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A B S T R A C T

Voluntary wheel running is widely used as a physical activity (PA) model in rodents, but most studies investigate
the beneficial effects of this intervention in socially isolated mice. Social isolation stress (SIS) is associated with
vulnerability to oxidative stress and reduced mitochondrial activity. Thus, the aim of this study was to in-
vestigate the effects of free access to a running wheel for 21 days on the various markers of the cellular redox/
antioxidant status as well as mitochondrial function of mice subjected to SIS or maintained in groups of 3 in the
homecage. SIS increased thiobarbituric acid reactive substance (TBARS) levels in the cerebral cortex, and PA
intervention was not able to reverse such alteration. PA reduced TBARS levels in the liver of grouped mice and
gastrocnemius of socially isolated mice. PA increased nonprotein thiol (NPSH) levels in the cerebral cortex of
grouped mice. Furthermore, socially isolated mice presented lower glutathione peroxidase (GPx) activity in the
cerebellum and gastrocnemius, and glutathione reductase (GR) activity in the cerebral cortex and liver. By
contrast, SIS induced higher GPx activity in the cerebral cortex and heart. PA reduced GPx (cerebral cortex) and
GR (cerebral cortex and liver) activities of socially isolated mice. SIS caused higher activity of mitochondrial
complexes I and II in the cerebral cortex, and the PA paradigm was not able to alter this effect. Interestingly, the
PA produced antidepressant-like effect at both SIS and control groups. In conclusion, the results showed the
influence of SIS for the effects of PA on the antioxidant status, but not on the mitochondrial function and
emotionality.

1. Introduction

Physical inactivity, also known as sedentarism, is a primary cause of
most chronic diseases (Booth et al., 2012; Garber et al., 2011). Con-
versely, physical activity (PA) produces a number of beneficial health
effects, including a reduction in the risk of several diseases related to
oxidative stress and mitochondrial dysfunction, such as cancer, osteo-
porosis, obesity, cardiovascular disabilities, dementias, depression, and
anxiety, among others (Booth et al., 2012; Kessels et al., 2018;
Langsetmo et al., 2012; Rosa Jr et al., 2017; Schuch et al., 2016; Stoner

et al., 2016; Stonerock et al., 2015; Thuné-Boyle et al., 2012; Zhang
et al., 2018).

Running wheel exposure is commonly employed as a voluntary PA
model in rodents, since this protocol is uncomplicated, easy, and results
in a quantifiable measure of PA (Sherwin, 1998). Although there is no
consensus on the ground mechanisms controlling running wheel ac-
tivity (Novak et al., 2012), use of a running wheel increases the average
rodent life expectancy by nearly 10% (Holloszy, 1998); produces anti-
depressant- and anxiolytic-like effects (Cunha et al., 2013; Mazur et al.,
2017), which are paralleled to adult neurogenesis and neuronal survival
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(van Praag et al., 1999a, 1999b); cardioprotection (Bronikowski et al.,
2003; Naderi et al., 2015); hepatoprotection (Bay et al., 2017;
Zolfagharzadeh and Roshan, 2013); and skeletal muscle trophism
(Brooks et al., 2018; Takigawa et al., 2019). Studies have indicated that
running wheel exposition exerts its positive effects on health through a
variety of biological pathways, but the exact mechanisms underlying its
influences on health are not fully determined. In this regard, evidence
suggests that the running wheel improves mitochondrial function, en-
hances the antioxidant system, and reduces oxidative stress in experi-
mental models of pathologies (Aguiar et al., 2014; Cunha et al., 2013;
Dantas de Lucas et al., 2014; Naderi et al., 2015; Navarro et al., 2004;
Wright et al., 2007).

Most studies analyzing the health impact of running wheels em-
ployed socially isolated animals during the entire experimental pro-
tocol, or at least over certain periods of time (e.g., during training). This
procedure allows the monitoring of individual variables associated to
PA, such as distance travelled, time spent on the running wheel, and
speed. The literature data extensively reports that social isolation stress
(SIS) or lack of social support may be associated with negative health
outcomes, increasing the risks for mortality (Broadhead et al., 1983;
House et al., 1988). In accordance with this, preclinical studies in-
dicated that SIS induces behavioral abnormalities such as anxiety
(Butler et al., 2014; Skelly et al., 2015) and depression (Zanier-Gomes
et al., 2015), cognitive dysfunction (Li et al., 2016), cardiomyopathy
(Sonei et al., 2017), impairment in the response to stroke and ischemia
(Karelina et al., 2009a, 2009b; O'Keefe et al., 2014; Venna et al., 2014),
obesity and metabolic disturbance (Koshoridze et al., 2016; Sun et al.,
2014), oxidative stress (reviewed by Filipović et al., 2017; Mumtaz
et al., 2018; Shao et al., 2015; Zlatković et al., 2014a, 2014b), and
mitochondrial dysfunction (Zhuravliova et al., 2009). Additionally, lack
of social support is etiologically related to clinical diseases, including
anxiety and depression (Elmer and Stadtfeld, 2020; Santini et al.,
2020); and cardiovascular diseases (Knox and Uvnäs-Moberg, 1998),
among others. The impacts of SIS on the beneficial effects of PA are not
completely understood. This way, SIS could confound data interpreta-
tion on the health impacts of the running wheel as a rodent model of
PA. For instance, SIS prevents the voluntary wheel running-induced
proliferation of hippocampal progenitor cells in rats (Leasure and
Decker, 2009), suggesting that several benefits of PA may be impacted
by sociability conditions.

Although mitochondria play a pivotal role in cells by providing
energy for cellular hemostasis and activities, under stress-related con-
ditions, such as SIS, mitochondria may produce excessive amounts of
reactive oxygen species, trigger apoptotic pathways, and initiate im-
mune-inflammatory responses. As a consequence, cell damage and
death can take place, suggesting that mitochondria could be an im-
portant target in the abnormalities induced by SIS (Zhuravliova et al.,
2009). Here, we analyzed the effects of free access of mice (socially
isolated or grouped) to voluntary wheel running for 21 days on the
following: cellular antioxidant defenses (glutathione system); lipid
peroxidation index; mitochondrial enzyme activities in the central
nervous system tissues, such as cerebellum and cerebral cortex, and
peripheral tissues, such as skeletal muscle gastrocnemius, heart, and
liver; as well as the mice's behavior.

2. Material and methods

2.1. Animals

Male Swiss mice (8–10 weeks, 30–40 g) were obtained from the
animal facility of Federal University of Santa Catarina (UFSC), and
housed isolated or in groups of three animals per plastic cage under
controlled conditions of light (07:00 to 19:00 h), and temperature
(21 ± 1 °C). Mice were allowed to freely access standard laboratory
food and tap water. Animals were randomly distributed into experi-
mental groups. All manipulations were carried out between

14:00–17:00 h, being the animals used only once. All procedures in this
study were performed in accordance with the National Institute of
Health Guide for the Care and Use of Laboratory Animals and approved
by the Ethics Committee of the Institution (CEUA PP00282). All efforts
were made to minimize animal suffering, and to reduce the number of
animals used in the experiments.

2.2. Voluntary wheel running paradigm

Physically active mice had access to homecages (isolated mice
28 × 17 × 13 cm or grouped mice 42 × 34 × 17 cm) containing a
running wheel of 12.6 cm in diameter that was attached to the cage, as
performed by Cunha et al. (2013). The control group (sedentary) was
placed in cages lacking the running wheel. On the 21st experimental
day, physically active animals were removed from their homecages,
and housed for a period of 24 h in a new cage, without access to the
running wheel. Animals were subsequently euthanized by decapitation
and cerebral cortex, cerebellum, heart, skeletal muscle gastrocnemius
and liver were dissected for biochemical analyses. Using another set of
animals the same PA protocol was applied. Subsequently, mice were
housed in a new cage without the running wheel for a period of 24 h
before exposure to the open field, and, 1 h later, to the tail suspension
test (TST).

2.3. Evaluation of the distance travelled and time of activity in the running
wheel

The distance travelled and time spent on the running wheel were
measured through a magnetic counter attached to the running wheel.
These parameters were counted in the cages containing 1 or 3 animals.
In the cages containing 3 animals, one third of the values obtained in
the magnetic counter was used, corresponding to the average PA for
each animal.

2.4. Tissue preparation

For the analyses of oxidative stress-related parameters, the cerebral
cortex, cerebellum, heart, skeletal muscle gastrocnemius and liver were
obtained. The analyses included nonprotein thiol groups (NPSH),
thiobarbituric acid reactive species (TBARS), and glutathione perox-
idase (GPx) and glutathione reductase (GR) activities. The tissues were
homogenized (1:10 w/v) in phosphate buffer (50 mM, pH 7.4), and the
homogenates centrifuged at 16,000 ×g, 4 °C for 20 min. The super-
natants were used for the determination of GPx and GR activities and to
quantify the levels of NPSH and TBARS.

For the activities of mitochondrial complexes I and II, the gastro-
cnemius muscle and the cerebral cortex were homogenized in 20 vo-
lumes of 50 mM potassium phosphate buffer (pH 7.4), containing 0.3 M
sucrose, 5 mM 3-(N-morpholino)propanesulfonic acid (MOPS), 1 mM
egtazic acid (EGTA), and 0.1% bovine serum albumin. The homo-
genates were centrifuged at 1000 g for 10 min at 4 °C. The pellet con-
taining nuclei and cell debris was discarded and the resulting super-
natants, containing a suspension of preserved organelles, including
mitochondria, were kept at −70 °C until enzyme activity was de-
termined. The maximal period between homogenate preparation and
enzyme activity measurement was < 5 days.

2.5. Non-protein thiol levels measurement

The determination of NPSH was followed according to the method
of Ellman (1959), with slight modifications (de Oliveira et al., 2013).
An aliquot of tissue homogenate was supplemented on ice with 10%
trichloroacetic acid (TCA), mixed, and centrifuged at 15,000g for 5 min.
The supernatant was used for NPSH determination. The reaction media
contained 800 mM sodium phosphate buffer (pH 7.4), and 5 mM 5,50-
dithiobis-2-nitrobenzoic acid (DTNB). After sample addition, the color
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development, resulting from the reaction between DTNB and thiols,
reaches a maximum within 5 min, and it is stable for > 30 min. The
absorbance was determined at 412 nm after 10 min. Results were cal-
culated as nanomoles of NPSH per milligram of protein. The DTNB
molar extinction coefficient (ɛ) was 13.6 × 103 M−1 cm−1.

2.6. TBARS levels analysis

The thiobarbituric acid reactive species (TBARS) assay is probably
the oldest and one of the most widely used methods evaluating mal-
ondialdehyde (MDA), as an index of lipid peroxidation. TBARS levels
were determined in tissue homogenates as described by Ohkawa et al.
(1979), in which MDA forms an adduct with two thiobarbituric acid
molecules, producing a pink color species that strongly absorbs at
532–535 nm (Dasgupta and Klein, 2014). Briefly, the samples were
incubated at ~100 °C for 60 min in acetic acid buffer containing 0.45%
sodium dodecyl sulfate, and 0.6% thiobarbituric acid. After cen-
trifugation, the reaction product was determined at 532 nm, based on a
standard curve made of a known concentration of 1,1,3,3-tetra-
methoxypropane. The results were presented as nmol/mg protein.

2.7. Glutathione peroxidase (GPx) activity evaluation

The activity of GPx was evaluated by the method described by
Wendel (1981), where the reaction medium contained 0.1 M potassium
phosphate buffer (pH 7.0), 1 mM ethylenediamine tetraacetic acid
(EDTA), 1 mM GSH, 0.225 mM nicotinamide adenine dinucleotide
phosphate (NADPH), and 0.2 U/ml GR. The reaction was started by the
addition of cumene peroxide (CHP) to a final concentration of 1.0 mM.
The GPx enzyme present in the sample reduces CHP using GSH as the
electron donor, which results in CHP alcohol, and oxidized glutathione
(GSSG). The GSSG formed was rapidly reduced by the added GR with
the proportional consumption of NADPH, which can be measured
spectrophotometrically at 340 nm.

2.8. Glutathione reductase (GR) activity assay

The GR activity was measured by the method of Carlberg and
Mannervik (1985), where the reaction medium contained 0.1 M phos-
phate buffer, pH 7.0, 1 mM EDTA, and 0.225 mM NADPH. When
adding 1 mM GSSG to the reaction media, the GR present in the sample
reduces GSSG to GSH, thereby consuming NADPH. This NADPH con-
sumption can be quantified by reading the absorbance at 340 nm.

2.9. Measurement of the respiratory chain enzyme activities

The activity of mitochondrial complex I was determined spectro-
photometrically according to Cassina and Radi (1996), and adapted by
our group (Remor et al., 2019). The tissue homogenates were added to
the reaction media containing 0.2 mM NADH, 0.5 mM ferricyanide, and
5 mM rotenone. The rate of reduced nicotinamide adenine dinucleotide
(NADH)-dependent ferricyanide reduction was followed at 420 nm
(30 °C, ɛ = 1 mM−1 cm−1).

The activity of succinate:cytochrome c oxidoreductase (complex II-
CoQ-complex III) was obtained according to Fischer et al. (1985), and
slightly modified, as detailed in a previous report (Latini et al., 2005).
Before use, the homogenates were submitted to 3 cycles of freezing and
thawing. The complex II was activated by a pre-incubation medium
(50 mM potassium phosphate buffer (pH 7.4), 20 mM sodium succinate,
and 10 pM 2,6-dichlorophenolindophenol (DCPIP)), for 20 min, at
37 °C. The complex II activity was estimated at a final concentration of
50 pM DCPIP, 2 mM potassium cyanide, 2 pg/ml rotenone, and 2.5 mM
sodium azide. Enzymatic activity was observed at 600 nm (25 °C,
ɛ = 19.1 mM−1 cm−1) in a microplate reader Infinite M200 TECAN.
The complex II activity was calculated from the initial change in ab-
sorbance.

The activities of the respiratory chain complexes were calculated as
nmol/min/mg protein.

2.10. Protein measures

Protein content was estimated as previously described by Bradford
(1976), using bovine serum albumin as a standard.

2.11. Behavior tests

2.11.1. Tail suspension test
The TST has become one of the most widely used tests for assessing

antidepressant-like activity in mice. The test is based on the fact that
animals subjected to the short-term inescapable stress of being sus-
pended by their tail will develop an immobile posture. The total
duration of immobility, induced by the tail suspension, was measured
according to the original method (Steru et al., 1985). Mice, both
acoustically and visually isolated, were suspended 50 cm above the
floor by adhesive tape that was placed approximately 1 cm from the tip
of the tail. Immobility time was recorded during a 6 min period. Mice
were considered immobile only when they hung passively and com-
pletely motionless (Cunha et al., 2008).

2.11.2. Open field test
To assess the possible effects of PA and/or SIS on locomotor and

exploratory activity, mice were evaluated in the open-field paradigm as
previously described (Cunha et al., 2008). Mice were individually
placed in a wooden box (40 × 60 × 50 cm) with the floor divided into
12 equal rectangles. The number of rectangles crossed by the animal
with its four paws (crossing), and the rising of the front paws (rearing),
were registered during a period of 6 min. The number of crossings was
considered as indicative of locomotor activity, and the number of
rearings was considered as the exploratory activity.

2.12. Statistical analysis

Data were presented as means + S.E.M. (standard error of the
mean). Pairwise comparisons between experimental and control groups
were performed by Student's t-test, otherwise, two-way analysis of
variance (ANOVA) was followed by Newman-Keuls post-hoc test, when
appropriate. The two investigated factors were sociability (isolated x
grouped) and voluntary wheel running exposition (sedentary x PA). A
Pearson's correlation analysis was performed to identify any possible
relationship between the oxidative stress-related parameters and the
distance travelled, or time spent on the voluntary wheel running. A
value of P < 0.05 was considered significant.

3. Results

3.1. The effects of social isolation on the activity parameters in the running
wheel

Socially isolated mice travelled greater distance in the running
wheel, as compared to grouped animals (Fig. 1A). Furthermore, socially
isolated mice spent longer time on the running wheel, as compared to
grouped animals (Fig. 1B). The student's t-test revealed significant dif-
ferences between experimental groups for the travelled distance and for
the time spent on the running wheel, as evaluated by the area under the
curve (t(10) = 2.02; p < 0.05; and t(10) = 2.24; p < 0.05, re-
spectively).

3.2. Lipid peroxidation in the socially isolated or grouped mice exposed to
running wheel

In the present study we also investigated the effect of free access of
animals to voluntary wheel running on a lipoperoxidation index,
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TBARS. We evaluated the TBARS levels in the cerebral cortex, cere-
bellum, heart, skeletal muscle and liver from socially isolated or
grouped animals and/or exposed to running wheel (Fig. 2A-E). Socially
isolated mice presented higher TBARS levels in the cerebral cortex, as
compared to grouped animals, and voluntary PA in the running wheel
was unable to reverse this alteration. The two-way ANOVA showed a
significant effect for sociability (F(1,20) = 7.313; p < 0.05), but not
for PA and sociability × PA interaction.

Interestingly, the socially isolated mice exposed to the running
wheel presented lower TBARS levels in the gastrocnemius, as compared
to sedentary socially isolated mice (Fig. 2D). The two-way ANOVA
showed a significant effect for sociability (F(1,20) =17.41; p < 0.01),
and sociability × PA interaction (F(1,20) = 8.59; p < 0.01), but not
for PA.

Additionally, animals in the presence of running wheel presented
decreased TBARS levels in the liver of grouped animals, as compared to
sedentary grouped animals (Fig. 2E). The two-way ANOVA showed a
significant effect for sociability (F(1,20) = 5.50; p < 0.05), PA (F
(1,20) = 4.78; p < 0.05), and sociability × PA interaction (F
(1,20) = 5.03; p < 0.05). The two-way ANOVA showed no significant
changes in TBARS levels in the heart and skeletal muscle.

3.3. The effects of running wheel on NPSH levels of socially isolated or
grouped mice

In the present study we also investigated the effect of free access of
animals to voluntary wheel running on NPSH levels, being 95% com-
prised of GSH (Heisinger and Wait, 1989; DeLucia et al., 1975; Cohn
and Lyle, 1964). NPSH was evaluated in the cerebral cortex, cere-
bellum, heart, skeletal muscle, and liver from socially isolated or
grouped animals and/or exposed to running wheel (Fig. 3A-E). The
main effect revealed significant differences for NPSH levels in the
gastrocnemius between socially isolated and grouped mice (Fig. 3D).
The two way ANOVA showed a significant effect for sociability (F
(1,20) = 9.59; p < 0.05), but not for PA (F(1,20) = 0.045; p = 0.84),
or sociability × PA interaction (F(1,20) = 0.76; p = 0.39).

The results depicted in the Fig. 3A showed that PA protocol leads to
increased NPSH levels in the cerebral cortex of grouped mice, as
compared to sedentary group. The two-way ANOVA showed a sig-
nificant effect for sociability (F(1,20) = 12.04; p < 0.01), PA (F
(1,20) = 4.87; p < 0.05), and sociability × PA interaction (F
(1,20) = 4.76; p < 0.05). However, we did not observed alterations in
the NPSH levels in other body tissues analyzed following SIS and/or PA
paradigm.

3.4. The effect of running wheel on the activity of GPx and GR in distinct
body tissues of socially isolated or grouped mice

In the present study we also investigated the effect of PA paradigm
induced by free access of mice to running wheel on the activity of GPx
and GR enzymes, as evaluated in the cerebral cortex, cerebellum, heart,
skeletal muscle and liver (Fig. 4A-J) of socially isolated or grouped
mice.

Among the sedentary animals, grouped mice presented lower GPx
and GR activities in the cerebellum, as shown in Fig. 4C [sociability (F
(1,20) = 8.23; p < 0.05), PA(F(1,20) = 7.34; p < 0.05), and
sociability × PA interaction (F(1,20) = 13.12; p < 0.01)] and Fig. 4D
[sociability (F(1,20) = 12.41; p < 0.05), PA (F(1,20) = 3.26;
p = 0.086), and sociability × PA interaction (F(1,20) = 5.54;
p < 0.05)]. Furthermore, grouped mice without running wheel access
presented lower GPx and GR activities in the gastrocnemius, as shown
in Fig. 4G [sociability (F(1,20) = 5.84; p < 0.05), PA (F(1,20) = 3.08;
p = 0.09), and sociability × PA interaction (F(1,20) = 1.19;
p = 0.29)], and Fig. 4H [sociability (F(1,17) = 0.04; p = 0.064), PA (F
(1,17) = 1.30; p = 0.36), and sociability × PA interaction (F
(1,17) = 4.0011; p < 0.01)]. Additionaly, grouped mice presented
lower GR activity in the liver, as shown in Fig. 4J [sociability (F
(1,20) = 4.76; p < 0.05), PA (F(1,20) = 0.22; p = 0.65), and
sociability × PA interaction (F(1,20) = 15.24; p < 0.05)].

PA protocol decreased GPx and GR activities in the cerebral cortex
of socially isolated animals, as shown in Fig. 4A [sociability (F
(1,20) = 31.15; p < 0.05), PA (F(1,20) = 5.04; p < 0.05), and
sociability × PA interaction (F(1,20) = 3.69; p = 0.099)], and Fig. 4B
[sociability (F(1,20) = 12.41; p < 0.05), PA (F(1,20) = 3.26;
p = 0.086), and sociability × PA interaction (F(1,20) = 5.54;
p < 0.05)]. PA protocol also decreased GPx activity in the heart of
mice, as shown in Fig. 4E [sociability (F(1,20) = 1.46; p = 0.24), PA (F
(1,20) = 5.23; p < 0.05), and sociability × PA interaction (F
(1,19) = 0.11; p = 0.75)]. Mice that were socially isolated and exposed
to running wheel presented decreased GR activity in the liver, as shown
in Fig. 4J. In contrast, mice submitted to PA presented increased GPx
activity in the cerebellum of grouped animals, as shown in Fig. 4C.

3.5. The effect of running wheel on the activity of mitochondrial complexes I
and II in cerebral cortex and gastrocnemius muscle of socially isolated or
grouped mice

In the present study we also investigated the effect of free access of
mice to the voluntary wheel running on the activity of mitochondrial
complexes I and II of the electron transport chain in the cerebral cortex
and skeletal muscle gastrocnemius (Fig. 5A-D) of socially isolated or
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Fig. 1. The effect of housing conditions (socially isolated or grouped animals) on the distance travelled and time spent during the voluntary physical activity. The
effect of housing conditions on the area under the curve of the distance travelled (Panel A) or the time spent on the running wheel (Panel B) over 21 days. Data are
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grouped animals. The results showed that the individualized animals
had a higher activity of mitochondrial complexes I and II in the cerebral
cortex, as shown in Fig. 5A [sociability (F(1,20) = 7.04; p < 0.05), but
not for PA (F(1,20) = 0.13; p = 0.73), or sociability × PA interaction
(F(1,20) = 2.17; p = 0.16)], and Fig. 5B [sociability (F(1,20) = 4.70;
p < 0.05), PA (F(1,20) = 1.17; p = 0.29), and sociability × PA

interaction (F(1,20) = 4.82; p < 0.05)]. The PA did not alter the
activities of mitochondrial complexes I and II in the socially isolated or
grouped animals.
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3.6. The effect of running wheel on the immobility time in the tail suspension
test and the behavior in the open field of mice socially isolated or grouped
mice

We also evaluated the effect of free access of mice to the running
wheel on the immobility time in the TST of socially isolated or grouped
animals. The results showed that both, individualized and grouped
animals exposed to the running wheel, presented lower immobility time
in the TST, as compared to respective control groups (Fig. 6A). A two-
way ANOVA showed significant differences for PA (F(1,32) = 12.20,
P < 0.05), but not for sociability (F(1,32) = 0.027, p = 0.87) and
PA × sociability interaction (F(1,32) = 0.012, p = 0.91).

The ambulation and exploratory behavior in the open field were
also investigated in the present study. The number of crossings and
rearings in the open field was not altered by free access to the running
wheel (Fig. 6B-C).

3.7. Analysis of correlation between oxidative stress-related parameters or
immobility time in the TST and distance travelled or time spent on the
running wheel

Fig. 7 depicts the significant correlations between the oxidative
stress-related parameters or behavior and the distance travelled or time
spent on the running wheel. The Pearson's test showed a positive cor-
relation between MDA levels in the cerebral cortex with the distance
travelled and the time spent on the running wheel (P < 0.05, Fig. 7A-
B). The distance travelled and the time spent on the running wheel
tended to be correlated with MDA levels in the cerebellum (Fig. 7C-D).
Furthermore, NPSH levels did not correlated with PA parameters
(P > 0.05, data not shown).

The GPx activity in the cerebellum was negatively correlated with
the distance travelled and the time spent on the running wheel
(P < 0.05, Fig. 7E-F). Furthermore, GPx activity in the heart was
correlated with the distance travelled in the running wheel (P < 0.05,
Fig. 7G) and tended to correlate with the time spent on the running
wheel (Fig. 7H). The Pearson's test also showed a positive correlation of
GR activity in the gastrocnemius muscle with the distance travelled and
the time spent on the running wheel (P < 0.05, Fig. 7I-J).

The complex I and II activities in the cerebral cortex and gastro-
cnemius muscle did not correlate with the distance travelled and the
time spent on the voluntary wheel running (P > 0.05, data not
shown).

Finally, the immobility time in the TST was negatively correlated
with the distance travelled and the time spent on the running wheel
(P < 0.05, Fig. 7K-L). Furthermore, the number of crossings and
rearings in the open field did not correlate with the distance travelled
and the time spent on the voluntary wheel running (P > 0.05, data not
shown).

4. Discussion

Social isolation stress (SIS) profoundly affects the daily activity of
individuals and is considered an important risk component for mor-
bidity and mortality in humans (Cacioppo et al., 2015). In particular,
the COVID-19 pandemic has brought the impact of SIS to the world in
the last months (Oliveira and Rossi, 2020). Imposed isolation by the
COVID-19 pandemic is a unifamiliar and unpleasant experience that
involves separation from friends and family, and a departure from
usual, everyday routines (Onyeaka et al., 2020). In line with this, stu-
dies indicate that SIS in rodents is a stressful paradigm, since it pro-
duces a negative impact on behavior and endocrine responses, such as
increased corticosterone, adrenocorticotropic hormone (ACTH), and
catecholamine serum levels (Grippo et al., 2007a, 2007b, 2007c; Weiss
et al., 2004). The results of a systematic review suggested that PA in-
terventions are associated with decreased SIS among community-
dwelling older adults, suggesting an important protective role of PA on
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the negative effects of SIS (Robins et al., 2018). Many activity/exercise
programs have been designed for elderly persons in a bid to reduce
isolation and its consequences (Dickens et al., 2011; Landeiro et al.,
2017). However, in the present study we showed that grouped animals
travelled lower distances in the running wheel, as compared to socially
isolated mice. Pitzer et al. (2016a, 2016b) demonstrated that housing
conditions (C57BL6 mice individualized or housed in groups of 3 per
cage) did not alter the distance travelled in the running wheel (Pitzer
et al., 2016a, 2016b). The difference observed in the distance travelled
could be explained by distinct mouse strains. In the present study, we
used Swiss mice, a strain very sensitive to stressful events, but pre-
senting little running wheel activity compared to other strains such as
C57BL6 mice. Interestingly, Swiss mice are more dominant and ag-
gressive than C57BL6 mice (Bisazza, 1979, 1981). The lower distance
travelled in the running wheel by grouped Swiss mice, compared to
socially isolated mice, could be dependent on the agonistic interaction
for dominance and territorialism. Observations, such as those made by
Bisazza (1981), suggest that male mice of strains with a high propensity
to fight (e.g., Swiss) may greatly benefit from individual housing
(Kappel et al., 2017; Poole and Morgan, 1973). Grouped animals tend
to fight repeatedly, leading to wounds and to a painful distress condi-
tion. Regarding this point, individually housed rats engaged in slightly
higher locomotor activity than grouped animals during the active phase
(Stranahan et al., 2006). Interestingly, a study reported that CD1 mice,
housed in standard polycarbonate cages (5 mice per cage) containing a

running wheel, increased their aggressive behavior, disrupting stereo-
typed behavior and the linearity in dominance hierarchy (Howerton
et al., 2008). In the present study, grouped animals without access to
the running wheel did not present wounds or signs of distress. However,
two mice of the sociability group with free access to the running wheel
presented wounds on their backs, suggesting fights between animals
may have intensified, which can be restricted to mice exposed to the
running wheel. However, body weight change (a stress-related para-
meter) was not altered by the presence of a running wheel in the
grouped or socially isolated mice (data not shown). Similar to our re-
sults, studies reported that SIS for 28 days did not alter the body weight
of C57BL/6J mice of 12 or 20 weeks (Sun et al., 2014; Ieraci et al.,
2016). Further experiments are required to clarify the effect of volun-
tary wheel running in the homecage of grouped Swiss mice on stress-
related parameters and aggressiveness.

Here, we also investigated the impact of SIS on the PA paradigm
(voluntary wheel running exposition) effect on oxidative stress-related
parameters and mitochondrial function. Specific brain structures (cer-
ebral cortex and cerebellum) and peripheral tissues, such as skeletal
muscle gastrocnemius, liver, and heart, were selected for this study. The
biochemical analysis in the cerebral cortex is justified due to its im-
plications for cognition and affective behavior, being more sensitive to
oxidative stress induced by SIS than other brain tissues such as the
hippocampus (Zlatković et al., 2014a). The cerebellum was also a site
chosen for biochemical analysis because the cerebellum is critical to

Fig. 7. Correlation between the oxidative stress-related parameters or behavior and the distance travelled or time spent on the running wheel of socially isolated
mice. The correlation between distance travelled or time spent on the voluntary wheel running with: 1) TBARS levels in the cerebral cortex (Panels A and B), and
cerebellum (Panels C and D); 2) GPx activity in the cerebellum (Panels E and F) and heart (Panels G and H); 3) GR activity in the gastrocnemius (Panels G and H); and
the immobility time in the tail suspension test (Panels I and J).
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social and affective processing and regulation (Van Overwalle et al.,
2014; Hoche et al., 2016; Guell et al., 2018). The peripheral tissues
(heart, liver, and skeletal muscle gastrocnemius) were chosen because
SIS has been considered a risk factor for cardiovascular disease (Xia and
Li, 2018) and overweight with hepatic hypertrophy (Sakakibara et al.,
2012). Furthermore, the skeletal muscle was chosen for biochemical
determinations because it is a primary tissue target of the PA paradigm
using voluntary wheel running (Manzanares et al., 2018).

Chronic stress may disturb redox-status via increased reactive
oxygen species, leading to oxidative damage to cellular macro-
molecules. Oxidative damage can be used as a biomarker of negative
health outcomes, usually assessed by measuring lipid peroxidation end
products, such as MDA, a reactive aldehyde produced by lipid perox-
idation of polyunsaturated fatty acids (Ayala et al., 2014; Sahin and
Gümüşlü, 2004). Here, the results suggested that SIS induced lipid
peroxidation in the cerebral cortex by 21 days. No changes were ob-
served in the cerebellum, gastrocnemius, and heart of mice. A study
performed by Huong et al. (2005) showed that socially isolated mice by
6-8 weeks presented increased TBARS levels in the brain (Huong et al.,
2005). Interestingly, socially isolated rats had higher TBARS levels in
the prefrontal cortex and hippocampus, compared to socialized rats
(Famitafreshi and Karimian, 2018; Zlatković et al., 2014c). It is note-
worthy that the cerebellum is a brain structure presenting higher an-
tioxidant capacity and is more resistant to oxidative stress than the
cerebral cortex (Latini et al., 2007; Vandresen-Filho et al., 2015). Ad-
ditionally, we also demonstrated that SIS decreased the TBARS levels in
the liver of mice. A study pointed out that rats exposed for 6 weeks to
chronic SIS increased cytosolic TBARS levels in the liver (Stanisavljevic
et al., 2017). Discrepancies between our results and literature data
might be due to the different species used. Furthermore, in the future
we intend to carry out experiments using more specific techniques for
lipid peroxidation, since TBARS is an unspecific method that is subject
to a number of criticisms (Forman et al., 2015). Measuring the levels of
isoprostanes and/or MDA-thiobarbituric acid adduct by HPLC would
bring more specificity and precision (Forman et al., 2015). Oxidative
protein and DNA modifications are also interesting end points to be
analyzed in future studies. In line with this, rats that underwent SIS
presented higher protein carbonyl levels (Zlatković et al., 2014a) and
DNA damage (Krolow et al., 2013) in the brain, suggesting that oxi-
dation of both proteins and DNA could be an important target for SIS.

In the present study, PA intervention using voluntary wheel running
was unable to prevent the increase in TBARS levels in the cerebral
cortex induced by SIS. Interestingly, free exposition of mice to the
running wheel decreased TBARS levels in the liver of grouped mice and
in the gastrocnemius skeletal muscle of socially isolated mice.
Conversely, rats exposed to voluntary wheel running for 4 weeks did
not alter the TBARS levels in the liver, skeletal muscle soleus, and heart
(Škop et al., 2015). Similar to our results, Judge et al. (2005) demon-
strated the absence of significant differences in lipid peroxidation (4-
hydroxy-2-nonenal-modified proteins and TBARS levels) on the hearts
of rats physically exercised in the running wheel, compared to seden-
tary rats (Judge et al., 2005).

Glutathione (GSH) has a pivotal role as an antioxidant defense, ei-
ther by reacting directly with reactive oxygen and nitrogen species, or
by acting as an essential cofactor for the enzymes glutathione S-trans-
ferase and GPx (Deponte, 2013). In line with this, thiol groups of GSH
serve as electron donors in the reduction of disulfide bonds of cyto-
plasmic proteins, leading to GSSG build up (Pompella et al., 2003).
Since about 85–95% of non-protein sulfhydryl groups (NPSH) are
composed of GSH, this method was used as an indirect determination of
GSH, and also served as index for the redox status of the cell (Heisinger
and Wait, 1989; DeLucia et al., 1975; Cohn and Lyle, 1964). Studies
have demonstrated that SIS decreases GSH levels in several tissues. For
instance, a study demonstrated that SIS decreased GSH levels in the
brain and heart of rats (Sonei et al., 2017). In addition, SIS for
6–8 weeks also depleted brain GSH content in mice (Huong et al.,

2005). Chronic SIS also decreased GSH levels in the liver and blood of
rats by 21 or 84 days (Mohale and Chandewar, 2012). The present
study found statistical differences in NPSH levels on the gastrocnemius,
but not on the other tissues, between socially isolated and grouped
mice.

The present study is, to the best our knowledge, the first to in-
vestigate the effects of the running wheel paradigm on GSH home-
ostasis, which was investigated in several tissues of socially isolated and
grouped mice. The present study showed that the PA paradigm in
grouped mice lead to an increase in cerebral cortex NPSH levels com-
pared to the sedentary group, however PA did not alter the NPSH levels
in the peripheral tissues analyzed. Similar to our results, GSH levels in
the heart were not altered following the running wheel paradigm
(Judge et al., 2005). Contrasting to these results, the levels of GSH in
the liver of physically active male and female rats were greater than the
sedentary group (Yamamoto et al., 2002). These dissimilar responses
regarding hepatic GSH levels could be due to different animal strains/
species or differences in the experimental protocol. We intend to further
investigate how GSH levels are relevant to SIS in the context of PA in
future studies.

It is known that GSH is a cofactor for GPx in the reduction of lipid
hydroperoxides to their corresponding alcohols, as well as in the re-
duction of hydrogen peroxide to water, releasing GSSG as the by-pro-
duct (Bhabak and Mugesh, 2010; Flohe et al., 1973). GR then reduces
GSSG, regenerating GSH to complete the catalytic cycle (Deponte,
2013). In the present study, SIS increased GPx activity in the cere-
bellum and gastrocnemius muscle, while GR activity was increased in
the cerebellum, gastrocnemius muscle, and liver. Studies are con-
troversial in relation to how SIS modulates the GSH system. For in-
stance, SIS by 21 days impaired GSH-dependent protection, since the
stress paradigm decreased GSH levels and increased GPx activity and
immunocontent in the rat prefrontal cortex (Todorović and Filipović,
2017a, 2017b; Zlatković et al., 2014a). Furthermore, chronic SIS de-
creased the activity, but not the immunocontent, of GPx in the hippo-
campus of rats (Djordjevic et al., 2010). Chronic SIS decreased GSH
content and GR activity in the liver of rats, but GPx activity remained
unaltered (Todorović et al., 2016).

The PA protocol abrogated the increase in GPx and GR activities
induced by SIS in the peripheral tissues, such as the gastrocnemius and
liver. Additionally, we showed that PA exposition decreased GPx and
GR activities in the cerebral cortex of socially isolated animals, sug-
gesting a central nervous system adaptation to the PA paradigm. In the
present study, the PA protocol did not alter the heart, GPx, or GR ac-
tivities. Similar to our results, a study showed that the running wheel
paradigm does not alter GSH levels, or GPx and GR activities in the
heart (Judge et al., 2005). Additionally, rats exposed to the running
wheel for 4 weeks did not have altered GPx activity in the liver, skeletal
muscle soleus, or heart (Škop et al., 2015).

Emerging evidence suggests that mitochondrial function is an early
target of stress (Gardner and Boles, 2005, 2008; Jeanneteau et al., 2018;
Picard et al., 2018; Ridout et al., 2016). Mitochondria are ubiquitous
organelles in eukaryotic cells responsible for orchestrating cellular en-
ergy production in the form of ATP via protein complexes mediating
oxidative phosphorylation. The NADH ubiquinone oxidoreductase
(complex I) is the first enzyme of the respiratory chain. It oxidizes
NADH, which is generated through the Krebs cycle in the mitochondrial
matrix, and uses the two electrons to reduce ubiquinone to ubiquinol.
The succinate ubiquinone oxidoreductase (complex II) catalyzes the
oxidation of succinate to fumarate and the reduction of ubiquinone to
ubiquinol. These two enzyme complexes are the gateway to oxidative
phosphorylation, and can serve as indicators of mitochondrial function.
Furthermore, previous studies demonstrated the pivotal role of these
mitochondrial complexes in social behavior (Hollis et al., 2015). In-
terestingly, the cerebral cortex is more sensitive than the hippocampus
to the effects of SIS with regards to mitochondrial function, taking into
account that: 1) cerebral cortex, but not hippocampus, of rats exposed
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to SIS by 21 days presented increased cytochrome c release from mi-
tochondria into the cytosol (Filipović et al., 2011); and 2) SIS did not
alter the activity of both respiratory chain complexes I/III and II in the
hippocampus of juvenile rats (Krolow et al., 2012). For this reason, we
performed activity analyses of mitochondrial complexes in the cerebral
cortex of animals. Furthermore, the skeletal muscle gastrocnemius was
another tissue chosen to have its mitochondrial complex activity ana-
lyzed, based on the peripheral and direct association with voluntary
wheel running, as this protocol stimulates its contraction. We did not
analyze the enzymatic activity of mitochondria complexes in cardiac
tissue because studies have reported that rats exposed to lifelong run-
ning wheel had displayed no effects on aerobic respiration parameters,
such as the rate of oxygen consumption (state 4 or state 3) or re-
spiratory control ratio, in the heart tissue (Servais et al., 2003; Judge
et al., 2005).

In the present study, we demonstrated that socially isolated mice
increased the activity of both complex I and II in the cerebral cortex,
but not in the skeletal muscle gastrocnemius. However, studies in-
dicated that SIS could be associated with impaired respiratory chain
complex II, which can lead to reactive oxygen species formation, oxi-
dative damage, and ATP depletion in both the brain and heart of rats
(Sonei et al., 2017; Zhuravliova et al., 2009). The differences in the
activity of complex II found in the present study in relation to literature
data could be associated with species, age, and SIS protocol. Although
there are no reports investigating the effects of free exposure of rodents
to the running wheel on changes in the mitochondrial function induced
by SIS, there is evidence indicating that the running wheel paradigm
could modulate mitochondrial activity (Herbst and Holloway, 2015;
Marques-Aleixo et al., 2015; Stolle et al., 2018). In the present study,
we demonstrated that individually housed animals presented higher
activity of mitochondrial complexes I and II in the cerebral cortex, but
not in the gastrocnemius muscle. The PA paradigm was unable to alter
the activity of mitochondrial complexes I and II. Interestingly, isolated
brain mitochondria of C57BL/6 mice submitted to SIS, in combination
with running wheel for 6 weeks, presented increased mitochondrial
complex I activity and abrogated the inhibition of this complex induced
by rotenone incubation, while the effects of MPP+ were not altered
(Aguiar et al., 2014; Aguiar Jr et al., 2014). Furthermore, rats exposed
to voluntary wheel running increased the activities of complex I and II
in the soleus skeletal muscle (Hedges et al., 2019). The differences in
the activities of mitochondrial complexes could be associated with
differences in the strain and species.

Given that stress is the main triggering factor of major depressive
disorder, we investigated the effect of SIS and PA on the immobility
time in the TST. The results showed that the PA protocol produced a
reduction in the immobility time of mice submitted to the TST, an
antidepressant-like profile. The antidepressant-like effect of the volun-
tary wheel running paradigm has previously been shown (Cunha et al.,
2013; Duman et al., 2008). However, under the effect of SIS, the anti-
depressant-like effect may limit the interpretation of data, precluding
further discussions and conclusions. In the present study, the behavior
of mice in the TST was not dependent of social condition, since SIS was

unable to alter the immobility time. Similar to our results, rats sub-
mitted to SIS for 1, 2, or 3 weeks did not present depressive-like effects
in the forced swimming test (FST; Gorlova et al., 2018). Furthermore, a
study showed that SIS increased the immobility time of Wistar rats in
the FST, which was not observed for Wistar-Kyoto rats, suggesting that
the effect of SIS can be strain-specific (Mileva and Bielajew, 2015).
Interestingly, a study reported that predisposed Wistar rats presenting a
background of increased immobility time in the FST presented a de-
pressive-like profile when submitted to SIS for 21 days. The same effect
was not observed in non-predisposed Wistar rats, suggesting that pre-
disposition to the effects of stress is a determining factor for behavior
despair following SIS (Zanier-Gomes et al., 2015). Moreover, several
reports also revealed that SIS significantly increased the immobility
time of NMRI and C57BL/6J mice or Sprague-Dawley rats submitted to
the FST (Chan et al., 2017; Cho et al., 2017; Dávila-Hernández et al.,
2018; Haj-Mirzaian et al., 2015, 2019). The discrepancies of our results
in the behavior despair test, compared to the literature data, could be
due to several factors, including biological factors such as strain, age,
body weight, gender, and individual differences between animals.

We also investigated the correlation between distance travelled, or
time spent on the running wheel, and oxidative stress-related para-
meters, as well as the mitochondrial function in the socially isolated
mice. The TBARS levels were negatively correlated with the distance
travelled and the time spent on the running wheel. Interestingly, a
tendency of negative correlation between cerebellar TBARS levels and
distance travelled or time spent on the running wheel was pointed out
in the present study. These data suggest that PA could be protective
against lipid peroxidation induced by SIS. Furthermore, the NPSH levels
did not correlate with the distance travelled or the time spent on the
running wheel. However, the literature data reported that GSH levels of
the liver and brain were correlated with distance travelled in the run-
ning wheel (Yamamoto et al., 2002). Additionally, the present results
also demonstrated that cerebellar GPx activity was negatively corre-
lated with the distance travelled, or the time spent on the running
wheel. Moreover, the heart GPx activity was positively correlated with
the distance travelled. GR activity in the gastrocnemius was also posi-
tively correlated with distance travelled or time spent on the running
wheel. These data indicated that PA could modulate the GSH-depen-
dent enzymatic antioxidant system. Furthermore, a negative correlation
between the immobility time in the FST and distance travelled and the
time spent on the running wheel was reported in the present study,
suggesting that PA was an important tool for clinical depression man-
agement.

5. Conclusion

Collectively, our results demonstrate that SIS produces mitochon-
drial functional alterations and oxidative stress, since it increases lipid
peroxidation and alters the activity of the antioxidant enzymatic system
dependent on GSH in peripheral and central tissues. Therefore, we
further showed that a voluntary wheel running-induced decrease in
oxidative stress is dependent, at least in part, on housing conditions. In

Table 1
Summary of the main neurochemical findings in mice following social isolation and/or physical activity paradigm in the running wheel.

Cerebral Cortex Cerebellum Heart Gastrocnemius Liver

Social
isolation

Running
wheel

Social
isolation

Running
wheel

Social
isolation

Running
wheel

Social
isolation

Running
wheel

Social
isolation

Running wheel

MDA ↑ – – – – – – ↓ – ↓
NPSH – ↑ – – – – ↓ – – –
GPX – ↓ ↑ – – – ↑ – – –
GR – ↓ ↑ – – ↓ ↑ ↓ ↑ ↓
Complex I ↑ – – – – – – – – –
Complex II ↑ – – – – – – – – –

M.P. Cunha, et al. Pharmacology, Biochemistry and Behavior 198 (2020) 173018

11



Table 1, we summarized main neurochemical findings in mice fol-
lowing SIS and/or PA paradigms in voluntary wheel running.
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