downsampled imaging data to 10Hz by
averaging every six frames and rescaled it to 1.2mm/pixel.
We considered a cell active during a rise time if a spike
was detected during that time and used the previously de-
scribed GUI to convert those data in the cinac format so
we could produce benchmarks and train a classifier using

those data (for more details, see Table 1; Extended Data
Table 1-1).

Visual ground truth
All functionalities of the GUI were used as criteria by

each human expert to label the data. The ground truth
was established based on two-photon calcium imaging
from pups from 5 to 16d old (see Table 1) in a four-step
workflow as described in Figure 3. Data were selected
and labeled at least by two independent human experts
(Fig. 3, steps 1 and 2). We then combined those labels
(Fig. 3, step 3), and a final agreement was decided by
three to four human experts (Fig. 3, step 4). In addition,
we trained another classifier for interneurons using trans-
genic pups in which only interneurons express the indica-
tor (Melzer et al., 2012). As previously described,
interneurons’ activity was labeled by three or four human
experts and used to train an interneuron specific classifier
(CINAC_v7; see Table 1). After training our classifier on a
first set of cells, we used the predictions obtained on new
data to establish additional ground truth based on the
mistakes made on those data. At least two human experts
labeled segments of 200 frames containing the wrong
predictions. Additional visual ground truth was estab-
lished by one human-expert (R.F.D.) on three other data-
sets from our lab using the GUI: (1) GCAMP6s calcium
imaging movies from the developing barrel cortex
(“Barrel-ctx-6s,” 1.5Hz, 1.2 mm/pixel; Modol et al., 2020),
(2) GCaMP6m imaging movies (“Hippo-6m,” 10Hz, 2 mm/
pixel), and (3) GECO imaging movies (“Hippo-GECO,”
5Hz, 2 mm/pixel) both from the adult hippocampus (for
details, see Extended Data Table 1-1). For Barrel-ctx-6s
and Hippo-GECO, the CaImAn spike inference had al-
ready been performed by the original experimenter. We
performed CaImAn spike inference on Hippo-6m.

Cell type ground truth. We used calcium imaging mov-
ies from GadCre (Melzer et al., 2012) positive animals in-
jected with both h-SynGCaMP6s and Cre-dependent
TdTomato to identify interneurons by the overlap of
GCaMP6s and TdTomato signals. Using the GUI, we
manually categorized 743 cells from 85 recordings among
three categories: interneuron, pyramidal cell, and noisy
cell. A total of 283 TdTomato-expressing cells were cate-
gorized as interneurons; 296 cells were categorized as
putative pyramidal cells based on their localization in the
pyramidal layer, their shape and their activity. Finally, 164
cells were categorized as noisy cells, determined by visu-
ally estimating their signal-to-noise ratio. We used a total
of 643 cells (245 interneurons, 245 putative pyramidal
cells, and 153 noisy ones) to train the cell type classifier
and 100 cells (38 interneurons, 51 putative pyramidal
cells, and 11 noisy ones, not included in the training data-
set) were used to evaluate it.

Data preprocessing, feature engineering, andmodel
description
Definition of training, validation, and test datasets
Our main dataset was split between a test dataset and

a dataset used to train the classifier (referred to as training
dataset; see Table 1; Extended Data Table 1-1). The
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training dataset used as the input of the classifier was ran-
domly split with a ratio of 80–20% on a training and vali-
dation dataset. Validation data are used at the end of
each epoch of the training to update the weights of the
classifier.

Data preprocessing and feature engineering
Calcium movies in tiff format were split into individual

tiff frames to be efficiently loaded in real time during the
data generation for each batch of data fed to the classi-
fier. For any given cell, a batch was composed of a se-
quence of 100 frames of 25� 25 pixels window centered
on the cell body. The length of the batch was chosen to fit
for interneurons activity (rise and decay time). The window

size was adapted to capture the activity of cells overlap-
ping the target cell. In a recording of 12,500 frames, the
number of transients ranges from 10 to 200, approxi-
mately. Thus, the frames during which the cell is active
(from onset to peak), represents a low percentage of the
total data. Because manual labeling is time consuming,
the data used as ground truth were limited in size. To
overcome the issue of the imbalanced data and to enlarge
the dataset, we used the following three approaches.

Number 1: data augmentation (Perez and Wang, 2017).
Temporal and spatial data augmentation was used.
Temporal augmentation was used in that each block of
100 frames was overlapping with each other using a slid-
ing window of 10 frames of length. Spatial augmentation

Figure 2. Examples of different uses of the GUI. The GUI can be used for data exploration (A1, A2), to establish the ground truth (B)
and to evaluate DeepCINAC predictions (C). A, The GUI can be used to explore the activity inference from any methods. The spikes
inferred from CaImAn are represented by the green marks at the bottom. The GUI allows the user to play the movie at the time of
the selected transient and visualize the transients and source profile of the cell of interest. A1, Movie visualization and correlation
between transient and source profiles allow the classification of the first selected transient as true positive (TP) and the second se-
lected transient as false positive (FP). A2, Movie visualization and correlation between transient and source profiles allow the classi-
fication of the selected transient as false negative (FN). B, The GUI can be used to establish a ground truth. In this condition, it
offers the user the possibility to manually annotate onset and peak of calcium transient. Onsets are represented by vertical dashed
blue lines, peaks by green dots. C, When the activity inference is done using DeepCINAC, the GUI allows the display of the classifier
predictions. The prediction is represented by the red line. The dashed horizontal red line is a probability of one. The blue area repre-
sents time periods during which the probability is above a given threshold, in this example 0.5. T: transient profile, S: source profile,
Corr: correlation, FOV: field of view.
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took the form of transformations such as flip, rotation, or
translations of the images. The data augmentation was
done online, meaning that the transformations were done
on the mini-batches that the model was processing. This
allowed avoiding memory consumption and generating a
dataset on multiple cores in real time.

Number 2: simulated data. To balance our dataset, and
increase the ability of the network to predict a fake tran-
sient as false, we have simulated calcium imaging movies
with a higher rate of overlapping activity than our dataset
(an example of artificial movie is available online on the
GitLab page, alongside the source code: https://gitlab.
com/cossartlab/deepcinac). We started by collecting
.2000 cell contours from several movies that were seg-
mented using suite2p. We randomly picked contours to
build a cell map, with 16 cells for which one to four cells
are overlapping it. We then generated for each cell an ac-
tivity pattern, with a randomly chosen number of transi-
ents (from 2 to 16 for 1000 frames, 1.2–9.6 transients/min
for a 10-Hz sampling rate) and duration of rise time (from
one to eight frames, 100–800ms for a 10-Hz sampling
rate), following a random distribution. To simulate the flu-
orescence signal, on the rise time, we use a linear fit from
the onset to peak, for the decay, we use an exponential
decay with a decay from 10 to 12 frames of duration. To
generate the calcium imaging movie, we decided on a
basal level of activity, and then we adjusted the intensity
of pixels in the cell for each frame according to the ampli-
tude of the cell fluorescence, pixels in the cell have a

Table 1: Data used to train the classifiers

CINAC versionp n cells n animals n frames
Hippo-dvt v1 v4 v6 1041 132 689,272
Hippo-GECO v3 5 2 45,000
Hippo-6m v4 3 1 42,000
Barrel-ctx-6s v4 20 2 36,000
Visual-ctx-6s v5 v6 7 NA 33,800
Hippo-dvt-INs v7 29 9 362,500

Training dataset include validation dataset (see Materials and Methods).
Description of the datasets precising the number of frames, number of ani-
mals and field of views included, as well as the classifiers that used these
datasets.
n: number of.
p version that used at least part of those dataset.
1 including two simulated movies, representing 32 cells and 80,000 frames.
2 including two simulated movies.
Table 1 is supported by Extended Data Table 1-1.

Figure 3. Workflow to establish the ground truth. First, a cell was randomly chosen in the imaged field of view. 1, All putative transi-
ents of the segment to label were identified for the onset to the peak of each calcium event. 2, Three human experts [“expert” (A),
“expert” (B), “expert” (C)] independently annotated the segment. Among all putative transients, each human expert had to decide
whether it was in his opinion a true transient. 3, The combination of the labeling lead to “consensual transients” (i.e., true transient
for each human expert; black square) and to “non-consensual transients” (i.e., true transient for at least one human expert but not
all of them; open square). 4, All non-consensual transients were discussed and ground truth was established.
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different weight depending on whether they are in the
soma or not, their intensity being lower in the nucleus. We
finally added some Gaussian noise (m = 0, s2 = 0.1) on
every frame.

Number 3: data stratification. In order to balance the
data, we used data augmentation on selected movie seg-
ments (underrepresented segments) and excluded others
(overrepresented segments) from the training dataset.
After data stratification, we obtained ;60% of the movie
segments containing at least one real transient, 30% at
least one fake transient without real ones, and 10% with-
out transients. We were then able to be more precise over
the proportion of segments with multiple transients or
cropped transients. We gave higher weights to segments
containing fake transients in order for the network to ad-
just the accuracy accordingly.
The data augmentation, simulated data and stratifica-

tion were applied to the part of the training dataset not
used for validation.

Model description
To perform action recognition, we designed a joint model

combining a forward-pass LSTM, a backward-pass LSTM
and CNN features. In order for the bidirectional LSTM to

focus on relevant information, we reinforced it by an atten-
tion process at the stage of encoding similar to previous
work (Bin et al., 2019; Rémy, 2019). The model was de-
signed using Python and Keras library (Chollet, 2015; see
Fig. 4).
The model used to predict the cell activity takes three

inputs, each representing the same sequence of 100
frames (around 10 s of activity). Each frame had dimen-
sions of 25� 25 pixels, centered around the cell of inter-
est, whose activity we want to classify. The first input has
all its pixels set to zero except for the mask of the cell of
interest (cell activity). The second input has all its pixels
set to zero except for the mask of the cells that intersect
the cell of interest (overlapping activity). The final input
has the cell of interest and the one intersecting its pixels
set to zeros (neuropil activity). That way, the model has all
the information necessary to learn to classify the cell’s ac-
tivity according to its fluorescence variation.
The model used to predict the cell type takes two in-

puts, each representing the same sequence of 500 frames
(around 50 s of activity). Each frame had dimensions of
20� 20 pixels, centered around the cell of interest, whose
cell type we want to classify. The first input has all its pix-
els set to zero except for the mask of the cell of interest
(cell activity). The second input has all its pixels.

Figure 4. Architecture of DeepCINAC neural network. As a first step, for each set of inputs of the same cell, we extract CNNs fea-
tures of video frames that we pass to an attention mechanism and feed the outputs into a forward pass network (FU, green units)
and a backward pass network (BU, orange units), representing a bidirectional LSTM. Another bidirectional LSTM is fed from the at-
tention mechanism and previous bidirectional LSTM outputs. A LSTM (MU, blue units) then integrates the outputs from the process
of the three types of inputs to generate a final video representation. A sigmoid activation function is finally used to produce a proba-
bility for the cell to be active at each given frame given as input.
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We used dropout (Srivastava et al., 2014) to avoid overfit-
ting, but no batch normalization. The activation function was
swish (Ramachandran et al., 2017). The loss function was
binary cross-entropy and the optimizer was RMSprop. To
classify cell activity, the output of the model was a vector
of length 100 with values between 0 and 1 representing
the probability for the cell to be active at a given frame of
the sequence. To classify the cell type (interneuron, py-
ramidal cell, or noisy cell), the output was three values
ranging from 0 to 1 and whose sum is equal to 1, repre-
senting the probability for a cell to be one of those three
cell types.

Computational performance
Classifier training
We trained the classifier on a Linux-based HPC cluster

where 4 CPUs (Intel(R) Xeon(R) CPU EV-2680 v3), 320 GB
of RAM and 2 bi-GPU NVIDIA Tesla V100 were allocated
for the processing task. To give an estimation of the time
required to complete the training, the general classifier
(CINAC_v1) was trained over 14 epochs. Training took
around 40 h (,3 h by epoch).

Classifier prediction
Using Linux-based workstation with one GPU (NVIDIA

GeForce GTX 1080), 12 CPUs (Intel Xeon CPU W-2135 at
3.70GHz), and 64 GB of RAM, the time to predict the cell ac-
tivity on a movie of 12,500 frames was on average 13 s,;3.5
h for 1000 cells. The time to predict the cell type on a movie
of 12,500 frames was on average 2 s,;33min for 1000 cells.
Similar performance was achieved using Google Colab.

Performance evaluation
Descriptive metrics for activity classifier: sensitivity, preci-
sion, F1 score
We evaluated the performance of the activity classifiers

which predict for each frame if a cell is active or not. We
chose to measure the sensitivity and precision values, as
well as the F1 score that combines precision and sensitiv-
ity into a single metric defined as the harmonic mean of
precision and sensitivity (Géron, 2019). Because we have
a skewed dataset (cells being mostly inactive), we chose
not to use the accuracy. The output of the binary classifier
being the probability for a cell to be active at a given
frame, we considered that a transient was predicted as
true if at least during one of its frames the cell was pre-
dicted as active. On this basis, we were then able to com-
pute the sensitivity (defined as the proportion of real
transients that were detected) and the precision (defined
as the proportion of detected transients that are real tran-
sients). We used these metrics to base the choice of the
“best” epoch on the classifier performance on the test da-
taset rather than the performance on validation dataset.
However, we stopped the training when the validation da-
taset metrics reached a plateau.

Descriptive metrics for cell type classifier: sensitivity, pre-
cision, F1 score
We evaluated the performance of the cell type classifier

which predicts the type of a cell. We chose to measure

the sensitivity and precision values, as well as the F1
score. To do so we used the metrics module of the
Python package scikit-learn (Pedregosa et al., 2011) that
returns the confusion matrix and a classification report
containing those metrics.

Statistical analysis
The distribution of F1 score values on the datasets for

each inference method were compared using Wilcoxon
signed-rank test with an a priori significance level of p=0.05
using scipy Python package (Virtanen et al., 2020). This test
was performed only on distribution with .15 samples.
Significance level: we used p for 0.01 � p,0.05, pp for
0.001�p, 0.01, and ppp for p, 0.001.

Detection of overlap activity
Based on empirical research we found that 15% of

overlap was the minimal size above which a true transient
in the cell is sufficient to trigger a false transient in the
overlapped cell. For all pairs of overlapping cells (with an
intersected area of at least 15% of the highest area of the
two cells), we computed their transient profiles over all
putative activations (all rise time over the full recording)
and then calculated the Pearson correlation with their re-
spective cell source profile. To assure to attribute the cor-
rect transient to the truly active cell we used a high
correlation threshold 0.7 for the first cells and low thresh-
old for the second cell of 0.2. We considered that the tran-
sient was a true activation of the first cell leading to a false
transient in the second one. Indeed, we observed that the
correlation method such as the one used in Gauthier et al.
(2018) is not always sufficient to classify correctly the
transient activity. However, by using the combination of a
very low and high threshold, we assure (in most of the
cases) that one cell is having a false transient while
the other one is truly active. Finally, we evaluated whether
the classifier could classify the putative transient of the
second cell as false (with a prediction,0.5).

Comparison with CaImAn
We compared the classifier performance against a state-

of-the-art computational tool, namely, CaImAn. To fairly
compare CaImAn and DeepCINAC to the ground truth, we
used the cell contours obtained from the CNMF. The spike
inference from the MCMC as well as DeepCINAC predic-
tions and the ground truth were established on these con-
tours. A transient was considered as detected by CaImAn if
at least one spike was inferred during the rise time of the
transient.

DeepCINACworkflow
To summarize, DeepCINAC uses .cinac files built using

the GUI. To train a classifier, those files are given as inputs
to the neuronal network, providing time series data repre-
senting the calcium fluorescence dynamics of the cells.
The same files can be used to benchmark the perform-
ance of a classifier and using the GUI, it is possible to add
new data for training based on the errors of previous clas-
sifier outputs (Fig. 5).
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Toolbox and data availability
The source code is available on GitLab (https://gitlab.

com/cossartlab/deepcinac). The page includes a full de-
scription of the method, a user manual, tutorials and test
data, as well as the settings used. A notebook configured
to work on Google Colab is also provided, allowing for the
classifier to run online, thus avoiding installing the neces-
sary environment and providing a free GPU. The toolbox
has been tested on windows (v7 Pro), Mac Os X (MacOS
Mojave), and Linux Ubuntu (v.18.04.1).

Results
Validation of visual ground truth
As a first step, we asked whether the visualization of flu-

orescent transients was a good estimation of spiking ac-
tivity present in a neuron. To do so, we used previously
published data combining loose seal cell attached

recordings with two-photon calcium imaging (Chen et al.,
2013; GENIE Project, 2015). We compared the visual
ground truth to the “true” spiking of the cell. We found
that visual inspection of calcium imaging movies allows
the detection of 87.1%, 79.1%, and 80.7% true transients
(i.e., spike associated transient) for each human expert re-
spectively (median sensitivity; Fig. 6A). Among visually
detected transients, 98.7%, 98.6%, and 98.6% were true
transients for each human expert respectively (median
precision; Fig. 6B). The F1 scores that combine these two
previous metrics were 84.1%, 81.5%, and 85.9% for each
human expert, respectively (median value; Fig. 6C). We
evaluated the classifier CINAC_v6 trained with some re-
cordings of “Visual-ctx-6s” and “Hippo-dvt” (Extended
Data Table 1-1). We found that it allows the detection of
94% of the true transients (median sensitivity; Fig. 6A).
Among predicted transients, 94.2% were true transients
(median precision; Fig. 6B). F1 score was 94.7% (median
value; Fig. 6C). Overall, we conclude that in absence of

Figure 5. DeepCINAC step by step workflow. A, Schematic of two-photon imaging experiment. B, Screenshot of DeepCINAC GUI
used to explore and annotate data. C, The GUI produces .cinac files that contain the necessary data to train or benchmark a classi-
fier. D, Schematic representation of the architecture of the model that will be used to train the classifier and predict neuronal activity.
E, Training of the classifier using the previously defined model. F, Schematic of a raster plot resulting from the inference of the neu-
ronal activity using the trained classifier. G, Evaluation of the classifier performance using precision, sensitivity and F1 score. H,
Active learning pipeline: screenshots of the GUI used to identify edge cases where the classifier wrongly infers the neuronal activity
and annotate new data on similar situations to add data for a new classifier training.
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patch-clamp-based ground truth, the visual inspection of
the movie provides a good estimation of neuronal activity
and that deep learning approach based on movie visual-
ization can reach the human level in estimating cell
activations.

DeepCINAC performance evaluation on developing
hippocampus dataset
Comparing DeepCINAC against CaImAn and human level
We compared the performance of DeepCINAC and

CaImAn (Pnevmatikakis et al., 2016), a well-established algo-
rithm to infer neuronal activity, against the visual ground truth
on CA1 hippocampus data during development (Hippo-dvt).
We first evaluated DeepCINAC (CINAC_v1) on 20 puta-
tive pyramidal neurons and five interneurons (Fig. 7).
The median sensitivity was 80.3% (interquartile range
75–94.5; Fig. 7A), the median precision was 90.8% (in-
terquartile range 81.2–95.5; Fig. 7B), and the median
F1 score was 86.3% (interquartile range 78.9–91.3;
Fig. 7C).
We next evaluated CaImAn on the same cells using the

same metrics. The median sensitivity was 60.6% (inter-
quartile range 45.6–76; Fig. 7A), the median precision was
100% (interquartile range 93.8–100; Fig. 7B). The median
F1 score was 70.1% (interquartile range 62.6–81.6; Fig.
7C), which was significantly lower than CINAC_v1 F1
score (Wilcoxson signed-rank test, T=50 and p=0.002).
Finally, we asked whether DeepCINAC could perform as
well as human “experts.” The median CINAC_v1 F1 score
on the 15 cells annotated by the two human experts (J.D
and R.F.D.) was 88.2% (interquartile range 78.3–92),
which was significantly lower than R.F.D. and J.D F1
scores (F1= 95.2%, T=4, p=0.002 and F1=96.8%,
T=22, p=0.031, respectively; Extended Data Fig. 7-1A).
However, on six cells annotated by M.A.P., CINAC_v1
and M.A.P. F1 scores were close (F1 =84.3% and
F1=86.4%, respectively; Extended Data Fig. 7-1B).

Although DeepCINAC is still not at the ground truth level
(combination of triple human labeling), it approximates
human level.

Specific handling of overlap
One important characteristic of data from the develop-

ing CA1 region of the hippocampus is the high density of
active neurons that can lead to overlap. This overlap be-
tween cells leading to false transients was pointed out as
a specific issue in the analysis of calcium traces from a
demixing (Gauthier et al., 2018). We asked whether the
classifier would be able to distinguish real transients from
increases in fluorescence because of the activity of an
overlapping cell. Based on the visual inspection of imaged
fields of view with numerous overlaps, we chose to spe-
cifically test the algorithm on calcium imaging data con-
taining 391 cells segmented using CaImAn. Among those
cells, we detected a total of 426 transients (fluorescence
rise time) from 23 cells that were likely because of over-
lapping activity from a neighboring cell (see method for
overlap activity detection). Among those transients,
98.6% were correctly classified as false by CINAC_v1
(general classifier), 93.2% were correctly classified as
false by the CINAC_v7 (interneuron specific classifier),
and 93.2% were correctly classified as false by CaImAn.
We next asked whether the results could be improved by
the use of another segmentation method. To do so, we
performed the same analysis on the exact same field of
view using the classifier prediction on the segmented
cells obtained from suite2p (Pachitariu et al., 2017).
Among a total of 480 cells, a total of 2718 transients from
101 cells were likely because of the activation of an over-
lapping cell, 99.1% of them were correctly classified as
false by CINAC_v1.

Onset to peak prediction
Since we aimed at predicting as active all the frames in-

cluded in the full rise time of the calcium transient (from

Figure 6. Validation of visual ground truth and deep learning approach. A, Boxplots showing sensitivity for the three human experts
(R.F.D., J.D., M.A.P.) and CINAC_v6 evaluated against the known ground truth from four cells from the GENIE project. B, Boxplots
showing precision for the three human experts (R.F.D., J.D., M.A.P.) and CINAC_v6 evaluated against the known ground truth from
four cells from the GENIE project. C, Boxplots showing F1 score for the three human experts (R.F.D., J.D., M.A.P.) and CINAC_v6
evaluated against the known ground truth from four cells from the GENIE project. Each colored dot represents a cell. Cell labels in
the legend correspond to session identifiers from the dataset. CINAC_v6 is a classifier trained on data from the GENIE project and
the Hippo-dvt dataset (Table 1; Extended Data Table 1-1).
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onset to peak), we looked at the proportion of frames pre-
dicted as active in real transients. Using the general clas-
sifier (CINAC_v1), the median ratio of frames predicted
among each real transient was 85.7% (interquartile range
70–100) for the 20 putative pyramidal cells and the five
putative interneurons (Extended Data Fig. 7-2). We dem-
onstrated that CINAC_v1 allows the detection of cell acti-
vation all along the rise time, giving us both the onset of
cell activation and the duration of the rise time (Extended
Data Fig. 7-2).

Classifier generalization and specialization
DeepCINAC performances on other datasets
A major aspect to consider in the development of algo-

rithms to infer neuronal activity from calcium imaging data
is the ability to be easily scalable to the wide variety of da-
tasets (i.e., different indicators, different brain regions, ...).
We investigated the extent to which DeepCINAC

(CINAC_v1) that was trained on data from the developing
hippocampus would perform on other datasets (Extended
Data Fig. 8-1). To answer that question, we used (1)
GECO imaging movies (Hippo-GECO, 5Hz, 2 mm/pixel;
Extended Data Fig. 8-1A), (2) GCaMP6m imaging movies
(Hippo-6m, 10Hz, 2 mm/pixel; Extended Data Fig. 8-1B)
both from the adult hippocampus, (3) GCAMP6s calcium
imaging movies from the developing barrel cortex
(Barrel-ctx-6s, 1.5Hz, 1.2 mm/pixel; Extended Data Fig.
8-1C; Modol et al., 2020), (4) GCAMP6s calcium imaging
movies of interneurons from the developing hippocam-
pus (“Hippo-dvt-INs,” 10Hz, 2 mm/pixel; Extended Data
Fig. 8-1D) and GCaMP6s recordings from the adult vis-
ual cortex (Visual-ctx-6s, downsampled 10Hz, rescaled
1.2 mm/pixel, see Materials and Methods; Extended Data
Fig. 8-2). We show that DeepCINAC performs well on

Hippo-6m and Barrel-ctx-6s data. On Hippo-6m, F1
scores were 66.7% and 70.9% for CaImAn and
CINAC_v1, respectively (Extended Data Fig. 8-1B, bot-
tom panel). On Barrel-ctx-6s, F1 scores were 54.3% and
76.4% for CaImAn and CINAC_v1, respectively (Extended
Data Fig. 8-1C, bottom panel). However, CINAC_v1 does
not generalize well enough to infer activity on the Hippo-
GECO recordings (F1 score=44.2%; Extended Data Fig. 8-
1A) neither on Visual-ctx-6s (F1 score=69.9%; Extended
Data Fig. 8-1C).
To overcome these poor performances on Hippo-

GECO and Visual-ctx-6s and to improve performances on
Barrel-ctx-6s and Hippo-6m datasets, we considered two
strategies. The first one consists in training a classifier
specific to the data. The second one consists in adding
part of the new data to the large database to improve the
classifier ability to generalize (Fig. 8; Extended Data Fig.
8-1).
Since our performances were low using CINAC_v1, we

adopted the first strategy to improve the classifier on Hippo-
GECO and Visual-ctx-6s datasets. We used part of these da-
tasets to train specific classifiers and evaluate them on the
remaining data (Extended Data Table 1-1). First, we observed
that the Hippo-GECO-specific classifier (i.e., CINAC_v3)
performed better than CINAC_v1 and CaImAn (CINAC_v3
median F1 score=69.6%, CINAC_ v1 median F1 score =
12.9%, and CaImAn median F1 score=63.5%; Fig. 8A, bot-
tom panel). This increase in F1 score from CINAC_v1 to
CINAC_v3 was because of an increase in the sensitivity of
the classifier (CINAC_v1 median sensitivity=10%, CINAC_v3
median sensitivity=70.3%; Fig. 8A, top panel) with a moder-
ate loss in precision (CINAC_v1 median precision=95%,
CINAC_v3 median precision = 81.2%; Fig. 8A, middle panel).
Second, we showed that the Visual-ctx-6s datasets specific

Figure 7. Evaluation of CINAC_v1 performance on Hippo-dvt dataset. A, Boxplots showing sensitivity for the three human experts
(R.F.D., J.D., M.A.P.), CaImAn and CINAC_v1 evaluated against the visual ground truth of 25 cells. A total of 15 cells were annotated
by J.D. and R.F.D., six by M.A.P. B, Boxplots showing precision for the three human experts (R.F.D., J.D., M.A.P.), CaImAn and
CINAC_v1 evaluated against the visual ground truth of 25 cells. A total of 15 cells were annotated by J.D. and R.F.D., six by M.A.P.
C, Boxplots showing F1 score for the three human experts (R.F.D., J.D., M.A.P.), CaImAn and CINAC_v1 evaluated against the vis-
ual ground truth of 25 cells. A total of 15 cells were annotated by J.D. and R.F.D., six by M.A.P. Each colored dot represents a cell,
the number inside indicates the cell’s id and each color represents a session as identified in the legend. CINAC_v1 is a classifier
trained on data from the Hippo-dvt dataset (Table 1; Extended Data Table 1-1). Figure 7 is supported by Extended Data Figures 7-
1, 7-2. pp , 0.05.
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classifiers (i.e., CINAC_V5 and CINAC_v6) performed better
than CINAC_v1 and CaImAn (CINAC_v1 median F1 score =
69.9%, CINAC_v5 median F1 score=73.9%, and CINAC_v6
median F1 score=94.7%; Extended Data Fig. 8-2C).
Because CINAC_v5 was trained exclusively on labeled data
from the Visual-ctx-6s dataset, it allows an increase in the
classifier sensitivity (CINAC_v1 median sensitivity=59.2%,
CINAC_v5 median sensitivity=100%; Extended Data Fig. 8-
2A). However, this increase was achieved at the cost of a

reduced precision (CINAC_v1 median precision=96.2%,
CINAC_v5 median precision=59%; Extended Data Fig. 8-
2B), and overall a slight increase in the F1 score (Extended
Data Fig. 8-2C). To improve the performance on this dataset,
we extended the CINAC_v5 training set with four cells from
the Hippo-dvt to train CINAC_v6. This allows us to increase
both sensitivity (CINAC_v6median sensitivity=94%) and pre-
cision (CINAC_v6 median precision=94.2%) of the classifier,
leading to a large improvement of the F1 score (CINAC_v6

Figure 8. Use of DeepCINAC classifiers to optimize performances on various dataset. A, Boxplot displaying the sensitivity (top
panel), precision (middle panel) and F1 score (bottom panel) for Hippo-GECO dataset. For each panel, we evaluated CaImAn per-
formance as well as two different versions of CINAC (v1 and v3). CINAC_v1 is a classifier trained on data from the Hippo-dvt dataset
and CINAC_v3 is a classifier trained on data from the Hippo-GECO dataset (Table 1; Extended Data Table 1-1). B, Boxplot display-
ing the sensitivity (top panel), precision (middle panel) and F1 score (bottom panel) for Hippo-6m dataset. For each panel, we eval-
uated CaImAn performance as well as two different versions of CINAC (v1 and v4). CINAC_v1 is a classifier trained on data from the
Hippo-dvt dataset and CINAC_v4 is a classifier trained on data from the Hippo-dvt, Hippo-6m, and Barrel-ctx-6s dataset (Table 1;
Extended Data Table 1-1). C, Boxplot displaying the sensitivity (top panel), precision (middle panel) and F1 score (bottom panel) for
Barrel-ctx-6s dataset. For each panel, we evaluated CaImAn performance as well as two different versions of CINAC (v1 and v4).
CINAC_v1 is a classifier trained on data from the Hippo-dvt dataset and CINAC_v4 is a classifier trained on data from the Hippo-
dvt, Hippo-6m, and Barrel-ctx-6s dataset (Table 1; Extended Data Table 1-1). D, Boxplot displaying the sensitivity (top panel), preci-
sion (middle panel) and F1 score (bottom panel) for Hippo-dvt-INs dataset. For each panel, we evaluated CaImAn performance as
well as two different versions of CINAC (v1 and v7). CINAC_v1 is a classifier trained on data from the Hippo-dvt dataset and
CINAC_v7 is a classifier trained on interneurons from the Hippo-dvt dataset (Table 1; Extended Data Table 1-1). Each colored dot
represents a cell, the number inside indicates the cell’s id and each color represents a session as identified in the legend. Figure 8
is supported by Extended Data Figures 8-1, 8-2, 8-3.
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median F1 score=94.7%; ExtendedData Fig. 8-2C). In a nut-
shell, when the dataset to analyze has different calcium dy-
namics, a new classifier specifically trained on this dataset
would reach higher performance than CINAC_v1.
On the datasets from the adult hippocampus (Hippo-

6m) and developing barrel cortex (Barrel-ctx-6s), since
CINAC_v1 performances were close to the performance
reached on Hippo-dvt dataset, we considered the second
strategy. We extended the CINAC_v1 training dataset
with labeled data from Hippo-6m and Barrel-ctx-6s data-
sets and trained a new classifier (CINAC_v4). First, we ob-
served that on the Hippo-6m dataset, CINAC_v4 classifier
has better sensitivity and precision than CINAC_v1 and
CaImAN (CINAC_v1 median sensitivity = 53.8%, CINAC_
v4 median sensitivity=58.7%, CaImAn median sensitivity =
37.3%, CINAC_v1 median precision=95.3%, CINAC_v4
median precision=96.2%, CaImAn median precision =
95.7%, CINAC_v1 median F1 score=68%, CINAC_v4 me-
dian F1 score=71.6%, CaImAn median F1 score=51.4%;
Fig. 8B). Second, we found that on Barrel-ctx-6s dataset,
CINAC_v4 classifier performed better than CINAC_v1 and
CaImAn (CINAC_v4 F1 score=87.3%, CINAC_v1 F1
score=79.7%, CaImAn F1 score=53.3%; Fig. 8C, bottom
panel). This increase in F1 score from CINAC_v1 to
CINAC_V4 was because of an increase in the sensitivity
of the classifier (CINAC_v4 median sensitivity = 92.6%,
CINAC_v1 median sensitivity = 67.1%, CaImAn median
sensitivity = 43.5%; Fig. 8C, top panel) with a moderate
loss in precision (CINAC_v4 median precision = 84.3%,
CINAC_v1 median precision = 95.9%, CaImAn median
precision = 92.9%; Fig. 8C, middle panel). Overall, we
confirm here that adding part of a new dataset to the
training set of CINAC_v1 classifier allows us to improve
the performance on this new dataset. Thus, one could
use the training dataset of CINAC_v1 and add part of a
new dataset to train a classifier that would achieve bet-
ter performance than CINAC_v1 on this new data.
Because we benefited from already published data

from our group (Barrel-ctx-6s), we next asked whether we
could arrive at the same conclusion using CINAC_v1. We
used the activity inferred by CINAC_v1 on this data and
performed assemblies detection analysis as described
previously (Modol et al., 2020). We found the same num-
ber of assemblies as the original analysis (Extended Data
Fig. 8-3A,B, first two panels), as well as the same topo-
graphic organization (Extended Data Fig. 8-3A,B, bottom
panels). We confirmed that the assemblies detected by ei-
ther CaImAn or CINAC_v1 were composed of similar cells
(Extended Data Fig. 8-3C).

DeepCINAC performances on different cell types
A second important aspect to infer neuronal activity

from calcium imaging movies is the variety of cell types
recorded in the same field of view (e.g., interneuron and
pyramidal cells). In recordings from the hippocampus, we
observed that most interneurons have very different cal-
cium dynamics than pyramidal cells (higher fluorescence
signal followed by a plateau). Because CINAC_v1 was
mainly trained on the activity of pyramidal cells, we sus-
pected that it would not provide accurate inference on in-
terneurons. Using the GUI, we verified its prediction on

interneurons and concluded that they were not always op-
timal (Extended Data Fig. 8-1D). To improve activity infer-
ence on interneurons, we trained an interneuron specific
classifier. In more detail, the precision of the inference
was similar for CINAC_v1 and CINAC_v7 (CINAC_v1 me-
dian precision = 79%, CINAC_v7 median precision =
78.9%; Fig. 8D, top panel). However, CINAC_v7 provides
more sensitive inference (CINAC_v1 median sensitivity =
88.6%, CINAC_v7 median sensitivity = 92.6%; Fig. 8D,
middle panel). As a result, the specific classifier per-
formed better than the general one on interneurons
(CINAC_v1 median F1 score = 81.9%, CINAC_v7 median
F1 score= 85.1%; Fig. 8D, bottom panel).

Cell type inference using DeepCINAC
Recently, a deep-learning method using a similar model

to DeepCINAC was proposed to differentiate cell types
(Troullinou et al., 2019). This model was based on the
analysis of fluorescence traces from various cell types
and automatically classified imaged cells in different
types. We asked whether DeepCINAC would be able to
distinguish interneurons from pyramidal cells using as
input the calcium imaging movie rather than the fluores-
cence trace. Additionally, we added a noise category in
the training dataset allowing us to automatically discard
cells. We achieved a general F1 score of 86%. We had a
sensitivity of 90.2%, 81.6%, and 81.8% and a precision of
90.2%, 91.2%, and 60% for pyramidal, interneuron, and
noisy cells, respectively (Table 2).
Since activity inference performance using DeepCINAC

depends on the cell type, we perform this cell type predic-
tion before activity inference. During the activity inference
of a movie DeepCINAC can be configured to switch be-
tween different activity classifiers depending on the type
of the cell to predict.

Discussion
Deep learning-based method(s) to infer neuronal activ-

ity from two-photon calcium imaging datasets use cellular
fluorescence signals as inputs. Here, we propose a
method based on the visual inspection of the recordings.
We will discuss the advantages and limitations of this
approach.
Using the movie dynamics, we benefited from all the in-

formation available in the calcium imaging movie. This ap-
proach allowed us to not rely on a demixing algorithm to
produce the neuron’s traces. Instead, by working directly
on the raw calcium imaging movie, the algorithm has

Table 2: Cell type prediction confusion matrix

Ground truth
Pyramidal cell Interneuron Noise

Prediction Pyramidal cell 46 5 0
Interneuron 1 31 2
Noise 4 2 9

Confusion matrix, representing the number of true positives, true negatives,
false positives, and false negatives. Ground truth refers to the manually de-
tected interneurons and pyramidal cells. Prediction refers to the type pre-
dicted by the classifier for the same cells.
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learned to identify a transient and distinguish overlap ac-
tivity from a real transient. DeepCINAC achieves better
performance than CaImAn and is able to achieve human
performance level on some fields of view and cells.
Additionally, we show that a classifier trained on a spe-

cific dataset (“Hippo-dvlt-6s”) is able to generalize to
other datasets (Hippo-6m and Barrel-ctx-6s). DeepCINAC
allows training of flexible classifiers whose generalization
on new datasets can be improved by adding part of this
new dataset to the training (at the cost of slightly reduced
performance of the classifier on original data). However,
we show that generalization is not always achieved such
as in the case of a classifier trained on Hippo-dvt data and
used to predict activity on some very different datasets
(Hippo-GECO and Visual-ctx-6s). This is likely explained
by the difference in calcium indicator, imaging rate, and
imaging resolution. We demonstrated that this limitation
can be circumvented by training specific classifiers.
Overall, this approach allowed us to create classifiers that
scale to different developmental stages (from P5 to adult),
different types of neurons (pyramidal cells and interneurons),
as well as different indicators (GCaMP6s, GCaMP6m,
GECO).
Analysis of calcium imaging data may be impacted by

some factors: (1) small amplitude transients, (2) transients
occurring during the decay of another one, (3) summa-
tions, and (4) X and Y movement or neuropil activation.
Users can evaluate the impact of those factors through
visual inspection of the inferred activity using the
deepCINAC GUI.
Finally, we explored the range of values of hyperpara-

meters to optimize the accuracy of the classifier. Labeling
data are time consuming, but the training does not need
any parameters tuning and the prediction is straight for-
ward. Neither tedious manual tuning of parameters is re-
quired, nor a GPU on a local device because we provide a
notebook to run predictions on Google Colab (see
Materials and Methods). Predictions are fast, with a run-
time of around 10 s by cell for 12,500 frames, meaning,3
h for 1000 cells. However, a GPU would be necessary to
train the network on a big dataset.
Already widely used by many calcium imaging labs

(Driscoll et al., 2017; Gauthier and Tank, 2018; Katlowitz
et al., 2018; Andalman et al., 2019), CaImAn offers a per-
forming and functional analysis pipeline. Although the
complex fine tuning of CaImAn parameters on the dataset
might lead to a suboptimal spike inference from the
model, we decided to compare CaImAn against our
ground truth.
The benchmarks remain limited to a small number of

cells for which we established a ground truth and may be
extended to more cells. Notably, a future approach could
be to use more realistic simulated data such as done in a
recent work (Charles et al., 2019).
In the model we used, each cell was represented by a

segment of the field of view, in our case a 25 � 25 pixel
(50� 50mm) window that allows complete coverage of
the cell fluorescence and potential overlapping cells.
Consequently, the network is able to generalize its predic-
tion to recordings acquired with this resolution (2 mm/

pixel). However, to be efficient on another calcium imag-
ing dataset with a different resolution it would be neces-
sary to train a new classifier adjusting the window size
accordingly. Importantly, we trained the model on a selec-
tion of cells with valid segmentations; meaning that a cell
is not represented by several contours. The inference per-
formance of the classifier might decrease on cells whose
segmentation was not properly achieved.
Since precise spike inference cannot be experimentally

assessed on the data, we chose to infer the activity of the
cell defined by the fluorescence rise time instead of infer-
ring the spikes. However, with a ground truth based on
patch-clamp recordings, we could adapt this method to
switch from a binary classification task to a regression
task, predicting the number of spikes at each frame.

Conclusion
We built DeepCINAC basing the ground truth on visual

inspection of the movie and training the classifier on
movie segments. DeepCINAC offers a flexible, fast, and
easy-to-use toolbox to infer neuronal activity from a vari-
ety of two-photon calcium imaging dataset, reaching
human level performance. It provides the tools to measure
its performance based on human evaluation. Currently,
DeepCINAC provides several trained classifiers on CA1
two-photon calcium imaging at early postnatal stages; its
performance might still be improved with more labeled
data. In the future, we believe that a variety of classifiers
collaboratively trained for specific datasets should be
available to open access.
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