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Abstract
Background Surgical outcome prediction models are use-
ful for many purposes, including informed consent, shared
decision making, preoperative mitigation of modifiable risk,
and risk-adjusted quality measures. The recently reported
Surgical Risk Preoperative Assessment System (SURPAS)
universal risk calculators were developed using 2005-2012
American College of Surgeons National Surgical Quality

Improvement Program (ACS-NSQIP), and they demon-
strated excellent overall and specialty-specific performance.
However, surgeons must assess whether universal calcu-
lators are accurate for the small subset of procedures they
perform. To our knowledge, SURPAS has not been tested
in a subset of patients undergoing lower-extremity total joint
arthroplasty (TJA).
Questions/purposes How accurate are SURPAS models’
predictions for patients undergoing TJA?
Methods We identified an internal subset of patients un-
dergoing non-emergency THA or TKA from the 2012 ACS-
NSQIP, the most recent year of the SURPAS development
dataset. To assess the accuracy of SURPAS prediction
models, 30-day postoperative outcomes were defined as in
the original SURPAS study: mortality, overall morbidity, and
six complication clusters—pulmonary, infectious, cardiac or
transfusion, renal, venous thromboembolic, and neurologic.
We calculated predicted outcome probabilities by applying
coefficients from the published SURPAS logistic regression
models to the TJA cohort. Discrimination was assessed with
C-indexes, and calibration was assessed with Hosmer-
Lemeshow 10-group chi-square tests and decile plots.
Results The 30-day postoperative mortality rate for TJA
was 0.1%, substantially lower than the 1% mortality rate in
the SURPAS development dataset. The most common
postoperative complications for TJA were intraoperative or
postoperative transfusion (16%), urinary tract infection
(5%), and vein thrombosis (3%). The C-indexes for joint
arthroplasty ranged from 0.56 for venous thromboembolism
(95% CI 0.53 to 0.59 versus SURPAS C-index 0.78) to
0.82 for mortality (95% CI 0.76 to 0.88 versus SURPAS
C-index 0.94). All joint arthroplasty C-index estimates, in-
cluding CIs, were lower than those reported in the original
SURPAS development study. Decile plots and Hosmer-
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Lemeshow tests indicated poor calibration. Observed mor-
tality rates were lower than expected for patients in all risk
deciles (lowest decile: no observed deaths, 0.0% versus
expected 0.1%; highest decile: observed mortality 0.7%
versus expected 2%; p < 0.001). Conversely, observed
morbidity rates were higher than expected across all risk
deciles (lowest decile: observed 12% versus expected 8%;
highest decile: observed morbidity 32% versus expected
25%; p < 0.001)
Conclusions The universal SURPAS risk models have
lower accuracy for TJA procedures than they do for the
wider range of procedures in which the SURPAS models
were originally developed.
Clinical Relevance These results suggest that SURPAS
model estimates must be evaluated for individual surgical
procedures or within restricted groups of related proce-
dures such as joint arthroplasty. Given substantial variation
in patient populations and outcomes across numerous
surgical procedures, universal perioperative risk calcu-
lators may not produce accurate and reliable results for
specific procedures. Surgeons and healthcare admin-
istrators should use risk calculators developed and vali-
dated for specific procedures most relevant to each
decision. Continued work is needed to assess the accuracy
of universal risk calculators in more narrow procedural
categories based on similarity of outcome event rates and
prevalence of predictive variables across procedures.

Introduction

Surgical outcome prediction models estimate patients’ risks
of postoperative morbidity and mortality based on pre-
operative information. Predictionmodels could be useful for
many aspects of surgical care, including informed consent,
shared decision making, preoperative mitigation of modifi-
able risk, and risk-adjusted quality measures [15, 17, 19].
Adoption of previously developed risk prediction models in
modern surgical practice has been inconsistent, in part be-
cause of a lack of electronic health record integration and
burdensome data entry requirements [2, 14]. The large
number of available options may also hinder adoption be-
cause there are universal surgical population models that
incorporate many surgical procedures and procedure-
specific models that are only relevant for one type or a
limited group of procedures.

Recently, the Surgical Risk Preoperative Assessment
System (SURPAS), a set of universal surgical morbidity
and mortality prediction models, was developed using the
American College of Surgeons National Surgical Quality
Improvement Program (ACS-NSQIP) database [14]. A 30-
day mortality prediction model was developed with data
across surgical procedures in nine specialties (general,
vascular, orthopaedic, thoracic, plastic, urologic,

otolaryngologic, gynecologic, and neurosurgery) and in-
cluded 28 preoperative predictor variables. A morbidity
model included 40 preoperative predictor variables. Re-
duced models were also developed with only seven to 11
covariates that accounted for more than 99% of the full-
model C-indexes. The full models demonstrated excellent
performance across a broad range of surgical procedures
(C-indexes: mortality 0.94, overall morbidity 0.81).
However, surgeons must assess whether the SURPAS
models or any other universal risk calculators are accurate
for the small subset of surgical procedures they perform.
We wished to assess the SURPAS models’ accuracy in
non-emergency THA and TKA because these procedures
are among the most common and costly major surgeries in
the United States [20, 21], and because THA and TKA
have low variability on most SURPAS model inputs and
relatively low rates of most postoperative complications.

We therefore sought to determine the accuracy of the
SURPASmodels for specific procedures that differed from
the overall SURPAS development sample, using total joint
arthroplasty (TJA) as an exemplar. Specifically, we asked:
How accurate are SURPAS models’ predictions for
patients undergoing TJA?

Materials and Methods

Data Source

The two phases of risk prediction model research include:
(1) model development, in which regression models are
created and model coefficients are calculated, and (2) model
validation, in which the model coefficients are applied to
observations and the predictions are compared to observed
outcomes. Internal validation studies test the models on
observations from the same data source used in model de-
velopment, whereas external validation studies test the
models on new observations from an external data source.
Our study was a type of internal validation using a targeted
subset of the SURPAS models, previously developed and
published by Meguid et al. [14]. For this internal validation
study, we selected the ACS-NSQIP 2012 Participant Use
Data File because it was the most recent year of the dataset
used for development of the SURPAS risk prediction
models [14]. The ACS-NSQIP is a surgical quality clinical
registry that contains preoperative, intraoperative, and
postoperative information on a portion of surgeries from
participating sites (374 hospitals in 2012) [1]. Procedures are
systematically sampled for inclusion in the ACS-NSQIP
using an 8-day cycle to ensure that surgeries from each day
of the week have an equivalent chance of selection. Each site
has at least one trained, certified surgical clinical reviewer
who captures the ACS-NSQIP data using medical record
abstraction, direct patient communication, and a variety of
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other methods. Intensive training is provided for surgical
clinical reviewers, and inter-rater reliability audits are peri-
odically conducted to ensure data accuracy.

Cohort Selection

The Stanford University institutional review board de-
termined that this observational cohort study with de-
identified data was exempt from review. The 2012
ACS-NSQIP Participant Use Data File database was que-
ried for patients who underwent primary THA (Current
Procedural Terminology [CPT] code 27130) or TKA (CPT
code 27447) by an orthopaedic surgeon, as designated by
the “SURGSPEC” variable [1]. Emergency procedures
were excluded using the “EMERGNCY” variable [1].

Outcomes

Outcome variables were defined as in the original SURPAS
models development study because our research question
focused on assessing accuracy of the published SURPAS
models [14]. Postoperative mortality and morbidity were
measured 30 days after the surgical procedure. Overall
morbidity included the occurrence of one or more of 18
postoperative complications, categorized into six clusters:
pulmonary, infectious, cardiac or transfusion, renal, venous
thromboembolic events, and neurologic. Some clustered
endpoints required combining events of dissimilar occur-
rence frequencies and importance to the patient, which may
lead tomisinterpretation of the results if themagnitude of the
effect differs between component events.[4] For example,
venous thromboembolic complications included vein
thrombosis requiring therapy and pulmonary embolism.

Statistical Analysis

We present descriptive statistics for the TJA and SURPAS
cohorts including frequencies, proportions, means and SDs.
As the TJA cohort is a subset of the full SURPAS cohort, p
values are not provided for population comparisons between
cohorts. We calculated the predicted probabilities of expe-
riencing postoperative mortality, overall morbidity, and
complications in each of the six clusters by applying coef-
ficients and patient factors from published risk models [14].
The original SURPAS overall mortality and morbidity
models were first developed using all 28 nonlaboratory
variables from the ACS-NSQIP (full models), and reduced
models were calculated that included only the first seven to
11 variables and accounted for more than 99% of the max-
imal C-indexes [14]. We compared the predicted probabil-
ities from the full and reduced models with the observed

events to determine the accuracy and discrimination of the
SURPAS predictive models specific to the cohort of non-
emergency TJAs. We calculated accuracy for 10 models:
full mortality, reduced mortality, full morbidity, reduced
morbidity, and full models for each of the six complication
clusters.

To obtain predicted probabilities, we determined odds
ratios for each model’s predictor variables and transformed
them into beta coefficients by calculating the log-odds. We
obtained the predicted probabilities of model outcomes for
each patient by summing the products of eachbeta coefficient
and the corresponding predictive factor. We assessed two
important dimensions of model performance: discrimination
and calibration [16]. The discrimination of each predictive
model—the model’s ability to predict the occurrence of
mortality or morbidity—was assessed by calculating the
C-index (or area under the receiver operating characteristic
curve) with associated 95% CIs. A C-index of 0.5 suggested
the model’s predictive ability was no better than random
chance, and a C-index approaching 1.0 indicated the model
could perfectly discriminate an occurrence versus non-
occurrence in any pair of individuals. Generally, C-indexes
can be classified into the following categories: excellent
(0.9-1.0), good (0.8-0.89), fair (0.7-0.79), poor (0.6–0.69), or
no discriminatory capacity (0.5-0.59) [5, 9]. The original
SURPAS analysis used a hold-back set whereby the authors
developed the models on a developmental dataset with a
randomly-selected 50%of records, and theC-index estimates
were calculated using the other half of the dataset (the vali-
dation dataset) [14]. In the current study, we compared the
C-indexes for the TJA sample to the validation (test) C-in-
dexes reported for the SURPAS models. TJA C-index as-
ymptotic normal CIs were estimated using DeLong’s
standard error calculation [3]; C-index confidence intervals
are presented instead of p values because the TJA cohort is a
subset of the full SURPAS cohort. Calibration, or how well
the predicted probabilities align with the observed proba-
bilities of morbidity or mortality, was assessed using
Hosmer-Lemeshow calibration decile plots of observed and
predicted outcomes by predicted risk deciles, as well as as-
sociated 10-group chi-squares and p values [13]. Brier scores
with Spiegelhalter’s z-statistics were also calculated, repre-
senting the squared differences between observed and
predicted outcomes. The Brier score ranges from 0 for a
perfect-fit model to 0.25 for a noninformative model with a
50% outcome incidence; models with a lower incidence of
the outcome have a lower maximum Brier score [16].

Statistical significance was assessed at the level of
a = 0.05 such that p values were considered significant if
p# 0.05. The risk prediction estimation was performed in
SAS version 9.4 (SAS Institute, Cary, NC, USA). C-index
CIs, Hosmer-Lemeshow chi-squares, and Brier scores were
calculated using Stata/MC version 14.2 (Stata Corp, Col-
lege Station, TX, USA).
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Results

Comparison with the Original Study

The TJA and SURPAS cohorts had dissimilar distributions
of some independent variables used in the models (Table 1).
Compared with the full SURPAS cohort, patients who un-
derwent TJA in 2012 were older and more likely to be white
and obese. Outcome variable frequencies also differed be-
tween the TJA and SURPAS cohorts (Table 2). The TJA
cohort had a substantially lower mortality rate and a higher
overall morbidity rate than the original SURPAS dataset.
Themost common postoperative complications contributing
to the TJA morbidity rate were intraoperative or post-
operative transfusion (16%), urinary tract infection (5%),
and vein thrombosis requiring therapy (3%). The C-indexes
for the SURPAS full models, including all nonlaboratory
variables applied to the TJA sample, ranged from 0.56 for
venous thromboembolism (95% CI 0.53 to 0.59 versus
SURPAS C-index 0.78) to 0.82 for mortality (95% CI 0.76
to 0.88 versus SURPAS C-index 0.94) (Fig. 1). All C-index
estimates for the TJA sample, including the confidence
intervals, were lower than those reported in the original
SURPAS development study.

Mortality

Overall 30-day postoperative mortality for the TJA proce-
dures was 0.1%, which is substantially lower than the 1%
mortality rate in the development dataset. The full 28-
variable predictivemodel of postoperativemortality resulted
in good discrimination, with a C-index of 0.82 (95%CI 0.75
to 0.88). The reduced model with eight predictive variables
also demonstrated strong discrimination, with a C-index of
0.82 (95% CI 0.76 to 0.88).

The Hosmer-Lemeshow decile plot demonstrated that
observed 30-day mortality rates were substantially lower
than predicted by the full model, especially at higher levels
of predicted risk (Fig. 2). The Hosmer-Lemeshow chi-
square statistic indicated the model was a poor fit to the data,
with lower observed mortality rates than expected in all risk
deciles. Patients in the lowest risk decile had no deaths (0%)
versus an expected 0.1%, and patients in the highest risk
decile had an observed mortality rate of 0.7% versus an
expected 2% (p < 0.001).

Morbidity

The 30-day postoperative morbidity rate for the TJA
procedures was 20%, higher than the 13% morbidity rate
in the original SURPAS development dataset. The pre-
dictive model of 30-day postoperative morbidity had

poor discrimination, with a C-index of 0.60 (95% CI 0.59
to 0.60). The reduced model with nine predictive varia-
bles demonstrated a similar level of discrimination to the
full model, with a C-index of 0.60 (95% CI 0.59 to 60).
The Hosmer-Lemeshow decile plot indicated that ob-
served morbidity rates were consistently higher than
predicted by the model (Fig. 3). Patients in the lowest risk
decile had 12% observed morbidity versus an expected
8%, and patients in the highest risk decile had an ob-
served morbidity rate of 32% versus an expected 25%
(p < 0.001).

Complication Clusters

Among TJA patients, event rates for the six complication
clusters varied from 0.18% for renal complications to 17%
for cardiac and transfusion complications (Table 2). Among
patients with cardiac and transfusion complications, 98.6%
had intraoperative or postoperative transfusions. Compared
with the SURPAS sample, TJA patients had lower rates of
infectious, pulmonary, renal and neurologic complications
but higher rates of cardiac/transfusion and venous compli-
cations. Predictive models of 30-day complication clusters
ranged from good discrimination for renal complications,
with a C-index of 0.79 (95% CI 0.75 to 0.84), to poor dis-
crimination for venous thromboembolism complications,
with a C-index of 0.56 (95% CI 0.53 to 0.59) (Fig. 4A-F).
Hosmer-Lemeshow decile plots suggested poor calibration
for complication clusters. Renal, pulmonary, neurologic,
and infectious complications were observed at substantially
lower rates in the TJA dataset than in the SURPAS models.
Conversely, cardiac and transfusion and venous thrombo-
embolic complications occurred at higher rates in TJA than
predicted by the SURPAS data.

Discussion

Surgical outcome prediction models are increasingly used
for multiple purposes. As an aid for surgeon-patient dis-
cussions, risk prediction models can guide shared decision
making, improve informed consent, and facilitate pre-
operativemitigation of modifiable risks [17]. Risk-adjusted
quality measures for hospitals and physicians must ade-
quately account for variability in patient mix to ensure a fair
“level playing field” [15, 19]. The recently reported
SURPAS universal risk prediction models had excellent
overall and specialty-specific performance across a wide
range of surgical procedures, but the models’ performance
had not previously been assessed in TJA patients. We
aimed to answer the question: how accurate are SURPAS
models’ predictions for patients undergoing TJA? We
found substantial differences between outcome rates in
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Table 1. Prevalence of independent variables in the TJA cohort and original SURPAS dataset

Independent variables TJA cohort n = 36,792 Original SURPAS n = 2,275,240

Sex

Female 60% (22,162) 58% (1,308,790)

Male 40% (14,630) 42% (966,450)

Age (years) 66.44 6 10.72 55.92 6 16.86

Race/ethnicity

Hispanic origin 4% (1316) 6% (130,355)

Asian or Pacific Islander 2% (745) 3% (59,617)

Null/unknown 12% (4,235) 11% (241,391)

American Indian or Alaska Native 0.2% (85) 0.6% (14,583)

White, not of Hispanic origin 76% (28,119) 71% (1,611,044)

Black, not of Hispanic origin 6% (2292) 10% (218,250)

BMI category (kg/m2)

Underweight (< 18.5) 0.4% (141) 2% (46,312)

Normal weight (18.5-24.9) 11% (4146) 26% (585,813)

Overweight (25.0-29.9) 29% (10,528) 30% (689,369)

Obese Class I (30.0-34.9) 28% (10,241) 19% (432,628)

Obese Class II (35.0-39.9) 17% (6428) 10% (224,624)

Obese Class III ($ 40.0) 14% (5195) 11% (241,446)

Null/unknown 0.3% (113) 2% (55,048)

Work relative value unit 22.38 6 0.71 16.27 6 9.12

Inpatient/outpatient operation

Outpatient operation 0.7% (245) 36% (811,818)

Inpatient operation 99% (36,547) 64% (1,463,422)

Transfer status

Admitted directly from home 99.6% (36,580) 96% (2,192,274)

Acute care hospital 0.2% (58) 2% (56,408)

Chronic care facility 0.3% (105) 1% (26,558)

Primary surgeon specialty

Orthopaedic surgery 100% (36,792) 10% (236,019)

Gynecologic surgery 0% (0) 5% (103,854)

Plastic surgery 0% (0) 2% (40,042)

Otolaryngology 0% (0) 2% (43,139)

Urologic surgery 0% (0) 3% (79,111)

General surgery 0% (0) 64% (1,461,828)

Neurosurgery 0% (0) 3% (59,760)

Thoracic surgery 0% (0) 0.9% (20,654)

Vascular surgery 0% (0) 10% (230,833)

Emergency operation

No 100% (36,792) 88% (2,011,137)

Yes 0% (0) 12% (264,103)

ASA class

I 3% (1175) 10% (221,696)

II 54% (19,682) 46% (1,047,625)

III 42% (15,277) 38% (863,679)

IV 2% (621) 6% (136,610)

V 0.003% (1) 0.3% (5630)

Systemic sepsis (within 48 hours)
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TJA procedures compared with outcome rates in the orig-
inal SURPAS model development dataset. The SURPAS
models’ discrimination ability for TJA patients varied
substantially across measured outcomes, ranging from no
discriminatory capacity for venous thromboembolism to
good discrimination for mortality. Measures of SURPAS
models accuracy for the TJA procedures were all lower
than those reported in the original development study. The
results suggest that the universal SURPAS surgical risk

models have diminished accuracy when used for TJA
procedures compared with the original SURPAS dataset.

This study had several limitations. First, SURPAS
models assessed composite complication endpoints by
combining anatomically and biologically similar catego-
ries, such as infectious complications, cardiac/transfusion
complications, and venous complications. Our research
question focused on assessing the accuracy of the pub-
lished SURPAS models, therefore we adhered to the

Table 1. continued

Independent variables TJA cohort n = 36,792 Original SURPAS n = 2,275,240

None 99.8% (36,701) 92% (2,098,442)

Other 0% (0) 0.5% (11,825)

SIRS 0.2% (87) 4% (101,931)

Sepsis 0.01% (4) 2% (47,721)

Septic shock 0% (0) 0.7% (15,321)

Diabetes mellitus

None 85% (31,172) 85% (1,936,967)

Oral medication 12% (4283) 9% (208,250)

Insulin 4% (1337) 6% (130,023)

Cigarette smoker (within 1 year) 10% (3699) 20% (445,264)

Dyspnea (within 30 days)

None 93% (34,359) 91% (2,068,093)

Moderate exertion 6% (2330) 8% (182,489)

At rest 0.3% (103) 1% (24,658)

Functional health status before surgery

Independent 98% (35,966) 95% (2,158,623)

Partially dependent 2% (700) 4% (86,694)

Totally dependent 0.1% (47) 1% (29,923)

Ventilator dependent (within 48 hours) 0.01% (2) 0.7% (16,840)

Severe chronic obstructive pulmonary
disease

4% (1407) 5% (106,826)

Ascites (within 30 days) 0.02% (6) 0.8% (17,898)

Congestive heart failure
(within 30 days)

0.3% (122) 0.8% (18,210)

Blood pressure > 140/90 mm Hg or
taking antihypertensive medications

63% (23,022) 46% (1,042,137)

Acute renal failure 0.06% (21) 0.5% (11,465)

Dialysis or hemofiltration
(within 2 weeks)

0.1% (52) 2% (39,026)

Disseminated cancer 0.2% (74) 2% (46,118)

Open wound with or without infection 0.6% (220) 4% (93,976)

Steroid use for chronic condition 3% (1194) 3% (72,019)

> 10% loss of body weight
(within 6 months)

0.2% (80) 2% (43,234)

Bleeding disorder with hospitalization 3% (949) 5% (117,682)

Transfusion (within 72 hours) 0.1% (50) 0.9% (19,537)

Data are presented as the % and n or mean 6 SD; ASA = American Society of Anesthesiology physical status classification; SIRS =
systemic inflammatory response syndrome.
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composite endpoints as calculated in the original SURPAS
study to maintain fidelity to the SURPAS models. How-
ever, some composite endpoints in this study may combine
complications of differing importance to patients into a
single outcome variable, leading to “qualitative heteroge-
neity” [4]. For example, transfusion events may be of rel-
atively lower importance to patients, whereas myocardial
infarction events represent a serious complication of high
importance to patients. Interpretation of composite end-
points may also be problematic when event rates of the
individual component complications substantially differ,
leading to “quantitative heterogeneity” [4] (for example,
16% of TJA patients required transfusions and only 0.3%
experienced a myocardial infarction). Consumers of

prediction models with composite endpoints should eval-
uate both qualitative and quantitative heterogeneity and
consider whether underlying pathophysiologic processes
are similar for the component complication endpoints.
When a composite endpoint is comprised of less-important
components occurring much more frequently than high-
importance components, the model results will be pri-
marily driven by those less-important, more-frequent
components.

In addition, although the ACS-NSQIP dataset includes a
wide range of hospitals, most hospitals enrolled in the
ACS-NSQIP database are large academic centers, so the
results may not be generalizable to smaller rural hospitals.
The analyses were further limited by the lack of a facility

Table 2. Prevalence of model outcome measures in the TJA cohort and original SURPAS dataset

Outcomes TJA cohort n = 36,792 Original SURPAS n = 2,275,240

30-day postoperative mortality 0.1% (51) 1% (31,568)

30-day postoperative morbidity 20% (7203) 13% (287,012)

Cardiac or transfusion
complication

17% (6107) 5% (108,585)

Transfusion intra-/postoperatively 16% (6021) 4% (96,673)

Intra-/postoperative myocardial
infarction

0.3% (103) 0.3% (7848)

Intra-/postoperative cardiac arrest
requiring CPR

0.1% (38) 0.4% (9150)

Infectious complication 1% (468) 7% (148,837)

Superficial SSI 0.7% (238) 2% (53,952)

Sepsis 0.3% (102) 2% (39,212)

Urinary tract infection 1% (429) 2% (37,098)

Organ/space SSI 0.2% (69) 1% (27,224)

Deep incision SSI 0.2% (78) 0.7% (15,789)

Wound disruption 0.1% (46) 0.5% (11,960)

Venous complication 1% (429) 0.9% (20,674)

Vein thrombosis requiring
therapy

0.7% (262) 0.7% (15,031)

Pulmonary embolism 0.5% (194) 0.3% (7417)

Pulmonary complication 0.5% (198) 3% (74,600)

On ventilator > 48 hours 0.08% (28) 2% (41,179)

Pneumonia 0.4% (136) 1% (31,598)

Intra-/postoperative unplanned
intubation

0.2% (70) 1% (27,535)

Septic shock 0.04% (15) 0.9% (21,319)

Renal complication 0.2% (68) 0.7% (15,857)

Acute renal failure requiring
dialysis

0.07% (26) 0.4% (9337)

Progressive renal insufficiency 0.1% (43) 0.3% (7425)

Neurologic complication 0.07% (26) 0.2% (5120)

Stroke/cerebrovascular
accident

0.07% (26) 0.2% (5120)

Data are presented as the % and n. SSI = surgical site infection; CPR = cardiopulmonary resuscitation.
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indicator in the ACS-NSQIP database to account for
hospital-level clustering of patients. We were unable to
determine surgical indications (for example, osteoarthritis
or hip fracture) as this information is not available in the
2012 ACS-NSQIP Participant Use Data File.

Consumers of risk prediction models (physicians,
patients, and administrators) should be cautious in inter-
preting the reported accuracy of models in the published
literature, even when risk models are expertly and trans-
parently developed, as is the case for SURPAS. It is critical
for consumers to ask whether the input and outcome dis-
tributions of the development sample are similar to the
patient population undergoing the procedure of interest [7].

The original validation of the SURPASmodels included an
evaluation of a wide range of procedures in specific spe-
cialties, including orthopaedic surgery [14]. However, as
we found in these analyses, the input and outcome dis-
tributions and model accuracy for a broad specialty does
not necessarily apply to all specific procedures in the spe-
cialty. Surgeons who use risk prediction models to guide
preoperative discussions and decisionmakingwith patients
should only apply models that have been validated for the
specific, applicable procedures and patients. Healthcare
administrators, payers, and organizations measuring risk-
adjusted outcomes should use models tailored for the
specific procedures and populations being measured.

Fig. 1 Discrimination results of the full models were compared between the original
SURPAS procedures and the TJA procedures for mortality, overall morbidity, and six
complication clusters.

Fig. 3 This chart shows the 30-day postoperative combined
morbidity model Hosmer-Lemeshow calibration decile plot of
observed and expected mortality event rates.

Fig. 2 A 30-day postoperative mortality model Hosmer-
Lemeshow calibration decile plot of observed and expected
mortality event rates is shown here.
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Studies in other clinical areas have demonstrated that
procedure-specific risk prediction models are more accu-
rate for certain populations and outcome measures. An
ACS-NSQIP analysis of postoperative outcomes after
emergency colectomy in elderly patients found higher
discriminating power for procedure-specific risk prediction

models, leading the authors to conclude that customization
of preoperative risk models for specific procedures may be
necessary [12]. After the development of the Portsmouth
Physiological and Operative Severity Score for the enU-
meration of Mortality and morbidity, researchers de-
termined that a colorectal (CR) procedure-specific model,

Fig. 4A-F Shown here are the 30-day postoperative complication models Hosmer-Lemeshow calibration decile plots of observed
and expected complication rates for six complication clusters: (A) renal, (B) pulmonary, (C) neurologic, (D) infectious, (E) cardiac/
transfusion, (F) venous thromboembolic.
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the CR-Portsmouth Physiological and Operative Severity
Score for the enUmeration of Mortality and morbidity, had
improved accuracy for predicting mortality in patients
undergoing colorectal surgery [18]. Procedure-specific
models are recommended to improve the accuracy of pre-
dicting outcomes in certain cardiac procedures such as
coronary artery bypass grafting and aortic valve re-
placement [8]. In postoperative pain management,
procedure-specific pain prediction models are recom-
mended because the analgesic effectiveness of medications
differs substantially by surgical procedure [6, 11]. These
studies across diverse specialties suggest that procedure-
specific risk models are more accurate than universal
models, and that further validation of the SURPAS model
in additional procedure subsets would be informative.

One important challenge in the development of
procedure-specific risk prediction models is choosing the
appropriate limits for included procedures. Our study fo-
cused on TJA, which encompasses at least two sub-
procedures, THA and TKA. Procedural coding systems
provide a convenient and standardized approach to defining
procedures; however, the two most commonly used pro-
cedure coding systems, CPT and the International Classifi-
cation of Diseases, 10 Revision Procedure Coding system
(ICD-10-PCS), substantially differ in their levels of speci-
ficity. CPT includes approximately 11,000 total procedure
codes, while the ICD-10-PCS includes 87,000 codes. In the
current study, we identified relevant procedures using a
single CPT code for THA, while there are at least 18 ICD-
10-PCS codes for THA that differentiate laterality, cemented
versus uncemented procedures, and prosthetic materials (for
example, metal-on-metal, metal-on-polyethylene, and
ceramic-on-ceramic). Some researchers have proposed that
patient circumstances should also be considered to further
specify risk prediction model populations (for example,
emergency procedures in elderly individuals) [12].

In conclusion, the results of this study suggest that the
universal SURPAS surgical outcome prediction models
have reduced accuracy for TJA procedures compared with
the original model development dataset that included a
broad range of procedures. The usefulness of SURPASmay
be reconsidered if the robustness of the models to different
surgical procedures cannot be established. With consider-
able variation in patient populations and outcomes across
numerous surgical procedures, universal perioperative cal-
culators may not produce accurate and reliable risk pre-
dictions for application to specific procedures. Surgeons and
healthcare administrators should aim to use risk prediction
models that were developed and validated in the specific
procedures and patient subsets most relevant to the clinical
decisions at hand. Future research should focus on testing
existing universal risk prediction models for procedure-
specific applications and the development of new procedure-
specific prediction models [8, 10]. Development of new

procedure-specific models should carefully consider which
procedures will be included based on similarity of outcome
event rates and prevalence of predictive variables across
procedures. Larger datasets are necessary to perform
procedure-specific analyses. In the current era of big data,
these analyses are becoming more feasible.
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