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Abstract

In vivo two-photon microscopy permits simultaneous recording of the activity of the same neuronal population
across multiple sessions in days or weeks, which is crucial for addressing many fundamental questions of
neuroscience. The field-of-view (FOV) alignment is a necessary step for identifying the same neurons across
multiple imaging sessions. Accurate FOV alignment becomes challenging in the situations of image blurring,
insufficient common neurons, or uneven background brightness. The existing methods largely fail to align FOV
pairs in these situations. The fully affine invariant approach has been applied in computer vision to register
real scene images with different backgrounds. However, its performance in calcium imaging data is unknown.
We explored the feasibility of using the fully affine invariant approach to align calcium FOV images across mul-
tiple sessions by examining the performance of five methods. Further, we compared their performance with
common feature-based methods as well as some classical methods with or without adaptive contrast en-
hancement. Using cellular resolution calcium imaging data recorded from two areas of the mouse motor cor-
tex over weeks, we show that all fully affine invariant methods provide more accurate FOV alignment results
than other methods in general and in the case of a few common neurons identified, uneven background
brightness or image blurring. This study demonstrated the feasibility and reliability of the fully affine invariant
methods in cross-session FOV alignment. These methods could be useful for neuroscience research, espe-
cially on questions that involve experience-dependent plasticity spanning over days or weeks.

Key words: cross-session field-of-view alignment; fully affine invariant approach; two-photon calcium
microscopy

Significance Statement

Field-of-view (FOV) alignment is challenging when neurons collected in two sessions are not one-to-one
mapped or calcium data are recorded under different imaging parameters and brain states. For the first
time, we explored the feasibility of using the fully affine invariant methods to align calcium FOV images
across multiple sessions and compared their performance with many conventional methods and their varia-
tions. We demonstrate that fully affine invariant methods outperform other conventional methods and are
robust under unfavorable conditions. Our work is important for studies on experience-dependent proc-
esses, such as learning and memory. Moreover, although fully affine invariant methods are conducted on
two-photon calcium imaging data, these methods should be promising in FOV alignment of one-photon or
widefield fluorescence microscopy.
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Introduction
In vivo two-photon calcium imaging on rodents is a cru-

cial technique for studying many fundamental questions
in the field of neuroscience such as visual processing and
motor control (Han et al., 2019; Hwang et al., 2019;
Stringer et al., 2019). This technique is particularly useful
for studying brain mechanisms of learning and memory as
it allows researchers to record experience-dependent
changes of neurons over extended periods of time in
awake behaving animals (Grewe et al., 2017; Pakan et al.,
2018; Namboodiri et al., 2019; Wagner et al., 2019).
To chronically follow neurodynamics, the same group of

neurons must be reliably registered across multiple sessions
(or days). The field-of-view (FOV) alignment is a necessary
step for cell registration (Kaifosh et al., 2014; Sheintuch et
al., 2017; Giovannucci et al., 2019). However, several factors
could induce uncertainty and potential errors in the FOV
alignment, rendering it a rather challenging step for cell
registration. First, manual head-fixing in each recording ses-
sion can easily lead to viewing angle change in addition to
X-Y plane translation and rotation, making a one-to-one
mapping of neural identity not necessarily attainable.
Second, for long-term recording, the quality of the micro-
scopic image may decrease because of photobleaching,
phototoxicity, and brain state change (Lichtman and
Conchello, 2005), necessitating the use of different acquisi-
tion parameters, which could result in different background
intensities and signal-to-noise ratios across sessions.
Lastly, for rodents, the common problem of dural regrowth
increases with the number of sessions, which reduces opti-
cal transparency and leads to image blurring (Heo et al.,
2016).
In the past, many efficient methods have been used to

register the calcium FOV across multiple sessions. These in-
clude classical intensity-based methods, such as TurboReg
(Thévenaz et al., 1998), Lucas-Kanade (LK; Baker and
Matthews, 2004), and enhanced correlation coefficient
(ECC; Evangelidis and Psarakis, 2008). There are also ap-
proaches like MOCO (Dubbs et al., 2016) and non-rigid
NoRMCorre (Pnevmatikakis and Giovannucci, 2017) used
by the popular CaImAn toolbox (Giovannucci et al., 2019).
Recently, feature-based approach, such as scale-invariant
feature transform (SIFT; Lowe, 2004), Speeded Up Robust
Features (SURF; Bay et al., 2008), Accelerated-KAZE
(AKAZE; Alcantarilla and Solutions, 2011), Binary Robust
Invariant Scalable Keypoints (BRISK; Leutenegger et al.,
2011), and Oriented FAST and Rotated BRIEF (ORB; Rublee
et al., 2011) have also been used in microscopic image
alignment (Stanciu et al., 2010; Ûnay and Stanciu, 2018;
Chen et al., 2019). However, because of different reasons,
these techniques could fail in the situations of image

blurring, insufficient common neurons or uneven back-
ground brightness. Given the limitations, a new approach in
FOV alignment that could achieve more robust results is
much warranted.
ASIFT (Yu and Morel, 2009, 2011) is a fully affine invari-

ant method. It simulates all possible affine distortions
caused by the viewing angle changes and then applying
the SIFT method to compare keypoints detected from all
the simulated images. ASIFT can acquire more keypoints
than SIFT even in the situation of negligible or moderate
camera view angle change (Yu and Morel, 2011), which
means that ASIFT could be applicable for calcium FOV
alignment. Moreover, the principles of ASIFT, i.e., match-
ing keypoints detected in both original images as well as
affine simulations, can be extended to other similar invari-
ant matching methods, such as SURF, AKAZE, ORB, and
BRISK, making them potential solutions for calcium activ-
ity FOV alignment. However, the performance of ASIFT
and extended fully affine feature-based methods [Affine-
SURF (ASURF), Affine-AKAZE (AAKAZE), Affine-BRISK
(ABRISK), and Affine-ORB (AORB)] on calcium imaging
data is unknown.
In this study, we investigated the performance of

ASIFT, ASURF, AAKAZE, ABRISK, and AORB on cross-
session FOV alignment of calcium imaging data. By using
L1-norm, we decreased their unreliability caused by the ran-
dom sample consensus (RANSAC; Fischler and Bolles,
1981). Further, we compared their performance with general
feature-based methods, i.e., SIFT, SURF, AKAZE, BRISK,
and ORB, widely used methods, i.e., LK, ECC, MOCO,
TurboReg, and NoRMCorre, as well as these widely used
methods combined with a contrast-limited adaptive histo-
gram equalization (CLAHE; Reza, 2004). For convenience,
the four groups of methods are named as the fully affine in-
variant group, feature-based group, the conventional group,
and CLAHE-based conventional group, respectively. We
found that the fully affine invariant group is superior to other
methods even in the situation of image blurring, insufficient
common neurons, and uneven background brightness. As
far as we know, this is the first study that demonstrated the
feasibility of the fully affine invariant approach in cross-ses-
sion FOV alignment of calcium imaging data.

Materials and Methods
Data collection
Calcium imaging data were collected from layer 2/3 in

the rostral forelimb area (RFA) and caudal forelimb area
(CFA) of the primary motor cortex with a custom-built in
vivo two-photon microscope while a male C57 mouse
learned a two-dimensional (2D) lever reaching task (Fig.
1A). GCaMP6f was injected into the RFA and the CFA to
express GCaMP6f in all neuron types. Two weeks after
virus injection, the skull located above the recording areas
was removed, and the brain surface was covered with a
glass coverslip. Behavioral training and two-photon imag-
ing began two weeks after the window surgery. The
mouse received one session (;100 trials) per day and
17 sessions in total. Each FOV had a size of 512� 512
pixels and the acquisition frequency was 15Hz. The
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experimental procedure is summarized in Figure 1B. All
animal procedures were performed in accordance with
the Chinese University of Hong Kong animal care commit-
tee’s regulations.

Regions of interest (ROIs) mask
Neuron detection and FOV alignment are two necessary

steps for cell registration. Neuron detection aims to obtain
a ROIs mask for each imaging session. The ROIs mask in-
cludes coordinates or spatial footprints of all active neu-
rons that appeared in one session. FOV alignment seeks
to transform the ROIs mask from different sessions into
one single coordinate system. Cellpose (Stringer et al.,
2020) was applied to the mean calcium image of each

session to get the corresponding ROIs mask. Cellpose can
precisely segment neurons of various types and without the
needs of model retraining or parameter adjustments. Since
dendritic spines can easily be misdetected as neurons, we
excluded them by requiring that the ROI mask of individual
neurons should contain at least 60 pixels. Then, each ROIs
mask was binaried so that the pixel value within a neuron
is 255 and the pixel of other places is set as 0. In this
study, the paired raw ROIs masks were represented as
ROIsMask

raw
n ;ROIsMask

raw
template

� �
. Here, the template was de-

fined as the first session; n defined the session index. In ad-
dition, the neurons that existed in both template session and
each registered session were manually selected and were
saved in ROIsMask

common
n ;ROIsMask

common
template

� �
, which was

Figure 1. Illustration of experimental design and the proposed FOV alignment approach. A, In vivo set up for two-photon imaging
data collection. B, Experimental procedure. The GCaMP6f was injected into the RFA and CFA of the layer 2/3 motor cortex. Two
weeks later, a cranial window surgery was conducted above the RFA and CFA. Behavioral training and two-photon imaging record-
ing began two weeks after the window surgery. The mouse received one session per day and 17 sessions in total. C, Geometric in-
terpretation of the affine decomposition. l and c are the zoom factor and the rotation angle of the camera around the optical axis
respectively. f and u corresponds to the longitude and latitude angles of the optical axis. u0 represents the frontal view of the flat
object. D, Generic phases of the ASIFT method. Image1 and Image2 were individually transformed by simulating a large set of affine
distortions caused by the change of longitude f and latitude u . Then, SIFT was used to detect and describe the keypoints on every
simulated image. NNDR was used to match the keypoints. RANSAC was used to exclude outliers from initial matches. The remain-
ing inliers were used to estimate the transformation matrix. SIFT was replaced by SURF, AKAZE, BRISK, and ORB to achieve
ASURF, AAKAZE, ABRISK, and AORB. E, Outline of the FOV alignment procedure. TurboReg was used to process within-session
motion artifacts. The motion-corrected imaging session was averaged and normalized to get the corresponding FOV image. The
FOV image of the first session was used as the template, and FOV images of all other sessions were aligned to it. The alignment
was achieved by fully affine invariant methods (ASIFT, ASURF, AAKAZE, ABRISK, AORB), the feature-based methods (SIFT, SURF,
AKAZE, BRISK, ORB), the conventional methods (LK, ECC, MOCO, TurboReg, NoRMCorre), and the CLAHE-based conventional
methods (LK-CLAHE, ECC-CLAHE, MOCO-CLAHE, TurboReg-CLAHE, NoRMCorre-CLAHE).

Research Article: Methods/New Tools 3 of 12

July/August 2020, 7(4) ENEURO.0054-20.2020 eNeuro.org



used to evaluate the performance of different alignment
methods.

ASIFTmethod
Generally, a digital image u of a flat physical object u0

can be expressed as u = G1 Au0. Here, G1 is a Gaussian
kernel modeling the optical blur, and A is a planar protec-
tive map. Moreover, if the shape of u0 is locally smooth,
the protective map A can be simplified to an affine map.
Therefore, the local deformation model is u(x, y) ! u(ax 1
by 1 e, cx 1 dy 1 f) in each image region (x, y), where

A ¼ a b
c d

� �
represents an affine map and

e
f

� �
repre-

sents the translation. Further, the affine map A with posi-
tive determinant can be decomposed as

A ¼ l
cosc �sinc
sinc cosc

� �
t 0
0 1

� �
cosf �sinf
sinf cosf

� �
;

where l and c denote the zoom factor and the rotation
angle of camera around optical axis, respectively; f and
u = arccos(1/t) represents the longitude and latitude an-
gles of the optical axis, respectively. Figure 1C shows the
geometric interpretation of the affine decomposition.
Suppose Image1 = G1A1u0 and Image2 = G1A2 u0 are

two digital images of the same object u0 taken with differ-
ent affine map A1 and A2, respectively. To register Image1
and Image2, each of them was individually transformed
by simulating a large set of affine distortions caused by
the change of longitude f and latitude u . The simulation
was achieved by varying f with the change of u , with the
step Df = (72°/t), t = (1/cosu ), c [ [0, p ], and u [ [–p /2,
p /2]. This operation enables ASIFT to be invariant to view-
ing angle changes. Then, SIFT was used to detect and de-
scribe the keypoints on simulated images. The keypoints
detected by SIFT are invariant to translation, rotation, and
scaling. Therefore, ASIFT becomes a fully invariant method
by combining SIFT and the affine simulation.
In this study, SIFT was replaced by SURF, AKAZE,

BRISK, and ORB to achieve ASURF, AAKAZE, ABRISK,
and AORB. After feature detection and description, the
nearest neighbor distance ratio (NNDR) was used to
match the keypoints detected in two simulated image
sets (Lowe, 2004). The threshold ratio of NNDR was set
as 0.75. Then, outliers were further excluded from initial
matches by using RANSAC with 150,000 iterations and
99.9% confidence. The transformation matrix was esti-
mated using the remaining inliers. Figure 1D presented
the procedure of the fully affine invariant approach.

FOV alignment
FOV alignment included two steps: within-session

motion correction and cross-session alignment. The inten-
sity-based method TurboReg was used to process within-
session motion artifacts because calcium imaging data
collected within each session have a similar intensity distri-
bution. Specifically, for each session, the average image
was taken as the template, and all other calcium frames
within this session were registered to the template. Then,
the motion-corrected calcium session was averaged and

normalized to get the corresponding FOV image. For
cross-session alignment, the FOV image of the first session
was used as the template, and FOV images of all other ses-
sions were aligned to it. The alignment was achieved by
fully affine invariant methods (ASIFT, ASURF, AAKAZE,
ABRISK, AORB), the feature-based methods (SIFT, SURF,
AKAZE, BRISK, ORB), the conventional methods (LK,
ECC, MOCO, TurboReg, NoRMCorre), and the CLAHE-
based conventional methods (LK-CLAHE, ECC-CLAHE,
MOCO-CLAHE, TurboReg-CLAHE, NoRMCorre-CLAHE).
The derived transformation matrix was applied on
ROIsMask

common
n , where n defines the session index. The

correlation between ROIsMask
common
n and ROIsMask

common
template

was used to evaluate the performance of these methods.
Specifically, the 2D ROIs masks were first reshaped into 1D
vectors, then the Pearson’s linear correlation coefficient
between these vectors was calculated. The ROI masks are
binary images containing only 0 or 255. Therefore, the
higher the correlation coefficient, the more similar the ROIs
masks. The FOV alignment procedure was summarized in
Figure 1E.

Reliability improvement of the fully affine invariant
group and the feature-based group
NNDR was used to find initial matches of keypoints for

both the fully affine invariant group and the feature-based
group. Further, RANSAC was used to exclude outliers from
the initial matches. However, in theory, RANSAC cannot
ensure to eliminate all outliers and preserve all inliers (Chen
et al., 2019). If some important inliers are missed, the regis-
tered image will be distorted. Moreover, RANSAC could
produce different results each time because of its random-
ness (Hast et al., 2013). To obtain reliable and reproducible
results for both two groups, we repetitively run the NNDR
and RANSAC 100 times for each image pair, then choose
the transformation matrix which minimizes the L1-norm of
the intensity difference of where neuron appears between
ROIsMask

raw
n ;ROIsMask

raw
template

� �
.

CLAHE for the conventional group
Uneven background brightness of the FOV image will de-

crease the performance of the methods in the conventional
group. Therefore, CLAHE was used to enhance the contrast
of FOV images. Specifically, CLAHE divided an image into
multiple non-overlapping blocks. For each block, the histo-
gram was clipped and redistributed to avoid overenhance-
ment. Further, bilinear interpolation was used for adjacent
blocks to avoid the appearance of block artifacts. After con-
trast enhancement, methods in the conventional group
were applied on CLAHE adjusted FOV images, and their re-
sults were compared with the fully affine invariant group.

Image quality metrics
A sharpness metrics was used to evaluate image blurri-

ness. Image sharpness is defined as the ratio of high-fre-
quency components above a certain threshold to all
pixels in an image (De and Masilamani, 2013). The lower
the value, the more blurred the FOV image. The high-fre-
quency threshold was calculated by M/1000. M is the
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maximum value of the centered Fourier spectrum of the
FOV template. It has been shown that this particular
threshold value gives a fairly accurate sense of image
quality (De and Masilamani, 2013).
The other metrics is the number of neurons common

to each ROIsMask
raw
n and ROIsMask

raw
template. This metrics

measures the content similarity of the FOV image pairs.
Usually, the higher the similarity, the more the common
neurons.

Codes and computational hardware
Opencv-contrib-python3.4.2.17 (Bradski, 2000) was

used to perform the function of CLAHE, feature-based
methods, and fully affine invariant methods. Python pack-
age pyStackReg (https://pypi.org/project/pystackreg/)
was used for TurboReg. MATLAB 2020a was used to run
LK, ECC, and non-rigid NoRMCorre. Codes of LK and

ECC were from the online IAT toolbox (Evangelidis, 2013).
Codes of non-rigid NoRMCorre were public online. Fiji
was used for MOCO.
All above codes were performed on a Windows 10-

based laptop equipped with an Intel i7-5500U CPU run-
ning at 2.40GHz and 16GB RAM.

Code accessibility
The code described in the paper is freely available on-

line at https://github.com/chunyueli/FAIMCalcium. The
code is available as Extended Data.

Results
In vivo calcium imaging data
Calcium imaging data of eight sessions with irregular

session-interval collected from two cortical areas RFA

Figure 2. Basic information of the collected FOV images. A, The FOV image of each session from RFA, labeled as A5. B, The ROIs
mask of each session from A5. C, The FOV image of each session from CFA, labeled as A6. D, The ROIs mask of each session
from A6. The yellow circles represent the detected neurons in each FOV image. The yellow circles filled with black color represent
the neurons common to each ROIsMask

raw
n and ROIsMask

raw
template. n defines the session index. S is short for session. E, The sharpness

metrics of each session for A5. The lower the value, the more blurred the FOV image. F, Number of neurons common to each
ROIsMask

raw
n and ROIsMask

raw
template for A5. G, The sharpness metrics of each session for A6. H, Number of neurons common to each

ROIsMask
raw
n and ROIsMask

raw
template for A6.
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and CFA (labeled as A5 and A6, respectively) of a mouse
were used in this study. For each imaging area, the
FOV image of the first recorded session (labeled as
S06) was selected as the template. Figure 2A,C shows
the FOV image of each session from A5 and A6. As can
be seen, the background brightness of the FOV images
were uneven and varied across sessions. The yellow
circles in Figure 2B,D represent the detected neurons in
ROIsMask

raw
n ;n 2 S06;S08;S09;S10;S11;S12;S16;S17ð Þ.

The yellow circles filled with black color represent the

neurons common to each ROIsMask
raw
n and ROIsMask

raw
template.

As can be seen, the common neurons varied across ses-
sions, so there was no one-to-one mapping between the
template session and the registered session.

Image quality evaluation
Figure 2E,G shows the sharpness metrics of each

FOV image from A5 and A6. The results indicate that
session 17 (S17) has the minimum sharpness value for

Table 1. Quantitative comparison between the fully affine invariant group and the feature-based group with respect to area A5

Methods

Features detected
in image pair

Inliers
Matched
features

Inlier
ratio Methods

Features detected
in image pair

Inliers
Matched
features

Inlier
ratioImage

Template
(S06) Image

Template
(S06)

Image pair #1 of A5 (S08, S06)
ASIFT 10636 9524 95 241 0.39 SIFT 629 565 10 17 0.59
ASURF 20012 18698 131 427 0.30 SURF 1258 1174 17 42 0.40
AAKAZE 3120 2893 55 89 0.62 AKAZE 236 209 11 18 0.61
ABRISK 8677 7667 32 57 0.56 BRISK 918 894 10 17 0.59
AORB 13927 13427 31 100 0.31 ORB 500 500 9 11 0.82

Image pair #2 of A5 (S09, S06)
ASIFT 11357 9524 82 195 0.42 SIFT 690 565 12 22 0.55
ASURF 20398 18698 98 397 0.25 SURF 1346 1174 17 36 0.47
AAKAZE 3267 2893 47 91 0.52 AKAZE 269 209 10 16 0.63
ABRISK 9830 7667 50 80 0.63 BRISK 1169 894 15 26 0.58
AORB 14111 13427 43 96 0.45 ORB 500 500 9 17 0.53

Image pair #3 of A5 (S10, S06)
ASIFT 12935 9524 41 174 0.23 SIFT 771 565 10 23 0.43
ASURF 22158 18698 49 408 0.12 SURF 1466 1174 7 45 0.16
AAKAZE 3697 2893 29 67 0.43 AKAZE 270 209 8 15 0.53
ABRISK 10848 7667 21 41 0.51 BRISK 1260 894 10 15 0.67
AORB 14387 13427 18 103 0.17 ORB 500 500 4 8 0.50

Image pair #4 of A5 (S11, S06)
ASIFT 13833 9524 61 163 0.37 SIFT 850 565 9 26 0.35
ASURF 22345 18698 83 407 0.20 SURF 1446 1174 8 32 0.25
AAKAZE 3753 2893 30 76 0.39 AKAZE 291 209 7 10 0.70
ABRISK 11149 7667 18 44 0.41 BRISK 1243 894 11 18 0.61
AORB 14514 13427 20 105 0.19 ORB 500 500 4 5 0.80

Image pair #5 of A5 (S12, S06)
ASIFT 10106 9524 71 176 0.40 SIFT 588 565 13 20 0.65
ASURF 20415 18698 71 404 0.18 SURF 1293 1174 7 35 0.20
AAKAZE 3239 2893 47 90 0.52 AKAZE 240 209 15 19 0.79
ABRISK 8477 7667 29 50 0.58 BRISK 874 894 6 9 0.67
AORB 14062 13427 56 148 0.38 ORB 500 500 13 25 0.52

Image pair #6 of A5 (S16, S06)
ASIFT 9751 9524 17 114 0.15 SIFT 613 565 4 9 0.44
ASURF 20095 18698 28 296 0.095 SURF 1275 1174 6 24 0.25
AAKAZE 3269 2893 12 39 0.31 AKAZE 240 209 5 15 0.33
ABRISK 7416 7667 13 40 0.33 BRISK 811 894 4 8 0.50
AORB 13690 13427 16 97 0.16 ORB 500 500 8 24 0.33

Image pair #7 of A5 (S17, S06)
ASIFT 3945 9524 20 69 0.29 SIFT 202 565 4 5 0.80
ASURF 12914 18698 20 242 0.08 SURF 649 1174 6 27 0.22
AAKAZE 1802 2893 13 33 0.39 AKAZE 128 209 5 8 0.63
ABRISK 3092 7667 12 26 0.46 BRISK 201 894 4 4 1.00
AORB 9454 13427 13 85 0.15 ORB 498 500 7 14 0.50

Mean values for all image pairs
ASIFT 10366.14 9524 55.29 161.71 0.34 SIFT 620.43 565 8.86 17.43 0.51
ASURF 19762.43 18698 68.57 368.71 0.19 SURF 1247.57 1174 9.71 34.43 0.28
AAKAZE 3163.86 2893 33.28 69.29 0.48 AKAZE 239.14 209 8.71 14.43 0.60
ABRISK 8498.43 7667 25 48.26 0.52 BRISK 925.14 894 8.57 13.86 0.62
AORB 13449.29 13427 28.14 104.86 0.27 ORB 499.71 500 7.71 14.85 0.52
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both areas. Thus, S17 was more blurred than other
sessions for both areas. Figure 2F,H displays the num-
ber of neurons common to each ROIsMask

raw
n and

ROIsMask
raw
template for the two areas. The results showed

that S16 and S17 had smaller number of common neu-
rons than other sessions of A5. S11 and S17 had small-
er number of common neurons than other sessions of
A6.

Comparison between the fully affine invariant group
and the feature-based group
Tables 1, 2 show the quantitative comparison between

the fully affine invariant group and the feature-based
group of the A5 and A6, respectively. As can be seen, fully
affine invariant methods generated more inliers than fea-
ture-based methods on sessions that had a low sharp-
ness metrics or small common neuron number. For

Table 2. Quantitative comparison between the fully affine invariant group and the feature-based group with respect to area
A6

Methods

Features detected
in image pair

Inliers
Matched
features

Inlier
ratio Methods

Features detected
in image pair

Inliers
Matched
features

Inlier
ratioImage

Template
(S06) Image

Template
(S06)

Image pair #1 of A6 (S08, S06)
ASIFT 6485 6184 1236 1412 0.88 SIFT 431 444 117 143 0.82
ASURF 13192 12398 1705 2351 0.73 SURF 832 843 123 162 0.76
AAKAZE 2864 2586 840 1179 0.71 AKAZE 208 191 95 108 0.88
ABRISK 5221 5164 777 880 0.88 BRISK 417 432 86 93 0.92
AORB 13177 12917 1467 1858 0.79 ORB 500 500 101 127 0.80

Image pair #2 of A6 (S09, S06)
ASIFT 6611 6184 191 365 0.52 SIFT 477 444 30 44 0.68
ASURF 13411 12398 322 734 0.44 SURF 886 843 30 59 0.51
AAKAZE 2530 2586 351 490 0.72 AKAZE 219 191 37 56 0.66
ABRISK 4636 5164 203 296 0.69 BRISK 419 432 30 43 0.70
AORB 12477 12917 335 555 0.60 ORB 500 500 32 52 0.62

Image pair #3 of A6 (S10, S06)
ASIFT 7681 6184 469 602 0.78 SIFT 521 444 53 66 0.80
ASURF 12154 12398 554 880 0.63 SURF 844 843 62 86 0.72
AAKAZE 2837 2586 422 546 0.77 AKAZE 263 191 48 61 0.79
ABRISK 6476 5164 459 548 0.84 BRISK 643 432 70 74 0.95
AORB 13486 12917 784 1027 0.76 ORB 500 500 61 75 0.81

Image pair #4 of A6 (S11, S06)
ASIFT 8556 6184 132 273 0.48 SIFT 581 444 30 40 0.75
ASURF 13982 12398 195 502 0.39 SURF 931 843 35 53 0.66
AAKAZE 3033 2586 200 299 0.67 AKAZE 271 191 31 47 0.66
ABRISK 7262 5164 159 239 0.67 BRISK 720 432 32 42 0.76
AORB 14158 12917 255 396 0.64 ORB 500 500 26 41 0.63

Image pair #5 of A6 (S12, S06)
ASIFT 9027 6184 426 624 0.68 SIFT 651 444 58 79 0.73
ASURF 13988 12398 448 772 0.58 SURF 935 843 57 85 0.67
AAKAZE 3031 2586 278 403 0.69 AKAZE 251 191 52 66 0.79
ABRISK 7478 5164 365 452 0.81 BRISK 662 432 50 59 0.85
AORB 13889 12917 553 750 0.74 ORB 500 500 62 77 0.81

Image pair #6 of A6 (S16 S06)
ASIFT 6248 6184 392 532 0.74 SIFT 388 444 49 56 0.88
ASURF 12517 12398 399 681 0.59 SURF 782 843 53 75 0.71
AAKAZE 2424 2586 338 359 0.94 AKAZE 197 191 47 56 0.84
ABRISK 4596 5164 240 271 0.89 BRISK 371 432 41 53 0.77
AORB 12004 12917 447 556 0.80 ORB 500 500 49 57 0.86

Image pair #7 of A6 (S17, S06)
ASIFT 4343 6184 80 140 0.57 SIFT 279 444 17 22 0.77
ASURF 11170 12398 82 291 0.28 SURF 704 843 13 30 0.43
AAKAZE 1885 2586 62 92 0.67 AKAZE 140 191 16 19 0.84
ABRISK 3449 5164 43 57 0.75 BRISK 254 432 19 20 0.95
AORB 10545 12917 76 143 0.53 ORB 500 500 21 34 0.62

Mean values for all image pairs
ASIFT 6993 6184 418 564 0.74 SIFT 475.43 444 50.57 64.29 0.79
ASURF 12916.29 12398 529.29 887.29 0.60 SURF 844.86 843 53.29 78.57 0.68
AAKAZE 2657.71 2586 355.86 481.14 0.74 AKAZE 221.29 191 46.57 59 0.79
ABRISK 5588.29 5164 320.86 391.86 0.82 BRISK 498 432 46.86 54.86 0.85
AORB 12819.42 12917 559.57 755 0.74 ORB 500 500 50.29 66.14 0.76
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instance, the inliers of ASIFT, ASURF, AAKAZE, ABRISK,
and AORB were 20, 20, 13, 12, and 13 for S17 of A5 while
the inliers obtained by SIFT, SURF, AKAZE, BRISK, and
ORB were 4, 6, 5, 4, and 7 for S17 of A5.
Figure 3 shows the correlation between ROIsMask

common
template

and the registered ROIsMask
common
n for A5 and A6. n [ (S08,

S09, S10, S11, S12, S16, S17). Figure 3A shows that fully
affine invariant methods can reliably register FOV images
across multiple sessions. In contrast, SIFT and BRISK
failed to register the S16 and S17 of A5. Moreover, ORB
failed to register the S10 and S11 of A5. Taken together,
feature-based methods could easily fail when they cannot

Figure 3. Comparison of performance between the fully affine invariant group and the feature-based group. The correlation between
ROIsMask

common
template and the registered ROIsMask

common
n ; n 2 S08;S09;S10;S11;S12;S16;S17ð Þ of different methods for area A5 (A) and area

A6 (B). The results of the fully affine invariant group and the feature-based group are represented by dashed lines and dotted lines, respec-
tively. The solid lines show the correlation coefficient of unregistered ROIs mask-pair ROIsMask

common
n ;ROIsMask

common
template

� �
.

Figure 4. Comparison of performance between the fully affine invariant group and the conventional group. The correlation between
ROIsMask

common
template and the registered ROIsMask

common
n ; n 2 S08;S09;S10;S11;S12;S16;S17ð Þ of different methods for area A5 (A) and

A6 (B). The correlation coefficients of the fully affine invariant group and the unregistered pairs of ROIsMask
common
n ;ROIsMask

common
template

� �
are represented by black dashed lines and black solid lines, respectively. The results of LK, ECC, MOCO, TurboReg, and
NoRMCorre were shown in dark red, dashed gray, purple, dashed yellow, and blue color, respectively.
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generate enough inliers. For area A6, the fully affine invari-
ant group and feature-based group achieved similar re-
sults (Fig. 3B). In addition, Tables 1, 2 show that the mean
ratios of inliers to initial matches (Inliers/Matched features)
of the fully affine invariant group is lower than that of the
feature-based group for both areas.

Comparison between the fully affine invariant group
and the conventional group
Different parameters were tested for methods in the

conventional group to maximize their performance. The
iteration of LK and ECC was set to 100, the number of lev-
els for multiresolution was set to 3, and a total of four dif-
ferent transformation types (affine, translation, Euclidean,
and homography) were compared on all FOV pairs. After
comparison, Euclidean was applied because it produced
the best results. For the non-rigid NoRMCorre method,

five different square patch sizes (24, 32, 48, 96, 128) were
tested with other parameters set as default values. Finally,
the default patch size value 32 was adopted in the current
study. For TurboReg, four different transformation types
(affine, translation, rigid body, and bilinear) were exam-
ined on all FOV pairs. Lastly, a rigid body was employed
in this study. For MOCO, the default parameters were
used.
In Figure 4, we compared each method in the fully af-

fine invariant group with all methods in the conventional
group. As can be seen, ASIFT, ASURF, AAKAZE,
ABRISK, and AORB outperformed the methods in the
conventional group for most sessions from A5 and A6.
For A5, all methods in the conventional group failed to
register sessions that had low sharpness metrics (S17)
or few common neurons (S16; Fig. 4A). For A6, the in-
tensity-based methods, i.e., LK, ECC, and TurboReg,
failed when the session had both a low sharpness

Figure 5. Comparison of performance between the fully affine invariant group and the CLAHE-based conventional group. A, The
CLAHE adjusted FOV image of each session from A5 (upper row) and A6 (lower row). CLAHE, contrast limited adaptive histogram
equalization. The correlation between ROIsMask

common
template and the registered ROIsMask

common
n ;n 2 S08;S09;S10;S11;S12;S16;S17ð Þ of

different methods for area A5 (B) and A6 (C). The correlation coefficients of the fully affine invariant group and the unregistered pairs
of ROIsMask

common
n ;ROIsMask

common
template

� �
are represented by black dashed lines and black solid lines, respectively. The results of LK-

CLAHE, ECC-CLAHE, MOCO-CLAHE, TurboReg-CLAHE, and NoRMCorre-CLAHE were shown in dark red, dashed gray, purple,
dashed yellow, and blue color, respectively.
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metrics and a small common neuron number (S17).
Moreover, the performance of MOCO and non-rigid
NoRMCorre decreased in sessions with fewer common
neurons (S11 and S17; Fig. 4B).

Comparison between the fully affine invariant group
and the CLAHE-based conventional group
We tested different parameters for CLAHE, and finally

a block size of 8� 8 and contrast limiting threshold = 1
were adopted in this study. Figure 5A shows the CLAHE
adjusted FOV image of each session from A5 and A6.
As can be seen, the local details in the images are more
recognizable when compared with the results shown in
Figure 2A,C.
Fully affine invariant methods were compared with

CLAHE-based conventional methods (Fig. 5B,C). Results
showed that ASIFT, ASURF, AAKAZE, ABRISK, and
AORB outperformed the methods in the CLAHE-based
conventional group for most of sessions from both A5 and
A6. The performance of MOCO-CLAHE and non-rigid
NoRMCorre-CLAHE decreased in sessions with small
common neuron number (S16 for A5; S11 and S17 for
A6). Besides, TurboReg-CLAHE failed to register the low
sharpness session S17 for A5 and A6. Figure 6 visualizes
the alignment results on S17 of the fully affine invariant
group and the CLAHE-based conventional group for A5
(Fig. 6A,B) and A6 (Fig. 6C,D), respectively. The higher de-
gree of overlap between the template and the registered
ROIs mask, the better the alignment results. The overlap
results are in line with the results shown in Figure 5B,C.

Themean and standard error of alignment results for
the four groups
The mean 6 SEM of the correlation on all registered

pairs ROIsMask
common
n ;ROIsMask

common
template

n o
of A5 and A6 for

the four groups of approach are shown in Figure 7. For
A5, the results indicate that the fully affine invariant group
achieves better results than all other groups. Moreover,
the fully affine invariant group outperforms the conven-
tional group and the CLAHE-based conventional group
for A6. Besides, methods in the CLAHE-based conven-
tional group outperform the corresponding methods in
conventional group for both areas.

Discussion
In this study, we introduce new methodologies for

cross-session FOV alignment. We explore the perform-
ance of ASIFT, ASURF, AAKAZE, ABRISK, and AORB on
FOV alignment of in vivo calcium imaging data, and we im-
prove their reliability by using L1-norm. Furthermore, we
compare their performance with general feature-based meth-
ods (SIFT, SURF, AKAZE, BRISK, ORB), the conventional
methods (LK, ECC, MOCO, TurboReg, NoRMCorre), and
the CLAHE-based conventional methods (LK-CLAHE, ECC-
CLAHE, MOCO-CLAHE, TurboReg-CLAHE, NoRMCorre-
CLAHE). Our results show that the fully affine invariant meth-
ods outperform the other methods in general and also in the
case of image blurring, insufficient common neurons, and un-
even background brightness. To the best of our knowledge,
this is the first study that proves the feasibility of fully affine in-
variant methods in cross-session calcium FOV alignment.

Figure 6. Visualization of the overlay of the ROIs mask-pairs on S17 of A5 and A6. The overlay of the ROIsMask
common
template (blue) and the

registered ROIsMask
common
n (red) on S17 of the fully affine invariant group (A) and the CLAHE-based conventional group (B) for area

A5. The overlay of the ROIsMask
common
template (blue) and the registered ROIsMask

common
n (red) on S17 of the fully affine invariant group (C) and

the CLAHE-based conventional group (D) for area A6. The higher degree of overlap between the template and the registered ROIs
mask, the better the alignment results.
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These methods could be useful for neuroscience research,
especially for studies involving experience-dependent plastic-
ity spanning over days or weeks.
Fully affine invariant methods outperform feature-based

methods because they use different ways to extract key-
points. Specifically, feature-based methods only detect
keypoints on original image pair, while fully affine-invari-
ant methods also detect keypoints on simulated images
caused by change of the viewing angle. However, the po-
tential drawback is that full affine-invariant methods are
more prone to accumulation of keypoints that are not dis-
criminative. As a result, it could be difficult for NNDR and
RANSAC to match keypoints as well as to keep inliers when
the discrimination is low. Studies have shown that when the
ratio of inliers to initial matches is low, methods like RANSAC
are unlikely to find a good solution since it does not test
enough hypotheses (Raguram et al., 2008). Moreover,
RANSAC could produce different results each time because
of its randomness (Hast et al., 2013). We tried to solve this
problem by replacing RANSAC with other advanced meth-
ods, i.e., progressive sample consensus (PROSAC; Chum
and Matas, 2005) and grid-based motion statistics (Bian
et al., 2017). However, both methods cannot generate
reproducible results when the ratio of inliers to initial
matches is low (data not shown). In this study, we over-
come this problem by repetitively running the NNDR and
RANSAC for multiple times (100 times in the current
study) and choosing the transformation matrix which
minimizes L1-norm of the intensity difference where neu-
ron appears between ROIsMask

raw
n ;ROIsMask

raw
template

n o
.

After using this simple operation, fully affine invariant
methods can achieve reproducible results even if they
have a low inlier ratio.
Methods in the conventional group decrease their per-

formance in sessions with small common neuron number
for various reasons. Intensity-based methods, i.e., LK,
ECC, and TurboReg, register images based on global in-
tensity information. When the common neuron number is
small, the intensity difference of the non-common area

may have a larger impact on the results of registration
than that of the common area, making it difficult to find
the optimal solution. MOCO and non-rigid NoRMCorre
register the image pair using frequency domain informa-
tion within the whole image or single patch. MOCO cannot
correct rotation artifacts which frequently happen in
cross-session imaging. Non-rigid NoRMCorre may not be
applicable when the patch does not contain enough spa-
tial features (Mitani and Komiyama, 2018). In contrast, the
fully affine invariant group registers the image pair using
local keypoints as a statistic of the image content. They
avoid to use global image content, thereby decreasing the
negative effects of the different contents in the FOV image
pair. Therefore, the fully affine invariant group outperforms
the conventional group in the case of insufficient common
neurons. Additionally, CLAHE increases the accuracy of
methods in the conventional group because it improves
image characteristics of uneven brightness regions.
CLAHE enhances local image details by directly manipu-
lating the intensity values of individual pixels in each
image block. However, the results of methods in CLAHE-
based conventional group are still inferior to those of fully
affine invariant methods in most sessions. In other words,
fully affine invariant methods do not require CLAHE to ob-
tain reliable results. Thus, fully affine invariant methods
are robust to uneven background brightness.
In this study, we improve the reliability of the fully affine

invariant group by using an L1-norm. However, an alter-
native could be to use dimension reduction methods,
such as principal components analysis, to increase the
discrimination of keypoints. Besides, here, fully affine in-
variant methods are applied as offline methods for FOV
alignment. It would be desirable to extend them as online
registration methods, which will help the experimenter to
more efficiently collect the same group of neurons across
days or weeks in the experiments. Moreover, we did
not include SIMA (Kaifosh et al., 2014) and Suite2p
(Pachitariu et al., 2017) in our study, because alignment
methods adopted by SIMA and Suite2p are not designed
for multiday recording. However, we compared our

Figure 7. The mean 6 SEM of the correlations on all registered ROIs mask-pairs ROIsMask
common
n ;ROIsMask

common
template

� �
of area A5 (left)

and A6 (right) for the four groups of approach.
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proposed methods with the built-in method of CaImAn,
i.e., NoRMCorre.
This study is the first and comprehensive work investi-

gating the performance of ASIFT, ASURF, AAKAZE,
ABRISK, and AORB on longitudinal cellular resolution
calcium imaging data. These methods will be useful for
many neuroscience studies involving chronic changes in
neuronal activities. Moreover, although ASIFT, ASURF,
AAKAZE, ABRISK, and AORB are conducted on two-
photon microscopy-based calcium imaging data, these
methods should be promising in registering FOV images
collected by one-photon or widefield fluorescence
microscopy.
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