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a b s t r a c t

Purpose: The population and spatial characteristics of COVID-19 infections are poorly understood, but
there is increasing evidence that in addition to individual clinical factors, demographic, socioeconomic,
and racial characteristics play an important role.
Methods: We analyzed positive COVID-19 testing results counts within New York City ZIP Code Tabu-
lation Areas with Bayesian hierarchical Poisson spatial models using integrated nested Laplace
approximations.
Results: Spatial clustering accounted for approximately 32% of the variation in the data. There was a
nearly five-fold increase in the risk of a positive COVID-19 test (incidence density ratio ¼ 4.8, 95%
credible interval 2.4, 9.7) associated with the proportion of black/African American residents. Increases in
the proportion of residents older than 65 years, housing density, and the proportion of residents with
heart disease were each associated with an approximate doubling of risk. In a multivariable model
including estimates for age, chronic obstructive pulmonary disease, heart disease, housing density, and
black/African American race, the only variables that remained associated with positive COVID-19 testing
with a probability greater than chance were the proportion of black/African American residents and
proportion of older persons.
Conclusions: Areas with large proportions of black/African American residents are at markedly higher
risk that is not fully explained by characteristics of the environment and pre-existing conditions in the
population.

© 2020 Elsevier Inc. All rights reserved.
Introduction

The SARS-Cov-2 poses unprecedented clinical and public health
challenges worldwide. Although much of the attention has been
rightfully focused on the clinical aspects of the disease, epidemio-
logical studies and prevention research are becoming of increasing
importance, particularly as no effective therapeutic has yet been
identified [1]. Epidemiological and population-based studies can
contribute to the identification of patient risk factors for disease
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severity. Recent studies of observational registry data have found
COVID-19 mortality to be independently associated with coronary
artery disease (odds ratio [OR] for mortality ¼ 2.7; 95% CI: 2.1, 3.5),
chronic obstructive pulmonary disease (COPD) (OR ¼ 3.0; 95% CI,
2.0 to 4.4), and age greater than 65 years (OR ¼ 1.9; 95% CI, 1.6 to
2.4) [2]. In one case series, 68% of laboratory-confirmed COVID-19
ICU patients had at least one comorbidity, of which hypertension
was most common [3].

Not all risks, however, are physiologic. As the COVID-19
pandemic continues to ravage communities across the United
States and the world, attention is increasingly turning to
population-level demographic, socioeconomic, racial, and envi-
ronmental risk factors for COVID-19. Blacks/African Americans have
been reported to contract and die from COVID-19 at higher rates
than others [4]. In Chicago, a large number of COVID-19 deaths are
concentrated in five largely black neighborhoods [5]. A similar
mortality concentration among black/African American persons
has been reported in New Orleans [6]. At the built-environmental
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level, drivers of disease include population density [7] and housing
density, with urban counties in the United States having the highest
COVID-19 death rates [8].

Few regions of the United States have been more grievously
affected than the five boroughs of New York City. A neighborhood-
level analysis of New York City found higher rates of COVID-19
disease in areas with higher population shares of black/African
American and Hispanic persons, and in areas with higher popula-
tion density [9]. Although it certainly is possible that those affected
have higher rates of underlying health conditions that may increase
their susceptibility to the virus, the authors speculate that “resi-
dents of these neighborhoods are less likely to be able to work from
home, disproportionately rely on public transit during the crisis, are
less likely to have internet access,” and “have higher rates of
overcrowding at the household level.”

In this study, we analyze positive COVID-19 testing result counts
within New York City ZIP Code Tabulation Areas (ZCTAs) using
Bayesian hierarchical Poisson spatial models with integrated nes-
ted Laplace approximations. We attempt to quantify the amount of
spatial clustering in New York City neighborhoods, and the asso-
ciation of positive test counts in a neighborhood with population-
level estimates of demographic, socioeconomic, health, and built
environmental variables. The results quantify and provide insights
into the complex interplay of individual and ecologic risks for
COVID-19 spread and may be helpful in the effective allocation of
testing resources and interventions in similar urban settings.
Methods

Data

COVID-19 test result data were obtained from the New York City
Department of Health and Mental Hygiene (NYC DOHMH) GitHub
Page. Variables consisted of ZCTA designation, total number of
positive tests, and total number of tests performed. Files are
updated approximately every 2 days. The data in these analyses
were current as of 22 April 2020.

ZCTA-level data for total population, proportion of persons older
than 65 years, number of persons self-identifying as black/African
American, Asian, or Hispanic, number of persons older than 5 years,
speaking a language other than English, population density, hous-
ing density, school density (number of people, housing structures,
and schools per square mile, respectively), proportion of persons
receiving public assistance, were obtained from or derived from the
U.S. Census [10].

We created a social fragmentation index based on the work of
Congdon [11] which combines four variables extracted from U.S.
Census variables: the proportion of total housing units in a ZCTA
that are not owner occupied, the proportion of vacant housing
units, the proportion of individuals living alone, and the proportion
of units into which someone recently moved. Based on Census
definitions, a “recent” move is defined as anytime in the previous
9 years (since the last decennial census). Variables are standardized
and added with equal weight. The resulting variable is normally
distributed with mean zero and 95% quantiles �2.5 and 2.2.

Data on ZCTA health metrics were derived from shapefiles
downloaded from the Simply Analytics company [12] and consisted
of the number of persons in a ZCTAwith heart disease or congestive
heart failure (which are combined as a metric) and the number of
persons with COPD. The estimates are based on SimmonsLOCAL
data, which are local approximations of national survey results of
individual responses to questions regarding recent health events. A
full description of the methodology has previously been described
[13].
Spatial shapefiles of New York City ZCTAs were downloaded and
derived from the New York City Department of City Planning [14].
The testing and covariate data were merged to the spatial shapefile
data and restricted to ZCTAs with valid data entries. An adjacency
matrix was created from the map file using the R tool spdep::po-
ly2nb() and manually edited to create adjacencies between New
York City boroughs using spdep::edit.nb().
Statistical analysis

After merging the testing to the covariate data, descriptive sta-
tistics consisted of counts, means and medians, and maps of the
number of positive COVID-19 tests per 10,000 total population and
10,000 tests performed in a ZCTA.

Counts of positive COVID-19 test results in New York City ZCTAs
were spatially modeled in accordance with Besag-York-Mollie as
described by Lawson [15e17].

yi
� Poisðli ¼ eiqiÞ logðqiÞ bxi þ yi þ hi y

� nlð0; tyÞ h

� nlðhd; th=ndÞ

where,

1. the yi counts in area i are independently identically Poisson
distributed and have an expectation in area i of ei, the expected
count, times qi, the risk for area i.

2. a logarithmic transformation (log (li)) allows a linear, additive
model of regression terms (bxi), along with

3. a spatially random effects component (yi) that is i.i.d normally
distributed with mean zero (~nl (0, th)), and

4. a conditional autoregressive spatially structured component
ðh� nlðhd; th =ndÞÞ in which a “neighborhood” consisting of
spatially adjacent shapes is characterized by the normally
distributedmean of the spatially structured random effect terms
for the spatial shapes that make up the neighborhood ðhdÞ, and
the standard deviation of that mean divided by the number of
spatial shapes in the neighborhood (th/nd). This spatially struc-
tured conditional autoregression component is also sometimes
described as a Gaussian process l � NlðW ; tlÞ where W repre-
sents the matrix of neighbors that defines the neighborhood
structure, and the conditional distribution of each li , given all
the other li is normal with m¼ the average l of it,s neighbors and
a precision (tl).

A baseline convolution model that consisted solely of an inter-
cept termwith unstructured and spatially structured random effect
terms was extended to include univariate association of explana-
tory variables with the number of positive COVID-19 tests in a ZCTA.
Important and likely associations were chosen for inclusion in a
multivariable model with the primary exposure variable being the
proportion of black/African American residents in an area and
additional explanatory variables included as potential confounders.

The final linear model consisted of an intercept (b0); a vector of
scaled ZCTA-level explanatory variables ðbxTi Þ for the proportion of
persons in a ZCTA identifying as black/African American, with
COPD, heart disease, older than 65 years, a measure of housing
density, a spatially unstructured random effect term (yi), and a
spatially structured conditional autoregression term (hi). An offset
variable for the total number of tests was included in all models.
Model selection was based on deviance information criteria and
number of effective parameters.



Fig. 1. Rate of positive COVID-19 tests per 10,000 tests. New York City, April 3e22,
2020.
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log
�
qij
�¼ b0 þ bxTi þ yi þ hi þ ðoffsetÞ

The spatially unstructured random effect term captures nor-
mally distributed or Gaussian randomvariation around themean or
intercept. The spatially structured conditional autoregression term
accounts for local geographic influence. The intercept is interpreted
as the average citywide risk on the log scale adjusted for the
covariates, random effects and spatial terms. The exponentiated
coefficients for the explanatory covariates are interpreted as inci-
dence density ratios. Coefficient results are presented with 95%
Bayesian credible intervals (95% Cr I).

Spatial risk, controlling for or holding the covariates constant,
was calculated as zi ¼ yi þ hi [18], and is interpreted as the residual
spatial risk for each area (compared with all of New York City) after
covariates and spatial clustering are taken into account. Finally, the
proportion of spatially explained variance was calculated as the
proportion of total spatial heterogeneity accounted for by the
spatially structured conditional autoregression variance.

Spatial modeling was conducted using integrated nested Lap-
lace approximations (INLA) with the R INLA package [19] using
approaches described by Blangiardo et al. [18] Code to reproduce
the analyses is available at: http://www.injuryepi.org/resources/
Misc/covidINLA_onlineCode.html.

The study protocol was exempted as not human research by
the New York University School of Medicine Institutional Review
Board.
Results

Descriptive statistics

There were 177 ZCTAs in the data set. The mean COVID-19 rate
of positive tests per 10,000 ZCTA population was 166.2 (95% CI:
156.7, 175.7). The mean COVID-19 rate of positive tests per 10,000
tests was 5176.0 (95% CI 5045.9, 5306.1) and appeared skewed and
peaked, indicating that a relatively small number of ZCTAs
accounted for the highest rates (Fig. 1). The 5 ZCTAs with the
highest positive COVID-19 test numbers per 10,000 population
were the same as those with the highest proportion per 10,000
tests (10464, 10470, 10455, 10473, 11234, and 11210). The 5 lowest
ZCTAs were also the same for both measures (11103, 11102, 11693,
11369, 11363, and 10308). Table 1 presents comparative statistics
for the ZCTAs with the highest and lowest quantiles for
population-based rates of positive tests. Figure 2 presents a cho-
ropleth of positive COVID-19 tests per 10,000 per 10,000 positive
tests.
Spatial models

A frailty model consisting of only a random effect term and no
explicit spatial component returned a deviance information crite-
rion of 1831.58, with 174.5 effective parameters. The random effect
term was normally distributed around the mean value of 64.9
(SD ¼ 1.1; 95% Cr I: 55.5, 75.6) reflecting the random nature of the
distribution of the unstructured heterogeneity or variance.

A convolution model with a spatially structured conditional
autoregression term added to the spatially unstructured hetero-
geneity random effect term of the frailty model, returned a devi-
ance information criterion of 1807.60 (with 175.98 effective
parameters) reflecting an improvement over the baseline un-
structured heterogeneity frailty model, and indicating the spatial
component added information to the simple unstructured model.
In Figure 3, the spatial risk estimate is calculated as the sum of the
unstructured and spatially structured variance components (z¼ yþ
n). Finally, we estimate the proportion of the variance explained by
geographic variation or place, which for this model is approxi-
mately 32%.
Simple and multivariable models

The convolution model is extended to include a series of sim-
ple, single-variable, ecological-level models examining the un-
adjusted bivariate association of population, housing, income,
social fragmentation, population characteristics, and clinical
conditions with positive COVID-19 test counts. Table 2 summa-
rizes the results of this series of unadjusted single covariate
models of associations with positive COVID-19 test counts. The
single strongest unadjusted bivariate association is for the pro-
portion of persons in a ZCTA with COPD, which returned an inci-
dence density ratio (IDR) of 8.2 (95% Cr I: 3.7, 18.3), indicating that
for each single unit increase in the standardized proportion of
persons in a ZCTA with COPD, there was an eight-fold increased
risk of an additional positive COVID-19 test in that ZCTA. The
proportion of black/African American residents in a ZCTA was also
strongly associated with the risk of positive COVID-19 tests. For
every one unit increase in a scaled standardized measure of the
proportion of black/African American residents, there was a nearly
five-fold increase in the risk of a positive COVID-19 test (IDR ¼ 4.8;
95% Cr I: 2.4, 9.7).

Variables for population density, proportion of residents older
than 65 years, housing density, and heart disease were also asso-
ciated with increased risk of positive COVID-19 testing rates. Me-
dian household income in a ZCTA community was inversely related
to positive COVID-19 tests. For each unit increase in a standardized
measure of median household income in a ZCTA, there is an
approximately 46% decrease in the number of positive COVID-19
tests (IDR ¼ 0.54; 95% Cr I: 0.43, 0.69). Other variables that were
associated with lower positive tests were proportion of Asian and
proportion of Hispanic residents and increased measures of social
fragmentation. School density, proportion of persons not speaking
English, and the proportion of persons on public assistance were
not associated with positive COVID-19 testing rates.

Single-variable models were followed by multivariable models.
In a multivariable model including COPD, heart disease, proportion
of black/African American residents, housing density, and age
greater than 65 years, the only 2 variables that remained associated
with positive COVID-19 testing with a probability greater than
chance were the proportion of black/African American residents
and older persons (Table 3). Proportion of black/African American
residents was the strongest predictor of higher positive testing
rates in a community regardless of other factors.

http://www.injuryepi.org/resources/Misc/covidINLA_onlineCode.html
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Table 1
Comparative descriptive statistics high versus low quantile COVID-19 ZIP Code Tabulation Areas (New York City, April 3e22, 2020)

Variable All (SE) High (SE) Low (SE) P-value difference

Median household income 57,758.7 (24,986.7) 55,314.5 (19,700.6) 82,917 (27,557.0) .001
School density 5.1 (4.6) 2.7 (2.0) 7.289 (5.4) .001
Population density 16,584.9 (11,770.9) 9486.7 (7238.2) 26,000.1 (13,418.6) .001
Housing density 18,165.2 (19,748.0) 8784.8 (6788.2) 37,361.7 (33,665.0) .001
Congdon index �0.089 (2.0) �1.1 (2.0) 1.603 (2.0) .001
Proportion black 0.23 (0.26) 0.36 (0.31) 0.070 (0.13) .001
Proportion hispanic 0.12 (0.05) 0.13 (0.05) 0.12 (0.05) .06
Heart disease 0.11 (0.21) 0.17 (0.27) 0.07 (0.16) .1
Chronic obstructive Pulmonary disease 2.01 (1.93) 2.23 (2.48) 1.55 (1.42) .2
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Discussion

Despite the recent onset of the current COVID-19 pandemic,
there is already growing evidence about both individual risk factors
and population-level drivers of disease and mortality. Our results
are consistent with recent reports of a correlation between the
percentage of black/African Americans living in a U.S. county and
the percentage of confirmed COVID-19 cases and deaths [20], a
Fig. 2. Choropleth quintiles number of positive COVID-19 t
nearly 3X greater risk of hospitalization for COVID-19 for black/
African Americans in northern California [21], and that counties
with higher proportions of black residents had an appreciably
greater risk of COVID-19 diagnoses (RR ¼ 1.24, CI 1.17e1.33) [22].
This study adds to a number of very recent similar spatial analyses
of ZCTA-level testing data released by the New York City Depart-
ment of Health and Mental Hygeiene [23e25] and illustrates the
importance of sharing these kinds of data, as well as the
ests per 10,000 tests. New York City, April 3e22, 2020.



Fig. 3. Choropleth quantiles spatial risk estimates (sum of unstructured and spatially structured variance) positive COVID-19 tests per 10,000 tests. New York City, April 3e22, 2020.
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informative nature of spatial epidemiology as the pandemic evolves
across the nation and the world. Consistent with prior reports, we
find that the clustering of positive COVID-19 testing results in New
York City are unlikely to be due to chance [9,24] and is driven in
large measure by socioeconomics, age distribution [25], and race
[9,24].

Our study adds to this by demonstrating that the proportion of
residents self-identifying as black/African American is among the
Table 2
Summary series of unadjusted single covariate Bayesian hierarchical Poisson models
for association with positive COVID-19 tests counts in New York city ZIP Code
Tabulation Areas, April 3e22, 2020

Model IDR* 2.5% 97.5%

Population density 1.5 1.1 2.2
Median household income 0.5 0.4 0.7
School density 0.8 0.6 1.2
Older than 65 years 1.9 1.6 2.4
Asian 0.4 0.2 0.8
Housing density 2.0 1.2 3.2
Congdon index 0.8 0.8 0.9
Language 1.3 0.9 1.8
Black/African American 4.8 2.4 9.7
Hispanic 1.2 0.9 1.6
Heart disease 2.1 1.5 2.9
COPDy 8.2 3.7 18.3

* Incidence Density Ratio for bivariate association of explanatory covariates with
Positive Test Counts in ZIP Code Tabulation Area.

y Chronic obstructive pulmonary disease.
single strongest unadjusted bivariate predictors of the proportion
of positive tests in a community. The only stronger such predictor is
the proportion of residents with COPD, which at 8 times the risk of
areas with less COPD is stunning. But perhaps themore unexpected
finding is that when black/African American race and COPD are
considered jointly, it is race that appears to be the stronger pre-
dictor. Unlike a previous New York Cityebased report [9], we did
not find an independent risk associated with the proportion of
Hispanic residents. It may be that census estimates of black/African
American persons includes persons who also identify as Hispanic.
Three of the 5 ZCTAs with highest positive COVID-19 test numbers
per 10,000 population were in areas of the Bronx with large pro-
portions of Hispanic and Latino residents. And, it may be that
Table 3
Summary multivariable Bayesian hierarchical Poisson modes for association with
positive COVID-19 tests counts in New York City ZIP Code Tabulation Areas, April
3e22, 2020

Variable IDR* 2.5% 97.5%

Intercept 353.82 197.66 632.23
COPDy 2.32 0.92 5.85
Heart disease 1.27 0.88 1.83
Black/African American 2.29 1.13 4.68
Older than 65 years 1.50 1.17 1.92
Housing density 1.08 0.65 1.78

* Incidence density ratio for bivariate association of explanatory covariates with
positive test counts in ZIP Code Tabulation Area.

y Chronic obstructive pulmonary disease.
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disparities may vary depending in part on how well-established
Hispanic communities are within cities and states [26].

The question of why COVID-19 affects one community more
severely than another may provide clues to crucial questions about
who is a risk and why [27]. Our study indicates place is important.
We find about a third of the variance in a simple spatial model can
be accounted for by place. We found risk to be approximately
doubled by environmental characteristics such as population and
housing density. This complements a report of a nonspatial, linear
multivariable regression model of similar data that reported that
72% of variance could be attributed to individual characteristics
such as household size, gender, age, race, and immigration status
[23].

If ecologic and spatial analyses can provide clues, those clues
cannot on the basis of these analyses necessarily point to
individual-level or biological risk factors. While there are pre-
liminary reports that infection with SARS-Cov-2 may be associated
with the type A blood group [28], and that severe COVID-19 is
driven in part by coagulopathies that may be associated with Factor
VIII and vonWillebrand factor [29], the relationship of such factors
with race is [30] complex and cannot be supported by these results.
These results must be interpreted in the context of place. Pre-
dominantly nonwhite neighborhoods are likely to be poorer, with
less access to routine health services which can lead to greater risks
of many disease outcomes. Largely nonwhite neighborhoods may
also have a larger proportion of persons at increased risk of expo-
sure. Black/African Americans make up a large proportion of per-
sons providing direct services to COVID-19 patients in New York
City. By one account, 80% of nonmedical staff in New York City's
hard-hit public hospitals are black/African American or Hispanic. It
would be consistent with our findings that the neighborhoods in
which these persons live have higher rates of disease, and may
point toward an increased emphasis on personal protective
equipment for essential workers [31].

Interestingly, the proportion of comorbidities in a community,
which are associated with disease severity, were associated with
disease acquisition in simple bivariate models. However, they
generally fell out of significance when race was added to the model.
The odds ratio for the association of the rate of positive tests with
an important risk like COPD dropped from eight to nonsignificance
when race was included in the model, indicating that race may be
more strongly associated with positive tests. Placing risk factors in
context, both within and across populations, may be key. New York
City and Chicago appear to differ in the factors associated with
disease clusters and hot spots. New York City hot spots may be
associated with service workers. Chicago hot spots are in neigh-
borhoods with high poverty rates [24]. It will be increasingly
important to conduct comparative studies.

Ecological studies can offer a view of disease processes in a
community, but it may be a fractured view.Measures such as school
density and social fragmentation may not be measuring what we
think they are measuring; the number of schools in an area, rather
than acting as a disease multiplier, may be a measure of the
strength of the tax base. Similarly, the Congdon index treats empty
houses as a measure of disorder which can be correlated with a
number of social ills. But, empty houses may indicate less dense
neighborhoods which may be inversely correlated with less
person-to-person disease spread. The proportion of non-English
speakers in a given ZCTA may be biased by a lack of self-
reporting by undocumented immigrants. And, as in any ecologic
study, it is not certain that the persons with the risk factor being
studied are those who are developing the outcome.

SARS-Cov-2 testing results are imperfect, with numbers likely to
be biased by the availability of testing. But, we would expect that
bias, to be in the direction of increased counts in areas with higher
socioeconomic status. Consistent with our findings, a recent
geographic analysis reported that persons in poorer New York City
neighborhoods were less likely to be tested but once tested, were
more likely to test positive [22]. It is partly for this reason, we chose
to base most of our analyses on the proportion of positive tests,
rather than the population-based rates of positive tests, an
approach taken by others [22].

Despite these caveats, it is difficult to overlook the interplay of
race and COVID-19. Race appears to be an indicator of risk inde-
pendent of social status, income, built environment, or even un-
derlying health. This finding has implications not only for justice
and equity, but for an effective response to the pandemic.
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