
Speech variability: A cross-language study on acoustic
variations of speaking versus untrained singing

John H. L. Hansen,a) Marigona Bokshi,b) and Soheil Khorramb)

Robust Speech Technologies Laboratory (RSTL), Center for Robust Speech Systems (CRSS), University of Texas at Dallas, Richardson,
Texas 75080, USA

ABSTRACT:
Speech production variability introduces significant challenges for existing speech technologies such as speaker

identification (SID), speaker diarization, speech recognition, and language identification (ID). There has been

limited research analyzing changes in acoustic characteristics for speech produced by untrained singing versus

speaking. To better understand changes in speech production of the untrained singing voice, this study presents the

first cross-language comparison between normal speaking and untrained karaoke singing of the same text content.

Previous studies comparing professional singing versus speaking have shown deviations in both prosodic and spec-

tral features. Some investigations also considered assigning the intrinsic activity of the singing. Motivated by these

studies, a series of experiments to investigate both prosodic and spectral variations of untrained karaoke singers for

three languages, American English, Hindi, and Farsi, are considered. A comprehensive comparison on common pro-

sodic features, including phoneme duration, mean fundamental frequency (F0), and formant center frequencies of

vowels was performed. Collective changes in the corresponding overall acoustic spaces based on the Kullback-

Leibler distance using Gaussian probability distribution models trained on spectral features were analyzed. Finally,

these models were used in a Gausian mixture model with universal background model SID evaluation to quantify

speaker changes between speaking and singing when the audio text content is the same. The experiments showed

that many acoustic characteristics of untrained singing are considerably different from speaking when the text con-

tent is the same. It is suggested that these results would help advance automatic speech production normalization/

compensation to improve performance of speech processing applications (e.g., speaker ID, speech recognition, and

language ID). VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0001526
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I. INTRODUCTION

Research has shown that speech production variability

due to stress, speaking style, emotion, Lombard effect

(speech produced in noise), cognitive/physical conditions,

etc. all impact speech technologies for speech recognition,

speaker identification (ID), etc. (Hansen and Hasan, 2015;

Hansen, 1996). For speech processing, studies have explored

ways to compensate for speech under stress production varia-

bilities, including cepstral feature compensation (Hansen,

1996; Bou-Ghazale and Hansen, 2000), training token gener-

ation (Hansen and Bou-Ghazale, 1995), and combined stress

compensation and classification (Womack and Hansen,

1999). These methods have helped address speech production

variability for speech technologies but often require parallel

datasets to achieve effective compensation. Neural network

based solutions were also considered in the past (Hansen,

1996). An area that also saw progress in analysis of produc-

tion variability is automatic stress detection, generally, in a

text and speaker independent framework. One of the earliest

studies on the analysis of production variability was based on

the nonlinear Teager energy operator (TEO; Cairns and

Hansen, 1994; Zhou et al., 2001), which was later expanded

to incorporate weighted frequency sub-bands (Hansen et al.,
2011), and then used hybrid tracking and classification

schemes (Hansen et al., 2012). These approaches established

viable speech processing methods to explore speech produc-

tion variabilities, including vocal effort such as a whisper

(Ghaffarzadegan et al., 2016), physical task stress (Godin and

Hansen, 2011), and airflow dynamics based on a physiologi-

cal microphone (PMIC; Patil and Hansen, 2010). These stud-

ies have collectively explored a range of speech production

changes which are generally intrinsic in nature (Hansen and

Hasan, 2015). One research question that arises is if a speaker

intentionally alters his or her speech production mode, does

this impact the performance of general speaker models for

speaker recognition? To address this question, this study con-

siders one form of mismatch between neutral speech produc-

tion and an altered style. Specifically, we seek to address the

question of what changes in the speech production if a

speaker reads text content versus sings the same text

sequence? As such, the main research goal here is to quantify

the differences between speaking and singing the same text

content and how this impacts speaker recognition systems

using neutral trained speaker models.
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In recent years, there has been an increased interest in

speech production variability, including the analysis of

speech production differences between speaking and singing

(Peynircio�glu et al., 2017; Beeman, 2017; Mehrabani and

Hansen, 2013a). These studies have shown considerable

deviation in speech production based on spectral and pro-

sodic characteristics of professional singing from speaking

(Carlsson and Sundberg, 1992; Story, 2004). The main dif-

ference has been found in the acoustic characteristics of

vowels (e.g., intensity and fundamental frequency of vow-

els; Fowler and Brown, 1997; Bloothooft and Plomp, 1984).

Sundberg et al. have also reported a major difference in for-

mant frequencies of singing versus speaking (Sundberg,

1977; Sundberg, 1974). In addition, researchers have devel-

oped various engineering applications in areas such as auto-

matic singer ID and music language recognition in order to

address the problem of automatic music labeling and

retrieval (Tsai and Lee, 2012; Tsai and Wang, 2004;

Mehrabani and Hansen, 2011, 2013b; Sangwan et al., 2011).

Previous papers have explored the challenge of identi-

fying the production differences between singing and speak-

ing and, although very comprehensive, considered only

trained singers (Watts et al., 2006; Bloothooft and Plomp,

1986; Carlsson and Sundberg, 1992; Saitou et al., 2007).

Although these studies hold great scientific value, they focus

on pinpointing specific factors relevant to trained singers

and lack the focus needed to explore singing as a variation

of neutral speech production in general (Sundberg, 1977;

Sundberg, 1974). Little to no effort has been dedicated in

considering the singing of untrained singers and how it devi-

ates from typical neutral or conversational speech. The

results of analyzing the untrained singing voice can be used

to improve various speech processing applications, such as

automatic speech recognition and speaker identification

(SID), since it represents a significant production mismatch

from neutral speech. It also holds scientific and forensic ben-

efits because it would provide further knowledge to formu-

late speaker embedding models for voice forensics, as well

as being able to link versions of singing voices to speaker

voices in music authentication. Generally, the performance

of speech processing systems normally degrades significantly

when introduced with speech types that highly deviate from

regular/neutral speech. Extensive studies have been per-

formed for speech production under stress, Lombard effect

(Hansen, 1996; Hansen and Hasan, 2015; Cairns and

Hansen, 1994; Zhou et al., 2001; Hansen et al., 2011), emo-

tions (Khorram et al., 2016; Khorram et al., 2018), etc.

These studies introduce compensation strategies to improve

automatic speech technology under mismatched conditions

(Hansen, 1996; Hansen and Hasan, 2015).

A number of studies have focused on the voice charac-

teristics that help singers to be heard more distinctly in large

venues, such as opera houses, even over a high level of

sound from the orchestra (Sundberg, 1977; Barrichelo et al.,
2001; Cleveland and Sundberg, 1999). In particular,

Sundberg (1977) provides a comprehensive study to identify

which aspects of the singers’ voice are unique, showing that

there is a major difference between the way vowels are pro-

nounced in singing and the way they are pronounced in

spoken speech. Barrichelo et al. (2001) explored if trained

singers can carry their formant ability into their conversa-

tional speech. This same study then explored the differences

between the third and fourth formants of trained singers and

untrained speakers.

Another important limitation of previous studies is that

they used data from only one specific language (Barrichelo

et al., 2001); therefore, their results were valid for that specific

language, which limits their impact since they cannot analyze

cross-language dependencies. Leveraging a multilingual data-

base helps us to explore the differences between singing and

speaking in a broader scope and allows for the analysis of

cross-language dependencies among untrained singers.

The main goal of this paper is to quantify the differ-

ences between speaking and singing signals which impact

SID and, potentially, language ID systems. In this study, we

considered the production differences between speaking and

untrained karaoke-style singing by collecting a multilingual

database with speakers in three languages: American

English, Hindi, and Farsi. We considered singing as a spe-

cial category of neutral speech with the goal of providing

baseline knowledge that is useful in improving the perfor-

mance of speech recognition, SID, and language ID systems.

We analyzed the prosodic components that suffer the greatest

change when individuals migrate from a speaking style to

singing: temporal duration, formant frequencies, and funda-

mental frequency (pitch). We also employed the Kullback-

Leibler (KL) divergence (Hershey and Olsen, 2007) between

multidimensional probability distribution models trained for

singing and speaking to quantify the differences in their prac-

tical production spaces. The same type of model was also

used for a GMM-UBM (Gausian mixture model with univer-

sal background model) SID task (Hansen and Hasan, 2015;

Reynolds, 1995). By collecting a multilingual corpus, it will

be possible to explore the cross-language differences

between the speakers. One potential application of this study

would be the formation of an automatic singing skills assess-

ment strategy of untrained singers that aims to determine a

speaker’s future singing potential.

Many speech processing engines are helping us to do

our work better and have a better life. They are ready to

play their important role as a critical part of human com-

puter interaction systems by listening to us all day. We do

not necessarily communicate with the speech processing

engines through read speech, and our speech may take dif-

ferent forms. For example, our speech may be emotional,

whispered, and in a singing form. Most of the people have

not been trained for singing, and it is important to be able to

analyze their singing speech. At least, it is essential to know

the performance of the current speech processing systems

when they are processing singing signals of unprofessional

singers. However, there has not been any research on

analyzing voice characteristics of the untrained singers, and

there is a need for that. For example, many voice activated

devices or dialogue systems have been equipped with a
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speaker recognition module, which helps them to make bet-

ter decisions by considering speaker-specific characteristics.

These speaker recognition modules may need to process

singing voices of untrained singing signals; however, they

have not been developed and tested for that. It is of great

importance to evaluate and improve the performance of the

speech processing tools for the untrained singing signals,

and this paper is the first step toward this important goal.

II. BACKGROUND

Most research studies in singing consider the production

space of vowels as they considerably vary during singing

(Sundberg, 1977; Story, 2004). For example, Mehrabani and

Hansen (2013a) studied how the intrinsic dimensionality of

vowels changes from speaking to singing. That study

applied locality preserving projection (LPP) for dimension-

ality reduction of the spectral feature vectors and conducted

a vowel classification experiment in the low-dimensional

subspaces. The results of the classification experiment

showed that a higher number of intrinsic human speech/

voice production dimensions is required for effective repre-

sentation of singing vowels.

A study by Brown et al. (2000) investigated how well a

group of listeners can differentiate between the spoken and

sung segments of professionally trained singers and non-

singers. They used a comprehensive set of acoustic measures

in their study, including fundamental frequency, duration,

percent jitter, percent shimmer, noise-to-harmonic ratio, the

singer’s vibrato, and the singer’s formant. The results show

that professional singers are easily distinguishable from the

non-singers by their singing voices but poorly identifiable by

their speaking voices.

An important characteristic of the professional singers’

voices is defined by the term “singer’s formant.” According

to Barrichelo et al. (2001), this formant occurs when the

third, fourth, and fifth formants are close in frequency and

we observe a peak in the frequency of 3 kHz of vowels; Fant

(2012) also found that the third and fourth formants are

closer in trained singers’ voices. In order to produce these

formant frequencies, the physical configuration of the vocal

tract must be changed. The singer’s formant is an important

feature that helps classically trained singers to be heard over

a full orchestra.

Not all professional singers have the ability to generate

the singer’s formant. A study in Cleveland and Sundberg

(1999) explored the relationship between the first four for-

mants in singing and speaking among the singers of country

music. The results showed that for most well-renowned

country singers, the correlation between the first four for-

mant frequencies in singing and speaking was high, indicat-

ing that, for the most part, country singers use similar

formant frequencies in speech and singing. If there existed a

difference, the formant frequencies in singing would be

higher than those in speaking, and this was attributed to the

fact that the fundamental frequency for these singers was

higher.

Sundberg (1977) introduced a number of factors that

make the singer’s voice special. They explained the radi-

ated sound of singing through the properties of the voice-

source spectrum and the formants of singing. Sundberg

(1977) showed that the major difference happens in the

way the formant frequencies are produced in speech versus

singing and the way that vowels are pronounced in both

cases. More precisely, they found that the first two formant

frequencies are normally lower in the singing version of a

word and the spectral energy is considerably higher

between 2.5 and 3 kHz.

The question that most research in the engineering area

attempts to address is: given a set of training tokens with

neutral speech from different singers, how well can an auto-

mated SID system determine the identity of the singer when

provided with a singing test segment? We know, in reality,

that given a segment of a famous singer’s voice, one can

determine the identity of the singer fairly quickly if we are

familiar with the singer. We can probably even determine

his or her identity if we hear him or her speaking. This crite-

rion has driven most of the work in automated singer ID and

is a motivation for us to include some results in this area as

well.

Considerable investigations in SID for singers has also

been accomplished in a number of studies (Zhang, 2003;

Tsai and Lee, 2012; Tsai and Wang, 2007). The study in

Zhang (2003) is one of the first works in this area to con-

sider the identity of a singer by analyzing the audio features

of the music signal. This work includes the application of

digital music databases and retrieval and provides powerful

functions for use in browsing and searching musical content.

By providing the identity of a speaker in a music database,

one can then retrieve all songs sung by a particular singer.

There are some questions that could arise, such as if there

are multiple singers/groups, songs are solos, etc. The same

technology is used to cluster songs of similar voices of sing-

ers or search for songs which are similar to a query song in

terms of a singer’s voice (Zhang, 2003). The approach taken

in that study is based on the fact that the time-frequency

features of a singing voice are quite different from those of

a speaking voice even when the actual text context is the

same. Therefore, the concept is that by extracting and ana-

lyzing audio features properly, an automatic system should

be able to achieve a certain degree of singer ID as well. The

features used in this system consisted of Mel frequency

cepstral coefficients (MFCC), which are the most commonly

used features in SID and speech recognition systems due to

their ability to effectively represent the configuration of the

vocal tract of a speaker (Zhang, 2003).

The work by Tsai and Lee (2012) is in the area of singer

ID based on speech derived models. The study investigated

the possibility of modeling a singer’s voice using spoken

data instead of singing data. The motivation for this work

was the result of the limitation in available singing data of

trained singers compared to simply collecting spoken sam-

ples of these speakers. The difficulty in obtaining this model

is due to the fact that singing by a person deviates

J. Acoust. Soc. Am. 148 (2), August 2020 Hansen et al. 831

https://doi.org/10.1121/10.0001526

https://doi.org/10.1121/10.0001526


significantly from a typical spoken speech style. Therefore,

in order to address this issue, a system was proposed that

uses maximum a posteriori (MAP) adapted models based

on a limited set of singing data. The results in this aforemen-

tioned study showed a significant increase in performance

when presented with this alternate classification technique.

III. DATASET

In the current study, we used the University of Texas

(UT)-Sing database collected at the Center for Robust Speech

Systems (CRSS), University of Texas at Dallas. The database

contains more than 23 hours of speech from 81 speakers across

4 different languages: English, Farsi, Hindi, and Mandarin. As

noted, the dataset contains material from the Mandarin lan-

guage, but that portion of the dataset had not been transcribed

yet (i.e., phoneme level transcription is needed) and, therefore,

we did not use that portion in the current experiments. We

asked the speakers to choose from a list of five popular songs,

which they were asked to read/speak the words through a kara-

oke display system in their own language (e.g., no background

music played through open-air headphones), followed by the

same song, but this time they were asked to sing with back-

ground music played through the karaoke system (again, using

open-air headphones so all speaker content is music-free). The

speakers were not professional singers, but they were

completely familiar with the selected songs they chose. Again,

speakers had access to the lyrics of the same song through a

prompt display for both reading and singing. We selected 16

songs for each language, on average, with some overlap

between the intra-language songs. This setup allowed us to

make a fair comparison between the speaking and singing pro-

duction differences of each speaker.

Since male and female speakers have, generally, differ-

ent speech production systems, we separated the data based

on gender and ensured that the speaker labels reflected this

separation. In order to have natural karaoke singing, we

played background music of each song for the speakers

through open-air headphones. Since the open-air headphones

were employed, there was a negligible occlusion effect.

However, the open-air headphones may result in leakage on

the played back music and, therefore, we accurately investi-

gated the amount of music leakage in the recorded audio

files. We noticed that the amount of this leakage is not signif-

icant as the signal to music ratio of the audio files is not less

than 10 dB. We believe this high signal to music ratio is a

result of the high-quality microphones (Shure Beta-54 close-

talk microphone, Niles, IL) that we have used during our

data collection process. Karaoke system prompts were used

during this process so that as the speaker would sing or read,

the lyrics of the song were displayed on the screen.

The acoustic data were recorded in a soundbooth using a

Shure Beta-54 close-talk microphone (Niles, IL; Hansen and

Varadarajan, 2009). The Shure Beta-54 is not completely

compatible with the recommendations explained in Patel et al.
(2018) and Svec and Granqvist (2010)], but for the type of

analysis that we perform in this paper, e.g., SID analysis, there

is no need to follow the recommendations of Patel et al. (2018)

and Svec and Granqvist (2010). The Shure Beta-54 micro-

phones are highly directional (super-cardioid), and it is impor-

tant for us to have omnidirectional microphones to prevent the

music leakage from our open-air headphones while recording

the sound of our speakers. We asked the speakers to confirm

that they had never taken any voice lessons or vocal training of

any sort before participating in the study. The speakers were

then asked to select five songs that they were familiar with

from the list of popular songs provided. This allowed us to

focus our analysis only on the singing versus speaking produc-

tion differences without capturing other factors, such as accent,

intonation, speaker familiarity with song, etc.

In this study, in order to explore the specific phonemic

language dependencies across speakers while singing and

speaking, we used speakers from three of the languages con-

tained in our database: English, Hindi, and Farsi. Here, we

selected six speakers from each language (three males and

three females). We used phonetically transcribed data of all

speakers to conduct our experiments based on (i) phoneme

duration, (ii) fundamental frequency, and (iii) formant fre-

quency features.

All sung and spoken utterances of each speaker were

manually annotated by three fluent transcribers in English,

Hindi, and Farsi. The annotations were performed using

Wavesurfer (Sj€olander and Beskow, 2000), a speech analysis

tool equipped with transcription labels and spectral sessions in

the form of spectrograms that facilitate the determination of

phoneme boundaries. For vowel analysis, we used the most

dominant vowels in each of the three languages. Since our

analysis is based on sustained vowels, we only considered the

vowels with a duration of more than 0.1 s. For reliable cross-

language results, we picked vowels from approximately the

same production space area in each language.

As this paper presents the first study on the UT-Sing

dataset, we explain more statistics and characteristics of the

UT-Sing dataset in this section. Data from three different

languages have been used in the current study: English,

Hindi, and Farsi. For each language, we recorded data from

six different speakers. In terms of gender, the dataset is

balanced and, therefore, we used data from three males and

three females for each language. All speakers were between

20 and 35 years old and they were all paid. For each speaker,

we selected five songs, and all the speakers were completely

familiar with the selected songs.

In order to record sounds, we used a Shure Beta-54 close-

talk microphone (Niles, IL). All sounds have been recorded in

48 kHz sampling rate in mono 16-bit wave files; however, we

converted all the sampling rates into 16 kHz before performing

any analysis on the data. In addition, all the files have been

recorded in a soundbooth and, thus, the quality of the record-

ings is high. According to our calculation, the signal to noise

ratio of the files is between 10 and 40 dB. To calculate this

number, we find the noise power from silent regions of our

recordings and assumed all other parts have the same noise

power. Next, we calculate the signal power by subtracting the

noisy power from the noise power.
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IV. PROSODIC ANALYSIS

According to previous studies, prosodic features of the

singing voice are significantly different from prosodic fea-

tures of neutral spoken speech (Sundberg, 1977). To explore

this for untrained singing, this section presents a comprehen-

sive study on various prosodic features of our recordings. In

Fig. 1, we show the time-frequency changes of a randomly

selected speaker’s voice during singing and speaking. When

FIG. 1. (Color online) Time and spec-

trogram plots of the song excerpt “Let

it be, let it be…,” produced while (a)

speaking and (b) singing. To plot this

figure, a singing audio file was down-

sampled to 10 kHz and both time and

spectral representations of the file were

plotted. Therefore, every 10 000 sam-

ples of the time domain will be identi-

cal to 1 s. (a) Speaking “Let it be, let it

be…,” and (b) singing “Let it be, let it

be….”
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a person sings, their mean word duration and fundamental

frequency increase. It has been shown that during singing

the voiced to unvoiced ratio suffers the most in terms of

change, and the fundamental frequency is used to repre-

sent a completely different state than in neutral spoken

speech (Loscos et al., 1999). In this section, we consider

the temporal attributes and fundamental frequency in these

two types of speech and compare their results across

languages.

A. Temporal analysis

An important difference in the production space of sing-

ing is based on the temporal structure. Word duration

increases during singing, and most of this increase is attributed

to the elongation of vowels. It has been shown that the per-

centage of phonation time can increase from about 60% in

speaking to 95% in singing (Loscos et al., 1999). In our study,

we showed the percentage change from speaking to singing

for each phonetic class in English, Hindi, and Farsi. In order

to achieve reliable results, we categorized phonemes into dif-

ferent classes and analyzed each class separately. For English

and Hindi, the phonemes were grouped into eight phonetic

classes: affricates, diphthongs, fricatives, stops, liquids, nasals,

semivowels, and vowels. In Farsi, all phoneme classes do not

exist (Khorram et al., 2014; Khorram et al., 2015), so we

grouped phonemes into only five classes: affricates, fricatives,

stops, nasals, and vowels. In English, there are 25 consonants

and 20 vowels. Among these 25 consonants, 3 are nasals, 6

are stops, 2 are affricates, 9 are fricatives, and the remainder

are laterals and approximants. In Hindi, there are 8 vowels, 2

diphthongs, 4 semivowels, 5 nasals, 4 fricatives, and 20 stops.

In Farsi, there are six vowels, three nasals, nine stops, two

affricates, nine fricatives, and four other consonants.

Table I summarizes the number of phoneme occur-

rences of each phonetic class in our dataset. In Table I, the

count refers to the number of unique phonemes produced

while speaking. Since the speakers sung and read the same

lyrics, we assumed that the count for singing is similar (i.e.,

we assure no insertion/deletion of phonemes). As can be

seen from Table I, vowels have the largest number of pho-

nemes across all three languages.

An important factor that changes from speaking to singing

is the phoneme duration. From the sing/speak duration ratio, it

was realized that vowels show one of the largest increases in

duration (3.0 for English, 2.7 for Hindi, and 2.8 for Farsi),

followed by diphthongs, which have the largest duration ratio

(3.2 for English and 3.3 for Hindi). In general, the average

word duration increased by a factor of 2.0 from speaking to

singing.

We also studied the relative duration of each phonetic

class. If we consider an ideal word that contains a single

entry from all eight phoneme classes (for English and Hindi)

and five classes for Farsi, we can obtain the change in phona-

tion time from speaking to singing for each phonetic class. In

Fig. 2 and Fig. 3, we showed the changes in the percentage

of the word duration for each phonetic group from speaking

to singing for English, Hindi, and Farsi speakers.

As can be seen in Fig. 2, vowels and diphthongs occupy

the largest percentage of the word duration in both English

and Hindi for both speaking and singing. However, in Farsi,

speaking affricates and fricatives have the largest percentage

in word duration; this result changes for singing because

vowels have the largest percentage of word duration in Farsi

singing. The increase in duration for fricatives and affricates

in the overall percentage of word duration during speaking

in Farsi could be due to the amount of affricates and frica-

tives that are actually found in the Farsi language compared

to vowels (e.g., in conversational Farsi, many written short

vowels are not vocalized). However, during singing, vowels

still occupy the largest percentage of word duration.

In English and Hindi, the only two phoneme classes

that show a significant increase in duration are vowels and

diphthongs. In Farsi, vowels show the largest increase and

fricatives show a small increase of 0.3%. Since the increase

in fricatives is too small to be statistically significant, we

will say that only vowels show the highest statistically sig-

nificant increase from speaking to singing. All other pho-

netic classes in all three languages show a decrease in

percentage (although their actual absolute values do

increase). The fact that vowels show the highest increase in

all three languages explains the fact that singers tend to

elongate the vowels when singing and, as a result, the other

phonetic classes suffer a relative percent decrease in dura-

tion. In speaking, this elongation is not very typical and.

consequently. the percentage in word duration is more

evenly distributed across other phonetic classes.

The results of this experiment are important because

they show the specific changes in the duration of each pho-

netic group, as well as how these changes differ across dif-

ferent languages. An important application of the results

obtained in this section is that they can assist in spoken to

TABLE I. Phoneme count and phoneme duration ratio of singing versus speaking for English, Hindi, and Farsi. We used the value zero when the language

did not have the particular phoneme class.

Phoneme Affricates Diphthongs Fricatives Liquids Nasals Semivowels Stops Vowels

English phoneme count 255 2306 3124 1795 2656 1281 3569 7160

English duration ratio 1.4 3.2 1.4 1.7 1.6 1.7 1.4 3.0

Hindi phoneme count 133 1534 1370 1346 1396 1600 3088 7142

Hindi duration ratio 1.3 3.3 1.2 1.6 1.6 1.6 1.2 2.7

Farsi phoneme count 129 0 2134 0 1560 0 2810 5545

Farsi duration ratio 1.2 0 1.4 0 1.7 0 1.4 2.8

834 J. Acoust. Soc. Am. 148 (2), August 2020 Hansen et al.

https://doi.org/10.1121/10.0001526

https://doi.org/10.1121/10.0001526


singing voice conversion (e.g., given spoken lyrics, convert

that stream to a singing audio stream). In New et al. (2010),

the authors use different speech parameters, such as funda-

mental frequency, duration, and spectral features, to produce

a singing voice from spoken speech. Knowing the differ-

ences in the duration of the phonemes is helpful in

transforming duration features and improving the natural-

ness of the resulting generated singing voice.

B. Fundamental frequency

In neutral speech, fundamental frequency variations can

reflect lexical stress, cognitive stress, or the emotional state

FIG. 2. (Color online) A comparison between phoneme class duration, assuming an ideal word containing a single entry from each phoneme class. Each phoneme

class is noted by colors for that language; percentages show phone class duration for speaking and singing in each language. (a) English, (b) Hindi, and (c) Farsi.
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of a speaker and add intelligibility to the spoken words. In

singing, the fundamental frequency can be up to three

octaves higher (Loscos et al., 1999). One functionality of

fundamental frequency in singing is to represent the pitch of

a certain musical note to maintain the musical melody of a

song. The study in New et al. (2010) considered mean fun-

damental frequency, overshoot, and vibrato to convert spo-

ken text to singing voice. The mean fundamental frequency

was subtracted from the F0 contour of a speaker to create

pure F0-fluctuations. The study by Natke et al. (2003) also

stated that an internal reference for pitch-matching exists in

singing and although a similar version of this internal refer-

ence exists in spoken speech, it is not as strong. It is stated

that while trained singers will match the pitch to a musical

note almost perfectly even untrained singers will also try to

match their F0 with a desired target singing F0. The failure

to do so results in what is referred to as a “bad” glissando

(Natke et al., 2003).

Compared to speaking, singing has a higher fundamen-

tal frequency with a larger dynamic range (Loscos et al.,
1999). In our analysis, we were interested in observing the

change in mean fundamental frequency that occurs from

speaking to singing for vowels /a:/, /e:/, /i:/, /o:/, and /u:/.

The selected vowels belong to approximately the same pro-

duction space across each language. Moreover, we were

also interested in comparing the variation of the fundamen-

tal frequency in different languages. For F0 extraction, we

employed Wavesurfer—a speech analysis toolkit. We used

an analysis window length of 200 samples (25 ms) with a

skip frame rate of 100 samples (12.5 ms).

In addition to the mean fundamental frequency, we also

calculated the coefficient of variation (CV) across six speakers

in each language. The CV was included in order to show the

dispersion of our variables. Figure 4 shows the results of this

experiment. According to Fig. 4, the mean F0 of spoken vow-

els is significantly lower than that of the sung vowels for all

three languages. The CV values obtained for the spoken vow-

els (excluding the English vowel /i:/) are also significantly

lower than those obtained for the sung vowels. We also plot-

ted cross-language results of speaking and singing in Fig. 5.

In general, we showed that Hindi speakers had the high-

est fundamental frequency in both singing and speaking,

whereas English speakers had the lowest. This change could

be due to the fact that the Hindi songs are usually sung in

higher pitch compared to English and Farsi songs (Trehub

et al., 1993). This suggests that Hindi singers attempt to

match a higher fundamental frequency compared to the

other language speakers.

Our results also showed that the vowel /o:/ has the

highest fundamental frequency during speaking in all

FIG. 3. An ideal word (one phoneme from each class) produced in both speaking and singing with their corresponding phoneme class duration coverage

plus percent change from speak-to-sing. (a) English, (b) Hindi, and (c) Farsi.
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three languages. However, this result was not true for

singing. Vowels /i:/, /o:/, and /u:/ showed the highest

fundamental frequency in singing of Hindi, English, and

Farsi, respectively. This result suggests that the speakers

also attempt to match the different vowels during sing-

ing, which leads to more variations in the fundamental

frequencies. However, in speaking, there was no prede-

fined pitch and, therefore, the average pitch across

different vowels in different languages shows less

variations.

Our results in this domain are important in that they

show how the fundamental frequency changes from speak-

ing to singing in different languages. These results can pro-

vide information for voice conversion systems that rely on

time duration and fundamental frequency changes in vowels

from speaking to singing.

FIG. 4. (Color online) Fundamental frequency (F0) and coefficient of variation (CV) for speaking and singing the same text content (within each language)

for (a) American English, (b) Hindi, and (c) Farsi speakers. (a) American English, speaking and singing; (b) Hindi, speaking and singing; and (c) Farsi,

speaking and singing.
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V. SPEAKER-DEPENDENT FORMANT ANALYSIS

Apart from the temporal changes, singing also introdu-

ces acoustic differences in the frequency structure of a

speaker’s voice (see Fig. 1). In the frequency domain, the

greatest change happens in the formant frequencies of the

vowels. Formant frequencies are well known as the spectral

peaks of the speech spectrum, which represents the resonan-

ces of the vocal tract (Deller et al., 2000; O’Shaughnessy,

2000). It has been shown that trained singers tend to tune

their first two resonances of the vocal tract (R1 and R2) to a

multiple of their fundamental frequency (Henrich et al.,
2011). It is suggested that this can enhance the overall sound

level of the voice, which is necessary for professional sing-

ers. A study by Sundberg (1977) showed that moving the

articulatory organs can significantly change the frequencies

of the formants (specifically, the first two formants). Again,

it is well known in speech modeling that each articulatory

configuration corresponds to a set of formant frequencies,

which, in turn, results in a particular vowel sound

(Sundberg, 1977). In a study by Fox and Jacewicz (2008),

the authors examined the vowel space areas of different

dialects used in central Ohio, south-central Wisconsin, and

western North Carolina. Given the large variation of the for-

mant frequencies of different vowels, vowel space area is

traditionally characterized by the area inside of a triangle

formed by three corner vowels in the acoustic space (F1-F2

formant frequency plane; Deller et al., 2000). This area is

also characterized as the “working area” of the vowel system

(Fox and Jacewicz, 2008). A small vowel space area shows

that the formant frequencies of different vowels are close to

each other and, therefore, vowels have low variations. In this

study, we also compare the change in vowel space areas of

speaking and untrained singing speakers.

A. Vowel space area

Inspired by Fox and Jacewicz (2008), we determined

the vowel space area of three known vowels in English,

Hindi, and Farsi. We selected three vowels (i.e., /a:/, /e:/,

and /u:/) which belong to different articulatory production

spaces in the three languages. We defined the vowel acous-

tic space by taking the average of the first and second for-

mants of the vowels. We used Wavesurfer with a window

length of 200 samples (25 ms) and a frame skip rate of 100

samples (12.5 ms) for formant extraction.

Vowel space area refers to the two-dimensional area in

the F1-F2 plane, where F1 and F2 are the first two formants.

Vowel space area is bounded by lines that connect the first

and second formant frequency coordinates of vowels. A

common way of calculating this area is to make static mea-

surements of the F1 and F2 values for each of the four cor-

ner vowels (or three-point vowels, /a,i,u/ for a triangle) at

the 50% vowel duration for multiple productions of each

vowel. The mean F1 and F2 values for each of the four cor-

ner vowels are then used to compute the area of the quadri-

lateral formed by the corner vowels. The vowel space area

FIG. 5. (Color online) Cross-language fundamental frequency for (a) speak-

ing and (b) singing for the same text content. (a) Speaking text content and

(b) singing text content.

TABLE II. Speaker-dependent vowel space area of singing and speaking

for English, Hindi, and Farsi.

Language Subjects Speaking Singing Singing/speaking

English Speaker 1 22 537.12 2404.05 0.10

Speaker 2 6014.20 2357.23 0.39

Speaker 3 3392.04 1592.76 0.49

Speaker 4 7451.56 12 896.29 1.73

Speaker 5 5385.39 1450.42 0.26

Speaker 6 1226.18 5020.12 4.09

Hindi Speaker 1 7463.29 929.81 0.12

Speaker 2 14 643.35 1141.33 0.07

Speaker 3 89 062.59 19 283.5 0.21

Speaker 4 90 185.12 23 762.8 0.26

Speaker 5 205 267.8 86 505.19 0.42

Speaker 6 139 782.2 56 271.64 0.40

Farsi Speaker 1 114 985.3 112 590.4 0.97

Speaker 2 120 499 26 984 0.22

Speaker 3 3328.55 46 164.05 13.86

Speaker 4 68 913 87 203.08 1.26

Speaker 5 51 541.54 54 283.84 1.05

Speaker 6 17 133.26 48 472.97 2.82
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is known to be an acoustic proxy for the kinematic displace-

ments of the articulators. Sandoval (2013) explained the

importance of this measure. They also introduced different

ways for calculating this measure.

Table II summarizes the speaker-dependent vowel

acoustic spaces for three female speakers and three male

speakers in each language. The formant space ratio between

singing and speaking is also shown in Table II. In Fig. 6, we

visualize the same results for two female speakers and one

male speaker in the F1-F2 plane.

The results from Fig. 6 show that all speakers (exclud-

ing one Farsi male speaker) have smaller vowel spaces dur-

ing singing versus speaking. Table II also confirms this

result. Although the formant space ratio of sing/speak is less

than one for almost all speakers, dependencies between

speakers are still observable. The first two English female

speakers have a lower sing/speak formant space ratio than

the English male speaker has. Except for one English male

speaker, the rest of the male speakers show significantly

higher sing/speak ratios than the English female speakers

show, meaning that the formant space area of English male

speakers in singing is larger than in speaking. This result

introduces a gender dependency of the vowel spaces in the

formant frequency plane, which is reasonable considering

the difference in the formant frequencies between the two

genders when speaking. Moreover, this dependency exists

when we consider the male and female speakers of Hindi

and Farsi as well. We can see from Table II that in both

FIG. 6. (Color online) Vowel space areas for two females (two left figures) and one male (one right figure) in (a) English, (b) Hindi, and (c) Farsi.
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Hindi and Farsi, the ratio of sing/speak is generally higher

for the male speakers.

To summarize, we have shown that female speakers in

all three languages had smaller vowel space areas in singing

than in speaking. An exception was Speaker 9 in Table II,

who shows a significantly larger vowel space area. In con-

trast, the male speakers showed a significantly larger vowel

space area in singing than in speaking. This result applies to

speakers of all three languages. Our results indicate that

female speakers tend to produce vowels in a more compact

vowel space area during singing. These vowels are closer

together in the formant space and are less separable than in

speaking. Male speakers tend to have larger vowel space

areas during singing, which means that two or more of the

vowels are more widely spread apart in frequency and,

therefore, more easily separable and distinguishable. During

speaking, the formant frequencies vary less from one

speaker to another. However, during singing, this variability

increases and is gender dependent.

B. Spectral shift

Next, we considered analysis of the spectral shift of

vowels in the F1-F2 plane from speaking to singing. In

order to calculate this shift, we estimated the F1-F2 distan-

ces between the vowels of speaking and the vowels of sing-

ing for each speaker. The averages of the distances across

male and female speakers are summarized in Table III.

Spectral shift or the average distance between the first

two formants in the vowels is an important measure that

determines the shape of the spectral envelop. This measure

varies significantly from different vowels; therefore, it is an

effective feature for speech recognition. This measure also

changes for different speakers, specifically for different gen-

ders; therefore, it can also be used for speaker verification/

ID and gender recognition tasks. Here, we benefit from this

measure to quantify the differences between the spectral

features of speaking and singing.

As realized from Table III, the vowel /a:/ has the lowest

spectral shift across both male and female speakers in all

three languages. The largest spectral shift is in the vowel

/u:/ for both English and Farsi speakers, whereas for Hindi,

the vowel /e:/ has the largest shift. In English and Farsi,

female speakers show a higher spectral shift than male

speakers do for all vowels (except the vowel /a:/ for Farsi

female speakers). However, for male speakers of the Hindi

language, all vowels show a higher spectral shift than do

those for the female speakers.

These results show that although male speakers tend to

have large sing/speak vowel space ratios, the overall spec-

tral shift for each vowel is, generally, lower than that for the

females. This implies that untrained male singers tend to

have more distinguishable vowels during singing, and the

position of these vowels does not change significantly from

the speaking production space compared to that for the

female untrained singers. The exceptions in this case are the

Hindi male singers, who tend to have a lower spectral shift

than their Hindi female counterparts. The Hindi male sing-

ers also had considerably lower sing/speak formant fre-

quency ratios than the English and Farsi males.

VI. KULLBACK-LEIBLER DIVERGENCE (KLD)
BETWEEN SINGING AND SPEAKING

In order to explore the degree of human production space

similarity between singing and speaking, we trained Gaussian

mixture models (GMMs) on both speech styles. We, then, used

the KL divergence metric to quantitatively assess the difference

between the two Gaussian acoustic style models. The KL diver-

gence is used widely in areas such as pattern recognition and

machine learning. It represents a composite distance metric

between two distributions and, therefore, can be used to repre-

sent the similarity between two acoustic models (Hershey and

Olsen, 2007). The KLD measure is another criterion for quanti-

fying the differences between the spectral envelop of speaking

versus singing voices.

Calculating the KL divergence between two GMMs is

not straightforward for multiple Gaussians in each model;

Goldberger et al. (2003) proposed a Monte Carlo based

approach to approximate the KL divergence between two

GMMs. Their proposed method has been used in various

applications. For example, Ramirez et al. leveraged the

Monte Carlo based estimation of the KL divergence to cal-

culate the distance between speech and noise distributions

for a voice activity detector (VAD) system (Ram�ırez et al.,
2004); their results showed a significant improvement over

the previous VAD algorithms.

In this study, we used an approximate value of the KL

divergence, known as the “relative entropy.” The KL diver-

gence between two distributions, f(x) and g(x), is defined as

Dðf k gÞ ¼
ð

f ðxÞ logðf ðxÞÞ � logðgðxÞÞð Þdx: (1)

First, we trained a separate GMM model for each

speaker in each language on neutral speech and singing. We

used 36-dimensional MFCC features. We chose this feature

set as it is the most widely used in speech recognition and

SID applications (Reynolds, 1995; Deller et al., 2000). We,

then, used a KL divergence metric to find the distance

between the GMM models trained for singing and speaking.

We finally compared this result with the KL divergence of

GMM models trained only on neutral speech. The results

are plotted in Fig. 7. In Fig. 7, we show the box plot

TABLE III. Spectral shift between singing and speaking of vowels /a:/, /e:/,

and /u:/ for English, Hindi, and Farsi.

Language Speech style a: e: u:

English Speaking 128.33 129.30 373.71

Singing 215.06 57.52 227.43

Hindi Speaking 98.93 294.52 169.95

Singing 231.85 330.43 232.71

Farsi Speaking 188.08 209.50 236.90

Singing 57.74 84.50 107.57
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representations of all the KL divergence values for six

speakers of each language separately. The mean KL diver-

gence for a certain speaker is denoted by a red horizontal

line on the plot; the rest of the box distribution shows the

range of KL divergence values when a speaker was com-

pared to other speakers of the same language (including

themselves). Results 1–6 show the KL divergence of

speaker-dependent GMM models trained on only neutral

spoken speech, and results 7–12 show the KL divergence

for the GMM models trained on neutral speech and singing.

As seen from Fig. 7, the mean KL divergence of each

speaker increases significantly from speaking to singing, sug-

gesting a meaningful change in spectral based speech produc-

tion between the two speech styles (note that the text context

of both styles is the same). The Hindi and Farsi languages pro-

duce high KL divergences in cross-model comparison

between singing and speaking (mean KL divergences are

15.27 and 14.91 for Hindi and Farsi, respectively); however,

this value is significantly lower for the English speakers (the

mean KL divergence for English is 7.47). These results indi-

cate that the spectral features of Hindi and Farsi speakers have

greater mismatch production variations compared to the spec-

tral features of English speakers.

We have also plotted these results in a three-

dimensional (3-D) contour plot (see Fig. 8) in order to visu-

ally express the change in KL divergence when changing

the speaking style from regular speech to singing and show

how this change is reflected across the three languages.

Figure 8 shows the drastic change from neutral speech to

singing, and we can also see that this change is significantly

greater for the Hindi and Farsi languages.

VII. SID OF SINGING

In the area of music retrieval, dealing with large music

datasets requires building automated systems that perform

classification based on factors such as musical content, lyr-

ics, song genres, and singers. In the case of classifying musi-

cal content based on different singers, singer ID systems are

needed. Such applications aim to recognize the singer of a

song by analyzing the audio features of the music signal

(Zhang, 2003). Because of the time-frequency differences

between the speaker during singing versus the speaker dur-

ing speaking, automatic SID systems degrade in perfor-

mance when introduced with singing speech.

In this section, we illustrated an application of SID

using an open set system and its performance when singing

speech is applied. For this case, we used a GMM-UBM

based system. We noted that other SID solutions exist, such

as i-vector-PLDA, X-vector, or t-vector (Hansen and Hasan,

2015); however, GMM-UBM was selected because it allows

for direct comparison of GMM models using the spectral

structure. Therefore, the goal here was to quantify changes

from neutral spoken speech in SID. A universal background

model (UBM) was constructed using TIMIT data with 438

male speakers and 192 female speakers. We employed 1024

mixtures to train the UBM. Next, we obtained a maximum

FIG. 7. (Color online) KL-divergence measures between cross-model

GMMs and same model GMMs for (a) English, (b) Hindi, and (c) Farsi.

Note: model-pair comparisons 1–6 are speak-to-speak GMM KL diver-

gence distances; model-pair comparisons 7–12 are speak-to-sing KL diver-

gence distances. (a) English, (b) Hindi, and (c) Farsi.
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a posteriori adapted Gaussian mixture model for each of our

English, Hindi, and Farsi speakers. For maximum a posteri-
ori adaptation, we used 17 speakers of English, 17 speakers

of Hindi, and 13 speakers of Farsi.

A. Speech processing and features

All speech data were down-sampled from the original

sampling rate of 44 kHz to 8 kHz. A speech activity detec-

tion (SAD) system was applied in order to remove all

silence frames. We used 36-dimensional MFCC features (12

static, 12 delta, and 12 delta-delta). MFCCs are widely used

features in speech recognition and SID systems because of

their ability to effectively represent the characteristics of the

vocal tract (Deller et al., 2000; Reynolds, 1995).

B. Training and testing

In order to consider the implications of singing on SID,

we trained three SID systems for each language separately.

Since the acoustic phoneme space for each language differs,

the resulting models would potentially require slightly dif-

ferent settings. For training, we used 22 tokens, and for test-

ing, we used 11 tokens per speaker. The duration of each

token was 10 s long. We hypothesize that the identity of a

speaker can be determined using a 10-s speech segment (see

Hansen et al., 2013; Angkititrakul and Hansen, 2007; Suh

and Hansen, 2012; Prakash and Hansen, 2007, for studies on

short duration speaker ID). We split our dataset into train

and test by allocating 2/3 and 1/3 of the data for training and

testing, respectively. We obtained 9500 test trials for each

of the three languages. Test trials represent a subset of the

dataset used to evaluate the performance of the speaker rec-

ognition system.

C. Results

Table IV summarizes the results of the SID experiment.

We used the equal error rate (EER) to quantify the accuracy

of the systems. According to Table IV, we obtained better

performance when we train and test all three systems

(English, Hindi, and Farsi) with neutral speech data. The

system performance degraded significantly when we tested

our system on singing recordings.

We also observed that the Hindi SID system performed

significantly better than the English system and slightly bet-

ter than the Farsi system when trained and tested with neu-

tral speech. However, Hindi showed the highest degradation

in performance (an increase in EER of þ30.54%) when we

introduce singing test data. Farsi ranked second with an

EER increase from 12.85% to 36.67%, a þ23.81% absolute

loss in performance, and English has the lowest degradation

with an EER change of þ20.17%. This result agrees with

our previous results on acoustic model variation based or

KL divergence, indicating that Hindi and Farsi models

showed higher dissimilarity between singing and speaking.

VIII. CONCLUSION

Speech production variability plays a significant role in

the effectiveness of models for speech technology, so analy-

sis of, modeling, and quantifying these changes offer

FIG. 8. (Color online) 3-D plot KL

divergences between cross-model

GMMs and same model GMMs for

English, Farsi, and Hindi.

TABLE IV. The equal error rate (EER) of the SID system trained on neutral

speech and singing for English, Farsi, and Hindi speakers.

Train Test English Farsi Hindi

Read Read 18.18 12.85 11.84

Read Sing 38.35 36.67 42.39
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opportunities to develop more effective compensation meth-

ods for sustained system performance (Hansen, 1996;

Hansen and Hasan, 2015). This study focused on one speech

production mismatch domain of speaking versus singing the

same text content. Here, we studied changes in speech pro-

duction between speaking and untrained karaoke singing

within the context of three languages (English, Hindi, and

Farsi). The majority of previous studies on singing consid-

ered only trained singers (Watts et al., 2006; Bloothooft and

Plomp, 1986; Carlsson and Sundberg, 1992) with various

goals, including assessing the quality of trained singers.

However, singing involves an alternate neural processing

pathway versus speaking and it is, therefore, of scientific

interest to understand speaking/singing differences. Also,

singing is a process that occurs in a wider range of contexts

than just music entertainment and for these cases, there is a

need for assessment and analysis of untrained singing.

In this study, we analyzed the temporal changes that

occur across phonetic classes when we alternate from neu-

tral speech to singing using the same text content. Our

results indicate that the biggest increase in duration occurs

for vowels and diphthongs across all three languages. In this

context, we studied fundamental frequency changes and

vowel space areas in the F1-F2 (first two formants) plane

for different speakers of English, Hindi, and Farsi.

As a result of our experiments, we observed that

English, Farsi, and Hindi speakers attempt to match the vow-

els /o:/, /u:/, and /i:/ at a higher pitch, respectively. These

vowels have the highest fundamental frequency during sing-

ing. Our prosodic analysis is important because it can be

used in speech to singing conversion applications where

speech parameters, such as fundamental frequency, duration,

and spectral coefficients, are transformed to generate a sing-

ing voice from a spoken speech signal (New et al., 2010).

We also observed that mean fundamental frequencies are

higher for singing compared to normal speaking, and this dif-

ference is more significant for Hindi speakers compared to

speakers of English and Farsi. We hypothesize this result is

mainly because the Hindi songs usually contain higher pitch

signals, which suggests that Hindi speakers attempt to match

a higher fundamental frequency while singing.

We also showed that for female speakers, the vowel

space area of singing is, generally, smaller than that of

speaking, which means that vowels in singing are positioned

closer to each other in the F1-F2 formant space and as a

result are harder to differentiate. Males usually tend to have

a greater vowel space area in singing than in speaking in all

three languages. Finally, we used the KL divergence metric

to assess changes in the speech production space, represent-

ing dissimilarities between singing and speaking for

English, Hindi, and Farsi. Our results indicated that Hindi

and Farsi have the highest dissimilarity between singing and

speaking. If we compare these results with our SID results,

we can see that the accuracy of SID solutions will degrade

significantly between spoken versus singing and this change

is more pronounced in the Hindi and Farsi languages than it

is in English.

This paper explains some of the differences between

acoustic characteristics of speaking and singing voices.

Introducing these acoustic differences is the first step toward

improving speech processing applications for untrained sing-

ing sounds. Further studies and experiments are required to

improve speech processing applications. For example, this

paper shows that there is a significant difference between

spectral features of singing and speaking. Therefore, one

way to improve speech processing applications is to first

identify if the signal is untrained singing and, then, convert

its spectral features in a similar way to the speaking style.

The results of this study and similar studies show the differ-

ences between spectral features and, therefore, can be useful

in developing the conversion system.
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