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High genetic burden of type 
2 diabetes can promote 
the high prevalence of disease: 
a longitudinal cohort study in Iran
Maryam Moazzam‑Jazi, Leila Najd Hassan Bonab, Asiyeh Sadat Zahedi & 
Maryam S. Daneshpour*

Type 2 diabetes (T2D) is emerging as one of the serious public health issues in both developed and 
developing counties. Here, we surveyed the worldwide population differentiation in T2D-associated 
variants and assessed the genetic burden of the disease in an ongoing Tehran Cardio-Metabolic 
Genetic Study (TCGS) cohort represented the Iranian population. We found multiple SNPs that were 
significantly depleted or enriched in at least one of the five populations of 1,000 Genome Project 
(African, American, East Asian, European, and South Asian) as well as the Iranian population. 
Interestingly, TCF7L2, a well-known associated gene with T2D, harbors the highest number of 
enriched risk alleles almost in all populations except for East Asian, where this gene embraces the 
largest number of significantly depleted risk alleles. The polygenic risk score (PRS) of the enriched 
risk alleles was calculated for 1,867 diabetic and 2,855 non-diabetic participants in the TCGS cohort, 
interestingly demonstrating that the risk of developing T2D was almost two times higher in top PRS 
quintile compared with the lowest quintile after adjusting for other known risk factors.

Type 2 diabetes (T2D) is one of the major life-threatening diseases globally, accounting for 4.2 million deaths 
worldwide in 2019 as assessed by International Diabetes Federation (IDF) consortium1,2. According to the IDF 
report, among 20 countries belongs to the Middle East and North Africa (MENA) region, Iran is ranked third 
with the highest number of adults (5.4 million) who suffered from diabetes. The prevalence of diabetes in Iran’s 
adult population was 11.4% in 2014, estimating 9.2 million Iranian individuals will have diabetes by the year 
20303.

Type 2 diabetes is a common multifactorial metabolic disease, resulting from both genetic and non-genetic 
(environmental) factors. The heritability of T2D ranges from 20 to 80%, suggesting the considerable role of 
genetic factors in the development of T2D; the heritable component of the disease is polygenic where many genes 
and their variants contribute to an enhanced risk of T2D development4. The advent of high-throughput genotyp-
ing technologies has created a significant breakthrough in understanding the underlying genetic components 
of complex diseases, including T2D. A large number of common and low-frequency T2D susceptibility variants 
have been characterized by the genome-wide association studies (GWAS) and the whole-genome sequencing5–9. 
Most of these variants are located near genes that were previously known to be involved in diabetes pathogen-
esis, such as TCF7L2, CDKAL1, CDKN1C, and IGF2BP210. Among them, TCF7L2 is responsible for the largest 
proportion of the T2D-associated variance in the various ethnic groups11. TCF7L2 encodes a transcription factor 
played a central role in the Wnt signaling pathway to regulate glucose homeostasis12. Since not all individuals are 
equally affected by type 2 diabetes through the unhealthy lifestyle and some are more sensitive than others, the 
corresponding genetic variants can lead to the population disparities in the T2D prevalence12,13.

According to the examination of 16 SNPs, Corona et al. proposed that genetic susceptibility to type 2 diabetes 
is lower for East Asia and American populations than Africa and Europe populations14. Similarly, the population 
differentiation in the obesity-associated variants and the consequent obesity prevalence was reported15. Nowa-
days, the availability of population-scale disease-related genetic variants has enabled the researchers to survey 
the variant frequencies across different populations and estimate the genetic burden of disease. A recent study 
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demonstrated that the high number of deleterious variants attributed to the cardiovascular diseases in Pakistan 
population can cause the increased mutation load of this disease in the population16. Considering the complex 
diseases influenced by many common genetic variants with the small effect size, the meaningful risk assessment 
requires inspecting the cumulative effect of multiple variants, acquiring with calculating the polygenetic risk 
score (PRS). Merino et al. computed the polygenic risk score for a large number of diabetic and non-diabetic 
participants using 68 risk T2D SNPs and indicated that the corresponding genetic burden and the dietary fat 
quality are associated with the risk of type 2 diabetes17. Recognizing and targeting the individuals at the highest 
genetic risk can increase the cost-effectiveness of lifestyle and other interventions to prevent or delay the T2D 
incidence12,18. The critical importance of the issue in society public health and the early-mentioned statistics 
regarding the T2D status in Iran motivated us to estimate the genetic burden of this disease in the Iranian 
population for the first time.

The present study aims to assess the genetic burden of type 2 diabetes in the Iranian population. To this 
end, (1) we collected a comprehensive list of T2D-associated SNPs and examined their allele frequencies differ-
ences between the Iranian population and each of 1,000 Genome Project populations, African (AFR), American 
(AMR), East Asian (EAS), European (EUR), and South Asian (SAS); (2) we identified the enriched or depleted 
risk alleles of T2D-associated SNPs in the Iranian and each of the 1,000 Genome Project populations compared to 
the global population; (3) finally, we calculated the polygenic risk score (PRS) for the enriched risk alleles within 
the Iranian population and tested the PRS correlation with T2D prevalence and incidence in this population.

Results
A total of 2,302 T2D-associated SNPs with the genome-wide p-value threshold of 5 × 10–8 was selected from 
NHGRI-EBI GWAS Catalog19 and Type 2 Diabetes Knowledge Portal20 (Supplementary File 1). The collected 
SNPs resulted from 21 GWA studies, which two studies conducted in African populations, three in East Asian 
populations, 12 in European, two in South Asians, and three in American populations. According to the anno-
tation results obtained from the VEP tool, 2,032 of 2,302 SNPs distributed on 163 genes, which 61% of them 
located in intronic regions (Supplementary File 1); therefore, they most likely affect the transcription regulation 
of T2D-related genes rather than the gene function.

We then acquired the effect allele frequency of selected SNPs in each of five populations of the 1,000 Genomes 
Project as well as the IR population (whole-genome sequencing data of TCGS cohort) (Supplementary File 2). 
The effect allele frequency spectrum of all T2D-related SNPs in the Iranian population revealed the distribution 
of SNPs is skewed toward the higher allele frequencies (AF > 5%). Although the proportion of rare and low-
frequent variants were found to be 211 out of 2,302 variants in our population (Fig. 1), the more low-frequent 
and rarer variants may be detected within the larger sample size. The effect allele frequencies of all SNPs were 
compared between Iranian and each of five 1,000 Genome Project populations as illustrated in Fig. 2; based on 
this comparative analysis, a large number of SNPs have a higher effect allele frequency in the Iranian popula-
tion than the 1,000 genome populations. The maximum difference of effect allele frequency with AMR, EUR, 
and SAS populations were 3.7, 2.9, and 22.3 times higher in IR, respectively. However, the largest differences in 
effect allele frequency were detected between IR and EAS as well as between IR and AFR populations where the 
maximum effect allele frequency difference with these populations was 315 and 79 times higher in IR (Fig. 2 
and Supplementary File 2), all of these variants were risk variant. Moreover, the average frequency of T2D risk 
variants was 0.39 in the Iranian population, consistent with the general population and the natural selection 
impact to keep fitness-reducing alleles at low frequency4,21.

Genetic population differentiation.  In the present study, the population differentiation of all SNPs was 
also determined through calculating the Weir and Cockerham Fst for the IR population versus each of five popu-
lations in the 1,000 Genomes Project. The mean Fst value for IR population against SAS and EUR populations 
were 0.018509 and 0.01134, respectively while it was found to be 0.02529 against AMR population; interestingly, 
the EAS and AFR populations displayed the largest differentiation where the means Fst value of 0.091127 and 
0.086663 were computed for these populations, respectively, against the IR population. Additionally, there are 
109 SNPs with high Fst value (Fst > 0.05) out of 2,302 T2D-associated SNPs, ranking above the top 1% across 
all populations (AFR, AMR, EAS, EUR, IR, and SAS). As the SNP with the high Fst value can specify the posi-

Figure 1.   Effect allele frequency spectrum of type 2 diabetes-associated SNPs in Iranian population.
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tive selection and/or population expansion, we also performed the same Fst analysis for the randomly selected 
SNPs between IR and each of five populations of 1,000 Genome Project and recognized 120 out of 2,302 random 
SNPs ranked above top 1% among all populations. This frequency difference was not significant (Chi2 = 0.178, 
p-value = 0.67), suggesting there is no clue of positive selection at T2D-linked SNPs compared with the random 
SNPs in the genome. The observed differences in allele frequencies and the Fst value of SNPs of interest provided 
a sign of global population stratification based on the T2D-related SNPs. Therefore, the principal component 
analysis was also conducted for the variants within the populations under study. As Fig. 3 illustrated, all popula-
tions clustered together except for African and East Asian locating at the distinct groups, consistent with the 
high mean Fst values compared with other populations (Fig. 3). Further details on PCA analysis can be available 
at the Supplementary File 3.

Enrichment analysis of T2D‑associated SNPs.  With the above information in mind, we examined 
which risk allele of T2D-associated SNPs is enriched or depleted in each population (AFR, AMR, EAS, EUR, 
SAS, and IR) in comparison with the global population. Based on our results, 197 out of 212 risk SNPs were sig-
nificantly depleted or enriched at the FDR threshold of 0.05 in at least one of six populations. The significantly 
altered SNPs were distributed on 15 genes. We further investigated the top four genes with the highest number 
of enriched or depleted risk SNPs in the various populations (Table 1), which TCF7L2 harbors the highest num-
ber of enriched risk SNPs in Iran (62 SNPs), African (77 SNPs), and European (63 SNPs) populations while this 
gene was ranked as one the top four genes carrying the largest number of both enriched and depleted SNPs in 
AMR and SAS populations. Interestingly, the EAS population revealed a different pattern where no TCF7L2 SNP 
significantly enriched in this population; instead, we found 75 significantly depleted risk SNPs of this gene in the 
individuals with EAS ancestry. Correspondingly, CDKAL1 was found to be the gene with the highest number of 
enriched and the lowest number of depleted risk variants in the EAS population whereas a large number of risk 
SNPs of CDKAL1 was significantly both enriched and depleted in AFR, AMR and SAS populations. However, IR 
and EUR populations presented a distinct pattern where CDKAL1 was ranked as one of the top genes with the 
highest number of depleted risk variants in these populations (Table 1).

TCF7L2 SNPs.  The prominent contribution of TCF7L2 variants in the risk of developing type 2 diabetes as 
well as a large number of significantly enriched SNPs of this gene in the Iranian population compared to the 
global population motivated us to further interrogate the TCF7L2 variants enrichment/depletion pattern in all 
populations. The heatmap illustrated how significantly the risk alleles of TCF7L2 SNPs were depleted or enriched 

Figure 2.   The comparative distribution of effect allele frequencies in Iranian population versus all five 
populations of 1,000 Genomes Project.
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across populations (Fig. 4). Based on our enrichment analysis, a total of 77 risk alleles of TCF7L2 were enriched 
or depleted in at least one of the populations of interest. As Fig. 4 displayed, these 77 SNPs were clustered into 
two major groups, one group consisting of 48 SNPs and other group consisting of 29 SNPs, which exhibit dis-
crete allele enrichment/depletion patterns. In the 48-member group, the risk allele of all TCF7L2 SNPs, except 
for one or two SNPs, was enriched in AMR, EUR, IR, and SAS populations while except for 10 enriched risk 
alleles in AFR population, these risk alleles were depleted in individuals with EAS and AFR ancestries. Similarly, 
in the 29-member group, the risk alleles of TCF7L2 SNPs were enriched in AFR, IR, and EUR populations, but 
depleted in individuals with EAS, SAS, and AMR ancestries (Fig. 4).

Polygenic risk score analysis and its association with prevalent T2D.  In addition to genotype data, 
the phenotype data including the T2D status and some blood biochemical parameters were available for the Ira-
nian population (TCGS cohort); it is worth to note that we used the unrelated individuals with the available phe-
notype data and genotype data obtained by chip-typing or imputing for this part of the study. Here, we surveyed 
if there is any correlation between the enriched T2D-associated risk SNPs and the type 2 diabetes incidence in 
Iran. To this end, the cumulative effect of enriched risk SNPs on T2D disease was examined by calculating the 
polygenic risk score, which combined the individual genetic effects into a single measure. The weighted PRS was 
computed based on the enriched risk SNPs for 4,722 individuals aged 20 and older (1,867 diabetic and 2,855 
non-diabetic individuals) using the PRSice tool. Due to the relatively high prevalence of T2D in the popula-
tion, the robust Poisson regression analysis was utilized to assess the association of computed polygenic risk 
score with the prevalent T2D22. Based on our results, there is a significant association between the PRS and the 
observed T2D prevalence. As Table 2 indicates, interestingly, the estimated prevalence ratio (PR) was increased 
with increasing the PRS quintiles in both unadjusted and adjusted models for age, sex, and BMI; however, the 
statistically significant association (p-value < 0.05) was observed between the top PRS quintile (4th and 5th quin-

Figure 3.   Principal Components Analysis (PCA) based on type 2 diabetes-related SNPs.

Table 1.   Top four genes carrying the highest number of enriched and depleted T2D-associated SNPs in 
various populations.

IR AFR AMR EUR SAS EAS

Gene Count Gene Count Gene Count Gene Count Gene Count Gene Count

Enriched

TCF7L2 62 TCF7L2 77 TCF7L2 24 TCF7L2 63 TCF7L2 28 CDKAL1 30

CDKAL1 4 CDKAL1 33 SLC16A11 19 CDKN1C 4 IGF2BP2 14 SLC16A11 13

CDKN1C 4 IGF2BP2 31 SLC16A13 3 CDKAL1 1 CDKN1C 4 CDKN2B 2

TECRL 1 SLC16A11 19 HLA-DQA2 1 TECRL 1 CDKAL1 1 SLC16A13 2

Depleted

IGF2BP2 30 TCF7L2 30 IGF2BP2 30 IGF2BP2 31 TCF7L2 32 TCF7L2 75

SLC16A11 18 CDKAL1 18 TCF7L2 30 CDKAL1 26 SLC16A11 19 IGF2BP2 30

CDKAL1 16 SLC16A11 12 CDKAL1 29 SLC16A11 17 CDKAL1 17 CDKN1C 4

TCF7L2 3 CDKN1C 2 CDKN1C 3 SLC16A13 3 SLC16A13 3 SLC16A11 4
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tiles) and prevalent T2D. So that, the PR for the genetically high-risk individuals who located in the 4th and 5th 
quintiles were 1.44 (95% CI 1.2–1.7) and 1.34 (95% CI 1.14–1.6), respectively, compared to the genetically low-
risk individuals who located in the bottom PRS quintiles in the age-, sex-, and BMI-adjusted model (Table 2).

Validation of the PRS with incident T2D analysis.  As the TCGS data resulted from a prospective 
cohort study, we took advantage of the Cox regression analysis to evaluate the hazard ratios (HRs) and 95% 

Figure 4.   Heatmap illustrates the significantly enriched or depleted risk alleles of TCF7L2 SNPs in each 
population. Each row and each column represent the SNP and the population, respectively.
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confidence intervals (CIs) for the risk of developing T2D in each PRS quintile. As indicated in Table 3, PRS 
had a significant effect on the risk of T2D development during the follow-up; both, T2D risk development 
and PRS quintile followed a similar pattern so that the increased risk of developing T2D was noticed with the 
increased PRS quintile. The risk difference between the lowest and highest PRS quintiles was about twofold 
(HR = 1.96, 95% CI 1.4–2.5, p-value = 0.00001) in the adjusted model for age, sex, BMI (Table 3). Interestingly, 
when the effect of PRS on T2D incidence was determined with additionally adjusting the model for fasting 
plasma glucose, 2-h plasma glucose, cholesterol, triglyceride, high-density lipoprotein cholesterol levels, as well 
as low-density lipoprotein cholesterol level, the estimated HR in the highest PRS quintile compared to the lowest 
quintile was 1.72 (95% CI 1.4–2.3; p-value = 0.001) (Table 3). Besides, the cumulative incidence graph illustrates 
the difference in the cumulative T2D incidence among the individuals classified as “low”, “moderate”, and “high” 
genetic risk category (Fig. 5).

Table 2.   The association of PRS with the prevalence of type 2 diabetes. Prevalence ratio (PR) with 95% 
confidence intervals (95% CI) from robust Poisson regression analysis. The model is adjusted for age, sex, and 
BMI. The first quintile (< 20%) containing 766 individuals were considered as reference. The whole sample size 
was 3,574 individuals.

Quintile Sample size PR (95% CI) p-value

2 (20–40%) 713 0.9 (0.76, 1.1) 0.53

3 (40–60%) 638 1.05 (0.86, 1.2) 0.6

4 (60–80%) 826 1.34 (1.1, 1.6) 0.001

5 (> 80%) 631 1.44 (1.2, 1.7) 0.00006

Table 3.   The PRS effect on the risk of developing type 2 diabetes. Hazard ratio (HR) with 95% confidence 
intervals (95% CI) from Cox regression analysis. The full model is adjusted for age, sex, BMI, fasting plasma 
glucose, 2-h plasma glucose, cholesterol, triglyceride, high-density lipoprotein cholesterol, and low-density 
lipoprotein cholesterol levels. The first quintile (< 20%) containing 783 individuals were considered as 
reference. The whole sample size was 4,003 individuals.

Quintile Sample size

Age, sex and BMI-adjusted model Full model

HR (95% CI) p-value HR (95% CI) p-value

2 (20–40%) 767 0.9 (0.6, 1.2) 0.53 0.93 (0.6, 1.3) 0.7

3 (40–60%) 726 1.35 (1, 1.8) 0.04 1.32 (0.96, 1.8) 0.08

4 (60–80%) 902 1.5 (1.1, 2) 0.003 1.45 (1.07, 1.9) 0.01

5 (> 80%) 825 1.96 (1.4, 2.5) 0.00001 1.72 (1.2, 2.3) 0. 001

Figure 5.   The cumulative incidence of type 2 diabetes in 4,003 genotyped individuals free of T2D at baseline. 
Cumulative incidence presented separately in three low, moderate and high genetically risk categories.
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Association of PRS with known biochemical T2D risk factors.  In individuals without the preva-
lent T2D, the effect of PRS on known biochemical risk factors of type 2 diabetes, including fasting blood glu-
cose, 2-h glucose, and cholesterol, triglyceride, and BMI levels was evaluated using the linear regression analysis 
adjusted for age and sex. Our findings revealed that there is no significant association between the computed 
PRS and each of these biochemical parameters, except for the fasting plasma glucose level. The fasting plasma 
glucose content was enhanced with raising the PRS quintile, however, the statistically significant association was 
observed between the top PRS quintile (fifth) and this T2D biomarker (Supplementary Table 1).

Discussion
Part of the variability in T2D prevalence across populations can be attributed to the corresponding genetic dif-
ferences. In the current study, we observed the effect allele frequency of a large number of SNPs varied between 
Iranian and each of five 1,000 Genome Project populations (Fig. 2). Natural selection or population expansion 
can modify the allele frequencies among different populations, which can result in the local adaption as well 
as susceptibility to disease23. To further quantify the population differentiation for the T2D-related SNPs, we 
calculated the pairwise Fst value for all SNPs and noted the highest mean Fst value for IR vs. AFR as well as 
for IR vs. EAS. However, the mean Fst value and the Fst distribution for the randomly selected SNPs were not 
significantly different from the T2D-associated SNPs. Accordingly, there is no evidence of positive selection for 
the T2D-related SNPs, consistent with the previous studies on SNPs linked to obesity and T2D24,25. Ayub et al. 
investigated 65 T2D-associated SNPs in the individuals with various ancestries and reported the positive selec-
tion cannot account for the T2D allele frequency differences and the prevalence of the disease in the current 
populations24. However, the signatures of positive selection can be traced using further analyses that are beyond 
the scope of present study.

The evaluation of significantly enriched or depleted SNPs in a given population through the enrichment 
analysis is a simple, but powerful approach to visualize the worldwide effect allele frequencies distribution15. 
Our enrichment analysis carried out on the comprehensive set of 212 T2D-associated risk SNPs revealed that 
the highest number of significantly enriched risk alleles belonged to TCF7L2 almost in all populations except for 
the EAS, where this gene harbors the maximum number of significantly depleted risk alleles across populations; 
several depleted TCF7L2 risk alleles have also been identified in AFR, AMR, and SAS populations, but only 
three risk alleles in IR and no risk allele of this gene in EUR populations were depleted. Therefore, the T2D risk 
allele enrichment/depletion pattern in various populations, specifically in African and East Asian populations 
is discrete. Analysis of a small set of T2D risk alleles (12 risk alleles) among 11 HapMap populations showed 
the decreasing allele frequency when humans migrate from Africa to East Asia regions26, consistent with the 
observed pattern of SNPs within the second cluster (29 members) in the current study. Adaptation to the distinct 
climate and agriculture development across continents during human migration from Africa may give rise to 
such a difference in T2D risk allele frequency and subsequent genetic predisposition to diabetes26. However, the 
risk alleles of this SNP cluster (the second cluster) enriched in EUR as well as in the IR population, in addition 
to AFR. Here, a similar genetic pattern appears to be shaped by the corresponding geographic locations. Iran 
is a substantial resource for human genetic variations in Western Asia27,28, where the corresponding genomic 
variations were shown to have the most similarity to the European variations. Likewise, there is a shared Western 
Asian ancestry for the Western Asian peoples and early European farmers28,29, which may account for the detected 
similar genetic variations pattern between IR and EUR populations in our study. The risk allele enrichment/
depletion patterns of T2D-related SNPs among populations might be beneficial for implementing the population-
based interventions and treatments for type 2 diabetes. For instance, with a pharmacogenetics clinical trial, the 
researchers discovered that the response to both glipizide and metformin (glucose-lowering drugs) in individuals 
with the risk factors for type 2 diabetes and treatment-naive individuals with the disease has been influenced by 
T2D-associated TCF7L2 variants30. Considering the significant enrichment of a large number of T2D-associated 
TCF7L2 variants in IR or EUR populations, but their depletion in the populations with East Asian ancestry, the 
drug response and the subsequent treatment efficiency may vary among the different populations.

Here, the significant association of polygenic risk score with T2D incidence can propose the high genetic 
burden of the enriched risk T2D-related SNPs in the Iranian population as specified by both the robust Poisson 
regression and the Cox regression analyses. Interestingly, we found that the hazard of T2D incidence differs 
between the top and bottom PRS quintiles about 2 times and the influence of PRS on the risk of developing T2D 
is independent of well-known biochemical risk factors including, fasting blood glucose, 2-h glucose, cholesterol, 
and triglyceride content. Among the biochemical parameters, the observed significant positive association of 
PRS with only FPG in the individuals with no prevalent T2D can imply that some individuals at high genetic 
risk might previously show the fasting hyperglycemia and even be pre-diabetic or undiagnosed type 2 diabetic. 
Furthermore, no significant association of PRS with cholesterol, triglyceride, and BMI levels in these individuals 
suggested the influence of calculated PRS in the present study on the T2D risk cannot be via its possible effect on 
the lipid-related traits and obesity. In line with our results, Stancakova et al. reported the significant association 
of the PRS with FPG and the incidence of type 2 diabetes31. Considering the attendance of individuals from the 
main Iranian ethnic groups living in Iran, including Persians, Azeris, Kurds, Lors, Arabs, Baluchs, Turkmans, 
Mazanis, and Gilaks at the TCGS cohort, this cohort can be representative of the Iranian population and our 
obtained results can be attributed to the general Iranian population.

In conclusion, this population-based study indicates the considerable worldwide population differentiation in 
the risk allele frequencies of type 2 diabetes-related SNPs, which can affect the drug response and the subsequent 
treatment efficiency in cases with different ancestries. We found that part of the increased prevalence of type 2 
diabetes in Iranian population can refer to the high genetic burden of this disease among Iranians as the signifi-
cant association was detected between the polygenic risk score derived from the enriched risk alleles and the type 
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2 diabetes incidence in our longitudinal cohort study. Furthermore, we demonstrated the high hazard of T2D 
development in the genetically high-risk individuals compared to the genetically low-risk individuals when the 
model adjusted for the well-known predictors, like age, sex, BMI, and other biochemical T2D risk factors. It also 
implies the appropriate predictive ability of the calculated PRS, which might be useful in the clinical implications.

Methods
Subjects and measurements.  In this study, Iranian subjects were selected from the TCGS project32 that 
is a part of an ongoing Tehran Lipid and Glucose Study (TLGS) cohort, in which subjects have been genotyped 
and followed up for cardio-metabolic risk factors every three years since 1999 (1999–2017)33. At each visit, 
written consent was obtained from each subject and referred to trained physicians and laboratories for clinical 
examinations and blood sampling; in summary, weight and height were recorded using the standard proto-
cols. Body mass index (BMI) was calculated as weight in kilograms divided by height in square meters. Fasting 
plasma glucose (FPG), 2-h plasma glucose, triglycerides (TG), total cholesterol (TC), high-density lipoprotein 
cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were measured according to the 
standard protocols34. Type 2 diabetes was diagnosed based on the fasting plasma glucose ≥ 126 mg/dL or 2-h 
plasma glucose ≥ 200 mg/dL during an oral glucose tolerance test35. The first occurrence of type 2 diabetes in 
individuals during the follow-up period was considered as diabetic condition36. The baseline characteristics of 
the participants were shown in Table 4.

Moreover, 2,504 individuals from five populations of the 1,000 Genome Project (AFR, AMR, EAS, EUR, and 
SAS) were utilized37. All procedures performed in this study approved by the ethics committee on human subject 
research at Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences (code of 
“IR.SBMU.ENDOCRINE.REC.1395.366”), which were in accordance with the 1964 Helsinki Declaration and its 
later amendments or comparable ethical standards. Written informed consent was obtained from all participants.

Genotype data.  For Iranian subjects, the whole genome of 1,162 participants at the TCGS cohort was 
sequenced using Illumina Hiseq platform with the average coverage of 30 × and the multi-sample VCF files were 
generated using GATK pipeline (unpublished data, available upon request). Additionally, the DNA samples of 
13,399 TCGS participants were genotyped with Illumina Human OmniExpress-24-v1-0 bead chip containing 
649,932 SNP loci at the deCODE genetics company (Iceland) according to manufacturer’s specifications (Illu-
mina Inc., San Diego, CA, USA)32. Furthermore, the imputation based on the available whole-genome sequenc-
ing data was performed to fill the missing (un-genotyped) variants in the SNP array. The relevant quality control 
steps were considered for producing high-quality variants at each stage. For the current study, two different 
datasets were applied. (1) The genotype data of 842 unrelated and non-diabetic individuals derived from whole-
genome sequencing was used as VCF format for the comparative effect allele frequency of T2D-related SNPs 
and enrichment analysis. (2) The genotype data of 4,722 individuals, aged from 20 to 80 years, diabetic (1,867 
individuals) and non-diabetic (2,855 individuals) acquired by chip-typing or imputing was used as PLINK for-
mat for calculating the polygenic risk score and inspecting its association with T2D incidence in the Iranian 
population. The pre-diabetic individuals were not considered in this study.

Phase 3 genotype data of the 1,000 Genome Project (VCF files) was downloaded from 1,000 Genome Project 
website37. The variant coordinates were based on the human genome assembly GRCh38.

Preparation of SNP list.  The T2D-associated SNPs were obtained from NHGRI-EBI GWAS Catalog38 as 
well as the comprehensive T2D Knowledge Portal20 with the genome-wide p-value threshold of 5e-8. The type 2 
diabetes risk alleles of selected SNPs were determined by examining the sign of odds ratio (OR); here, the OR of 
equal to or greater than 1.2 was considered as the risk allele. Additionally, the orientation of effect (risk) alleles 
(forward or reverse strand) was checked and the effect (risk) alleles converted to its complement in the case of 
reporting on the reverse strand.

Table 4.   Baseline characteristics of the TCGS cohort (1999–2017) participants used for the present study.

Variables Prevalent T2D cases Incident T2D cases Non-progress cases to T2D

Sex (Male/Female, number) 295/424 515/633 1,163/1692

Age (mean ± SD) 53 ± 11 45.5 ± 12 35 ± 12

Body mass index (mean ± SD) 29 ± 4.5 28.97 ± 4.8 25 ± 4.3

Fasting plasma glucose (mean ± SD) 163.57 ± 60 96.95 ± 11.13 84.7 ± 6.5

2-h plasma glucose (mean ± SD) 269.8 ± 89.23 127.38 ± 32.8 91.9 ± 19.5

Cholesterol (mean ± SD) 227.5 ± 48 219.23 ± 44 189 ± 41

High density lipoprotein cholesterol (mean ± SD) 40.52 ± 10 40 ± 9.5 42.56 ± 10.5

Low density lipoprotein cholesterol (mean ± SD) 141.5 ± 38 137.4 ± 34.5 119 ± 33.5

Triglyceride (mean ± SD) 226 ± 111.5 180 ± 75 125 ± 65

Follow-up year (median, IQR) 14 (10–17)
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Annotation of the selected SNPs.  The Variant Effect Predictor (VEP, release 96) tool was used to anno-
tate the selected SNPs39 through Ensembl/GENCODE and RefSeq transcripts database.

Comparison of the variants across worldwide populations.  The effect allele frequencies of selected 
T2D-associated SNPs were obtained from the corresponding VCF files using bcftools (1.9.1). The effect allele 
frequencies of the variants in the Iranian population were compared with all five major populations of the 1,000 
Genome Project. Further, to specify the population-wise genetic differentiation for type 2 diabetes, the pairwise 
Weir and Cockerham Fst40 values were calculated for the available genotype data using VCFtools (v.0.1.15)41. To 
examine if the Fst values of selected T2D-related SNPs were significantly different from that of random SNPs, 
we selected 2,302 random SNPs with similar allele frequency to the T2D-associated SNPs and calculated the 
pairwise Fst for these random SNPs. The Fst distribution SNP with high Fst value (Fst > 0.05) of the random 
SNPs and the T2D-associated SNPs was compared via Chi-Square test25. Additionally, the Principal component 
analysis (PCA) was performed to infer the population structure based on the T2D-associated SNPs using R 
Package SNPRelate42.

Enrichment analysis of T2D‑associated variants.  The Fisher’s exact test (implemented in R statistical 
package) was used to test whether the risk allele of T2D-associated SNPs is significantly enriched or depleted in 
each of six populations (AFR, AMR, EAS, IR, EUR, and SAS) compared to the global population, which encom-
passes all six populations together. The false discovery rate (FDR) cutoff of 0.05 was considered significant. For 
drawing heatmap to visualize the pattern of the allele enrichment/depletion across populations, the obtained 
FDR was transformed to log10. The negative of log10 of FDR (a positive number) was used in the case of allele 
enrichment in a population to show the related SNP in that population in the heatmap. Similarly, if the risk allele 
of a SNP is depleted in a population, the log10 of FDR (a negative number) was applied to display the SNP in that 
population in the heatmap. The heatmap was generated using R (v.3.6)43.

Polygenic risk score calculation and its association with the prevalence of T2D in Iranian popu‑
lation.  We computed the polygenic risk score for all participants in the TCGS cohort aged 20 and older (20–
80 years old), composing of 1867 diabetic and 2,855 non-diabetic individuals using PRSice software (v.2.1.6)44; 
the pre-diabetic individuals were excluded from the analysis. PRSice calculated the risk score by summing the 
disease-related alleles, weighted by the odds ratio derived from an independent GWAS. Here, GWAS summary 
statistics of the enriched T2D risk alleles derived from the selected initial SNP list used as the discovery dataset. 
An r2 threshold of 0.1 and a window size of 250 kb were utilized for clumping the SNPs in linkage disequilibrium. 
Since the PRS is a continuous measure, we considered the quintiles of calculated PRS to categorize individuals 
as being at “low”, “moderate”, or “high” genetic risk groups. Next, the effect of the computed PRS on the T2D 
prevalence in the Iranian population was assessed by the robust Poisson regression analysis adjusted for the 
baseline BMI, sex, and age.

Validation of the polygenic risk score with T2D incident analysis in Iranian population.  The 
impact of the calculated PRS on T2D incidence was assessed in the individuals without the prevalent T2D at 
the baseline using Cox regression analysis. Time-to-event was calculated from the date of the baseline examina-
tion to the date of the first follow-up examination meeting our criteria for the T2D incidence; the date of the 
last examination was considered for each censored participant. The model is adjusted for age, sex, BMI, fasting 
plasma glucose, 2-h plasma glucose, triglycerides, total cholesterol, high-density lipoprotein cholesterol levels, 
and low-density lipoprotein cholesterol level at baseline.

Association of the polygenic risk score with known biochemical T2D risk factors in Iranian 
population.  The effect of PRS on fasting plasma glucose, 2-h plasma glucose, triglycerides, total cholesterol, 
high-density lipoprotein cholesterol levels, as well as low-density lipoprotein cholesterol level, was investigated 
in the individuals without prevalent T2D via the linear regression analysis. For each analysis, the model was 
adjusted for age, sex, BMI, and other biochemical T2D risk factors except for the dependent variable of interest 
under analysis.

Data availability
The data analyzed during the current study for the Iranian population are available from the corresponding 
author on reasonable request. The 1,000 Genome Project data used in the present study is publicly available at 
ftp://ftp.1000g​enome​s.ebi.ac.uk/vol1/ftp/relea​se/20130​502/suppo​rting​/GRCh3​8_posit​ions.
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