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Abstract
Microlens array-based light-field imaging has been one of the most commonly used and effective technologies to
record high-dimensional optical signals for developing various potential high-performance applications in many fields.
However, the use of a microlens array generally suffers from an intrinsic trade-off between the spatial and angular
resolutions. In this paper, we concentrate on exploiting a diffuser to explore a novel modality for light-field imaging.
We demonstrate that the diffuser can efficiently angularly couple incident light rays into a detected image without
needing any lens. To characterize and analyse this phenomenon, we establish a diffuser-encoding light-field
transmission model, in which four-dimensional light fields are mapped into two-dimensional images via a transmission
matrix describing the light propagation through the diffuser. Correspondingly, a calibration strategy is designed to
flexibly determine the transmission matrix, so that light rays can be computationally decoupled from a detected image
with adjustable spatio-angular resolutions, which are unshackled from the resolution limitation of the sensor. The
proof-of-concept approach indicates the possibility of using scattering media for lensless four-dimensional light-field
recording and processing, not just for two- or three-dimensional imaging.

Introduction
Conventional photography forms a two-dimensional

image on a sensor, leading to loss of angular information.
In contrast, light-field imaging can detect both spatial and
angular information1,2. The angular information offers
peculiar capabilities over conventional imaging, such as
viewpoint shifting, post-capture refocusing, depth sensing,
and depth-of-field extension. Consequently, light-field
imaging has a growing range of applications involving
light-field microscopy3–7, synthetic aperture imaging8,9,
visual odometry and localization10,11, and many others.
For light-field imaging, a primary and critical step is

how to effectively record angular-resolved light fields.
According to the number of image sensors and exposures
used, light-field imaging can be mainly classified into
three categories. One is using multiple image sensors with

a single exposure to simultaneously capture light-field
samples from different viewpoints5,8,12. Such a system
usually consists of a large number of cameras, which are
bulky and expensive and thus not suitable for practical
applications. Alternatively, light-field samples can be
obtained using a single sensor and multiple expo-
sures1,2,13. This approach can record light fields with high
spatial and angular resolutions, but it is time-consuming
and thus unsuitable for dynamic scenes.
The third approach uses a single image sensor with a

single exposure to encode four-dimensional spatio-angu-
lar information into a two-dimensional detected image.
More than a century ago, the concept of plenoptic cam-
eras by adding a pinhole array or microlens array was
proposed14,15. Currently, microlens array-based plenoptic
cameras are commonly used for light-field imaging16–18,
such as the commercially available products, Lytro and
Raytrix. These devices can record unambiguous light
fields in which a pixel corresponds to a single light ray and
can conceptually be thought of as classical light-field
imaging. However, classical light-field imaging involves a
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trade-off between the spatial and angular resolutions; the
spatial resolution is in general tens to hundreds times
smaller than the number of pixels used. In recent years,
alternative techniques have been developed to encode a
light ray on multiple pixels through modulation masks
(e.g., attenuation masks19–21 and diffuser plates22),
avoiding the resolution trade-off. A light field is no longer
recorded directly but computationally retrieved from a
detected image, which can be referred to as computational
light-field imaging.
In this paper, we propose a novel modality for compu-

tational light-field imaging by using a diffuser as an
encoder, without needing any lens. Through the diffuser,
each sub-beam directionally emitted by a point source in
the detectable field-of-view forms a distinguishable sub-
image that covers a specific region on the sensor. These
sub-images are combined into a unique pseudorandom
pattern corresponding to the response of the system to
the point source. Consequently, the system has the cap-
ability of encoding a light-field incident onto the diffuser.
We establish a diffuser-encoding light-field transmission
model to characterize the mapping of four-dimensional
light fields to two-dimensional images, where a pixel
collects and integrates contributions from different sub-
beams. With the aid of the optical properties of the dif-
fuser encoding, the light-field transmission matrix can be
flexibly calibrated through a point source generated pat-
tern. As a result, light fields are computationally recon-
structed with adjustable spatio-angular resolutions,
avoiding the resolution limitation of the sensor. Being
significantly different from the existing approaches using
diffusers for lensless two- or three-dimensional ima-
ging23–26, our imaging modality provides a proof-of-
concept approach in which scattering media can be
exploited for recording high-dimensional optical signals,

modewith which the intrinsic mechanism of light propa-
gation can be further explored.

Results
Diffuser encoding
The diffuser used in the system (see Fig. 1) is a thin

transparent phase plate with a statistically varying surface
distribution. Through the diffuser, a temporally inco-
herent point source in the detectable field-of-view gen-
erates a high-contrast pseudorandom pattern on the
sensor, as shown by the green and orange wireframes in
Fig. 1. Consistent with imaging through scattering media,
the objective information of the point source is encoded,
rather than lost, in the pattern. We assume that the light-
beam emitted by the point source can be manipulated and
angularly divided into a number of thin sub-beams. Each
sub-beam illuminates a small region of the diffuser sur-
face and forms a sub-image that corresponds to a segment
of the pattern. These sub-images are different from each
other because of the random roughness distribution of the
diffuser surface. With appropriate manipulation, these
sub-images do not overlap each other and exactly con-
stitute the pattern. The validity of the assumption can be
verified through experiments. In this situation, the ele-
mentary sub-beams, represented by their centre light rays,
are angularly encoded in the pattern, as illustrated by the
green and orange lines with arrows in Fig. 1. Thus, the
light field of the point source is encoded by the diffuser.
Similar to imaging through scattering media27,28, the

response of the diffuser to a point source is lateral shift
invariant. A lateral shift of the point source results in a
translation of the corresponding pattern. This means that
each point source in a plane parallel to the diffuser plane
generates a unique pseudorandom pattern. Therefore, a
light ray emitted by any in-plane point source and inci-
dent onto the diffuser along a specific direction corre-
sponds to a unique sub-image. This phenomenon brings
two benefits. One is that encoding a light ray depends on
the position and angle at which the light ray is incident
onto the diffuser regardless of whether the point source is
in the parallel plane. As illustrated in Fig. 1, the diffuser
plays an equivalent role with light rays emitted by an out-
of-plane point source (red point) and these by in-plane
point sources (green and orange points). In other words,
all light rays in the detectable field-of-view can be
uniquely encoded, enabling lensless light-field imaging.
The other benefit is that the light field can be represented
via a two-plane parameterization. The diffuser plane
associated with the incident directions of light rays is
defined as the angular sampling plane. Another plane
parallel to the diffuser plane is associated with the posi-
tions of point sources and defined as the spatial sampling
plane. Consequently, the light field can be represented as l
(s, u), where l is the radiance and s= (s, t)T and u= (u, v)T

pi

pj

u sx

T ld
Spatial sampling plane

Diffuser (angular sampling plane)Sensor

=

Fig. 1 Schematic diagram of lensless light-field imaging through
diffuser encoding. Here, s, u, and x are coordinates on the spatial
sampling plane, angular sampling plane, and sensor plane,
respectively; d is the vector describing the sensor detection; l is the
vector describing the objective light field; and T is the light-field
transmission matrix
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are spatial and angular coordinates, respectively, as
labelled in Fig. 1.
First, we consider only one point source in the spatial

sampling plane. Light rays emitted by a temporally inco-
herent point source, pi, are incoherent with each other.
Thus, the pseudorandom pattern generated by this point
source is a linear combination of the non-overlapped sub-
images corresponding to these light rays. This process can
be modelled as a matrix-vector multiplication:

f i ¼ Higi ð1Þ

where fi is a vector describing the pattern, gi is a vector
describing the single-point light field, Hi ¼
ti;1; ti;2; � � � ; ti;n
� �

is a matrix representing the light-field
transmission of the point source through the diffuser, and
ti,j denotes a vector associated with the sub-image
corresponding to the j-th light ray of the i-th point source.
The detected image of a scene containing multiple point

sources on the spatial sampling plane is a linear combi-
nation of all pseudorandom patterns, namely the con-
tributions from all light rays in the detectable field-of-
view. As a result, lensless light-field imaging through
diffuser encoding can be modelled as

d ¼ Tl ð2Þ

where d ¼ P
if i is a vector describing the sensor

detection, l ¼ g1; g2; � � � ; gkð ÞT is a vector describing the
multi-point light field to be reconstructed, and T ¼
H1;H2; � � � ;Hkð Þ is a matrix representing the imaging
system via which the multi-point light field is encoded to
form the image. The structures of Eqs. (1) and (2) are
schematically shown in Fig. S1 for the case n= 16.
Here, we regard T as a light-field transmission matrix

based on diffuser encoding. The number of non-zero
values in a row vector of T might be more than 1. This
means that a pixel can collect and integrate various
contribution components from different light rays inci-
dent on the diffuser. This makes the number of light rays
larger than the number of pixels used. The modulation of
the light field by the diffuser couples more light-field
spectrum information to be recorded. Therefore, the
lensless imaging system through diffuser encoding can
break the resolution limitation of the sensor, allowing
light-efficient high-resolution light-field imaging.
We constructed the experimental system and 12 pat-

terns were captured by axially moving the point source.
As mentioned in the following section, a point source
generated pattern is sufficient to completely determine
the light-field transmission matrix. One of the captured
patterns can be selected as a base for calibration and
reconstruction. The lensless imaging system was

demonstrated and analysed for distributed object points
and area objects.

Light-field imaging for distributed object points
We used Pattern 6 (see Fig. S4) to calibrate the light-

field transmission matrix. The point source corresponding
to Pattern 1 was regarded as an object point to be mea-
sured. The spatial and angular samplings were selected to
be 512 × 512 and 6 × 6, respectively, denoted as Resolu-
tion 1 (see Fig. S5). This is equivalent to 9.4 million light
rays computationally decoupled from a 0.26-megapixel
image. The run time for the reconstruction is nearly 8 min
(200 iterations, 2.4 s per iteration). To analyse the
reconstruction result, we performed digital refocusing16,29

with the reconstructed light-field data to obtain a focal
stack. Figure 2a shows three slices of the focal stack, in
which the second view is in-focus. The cross-sectional
profile of the focal stack is shown in Fig. 2b. It has an
hourglass shape, where the position of the waist corre-
sponds to the in-focus depth. Additionally, the profile
spreads from the waist to two sides along the axial
direction, which is exactly consistent with the light-beam
propagation.
The decoupling reconstruction was also performed with

light-field resolutions of 512 × 512 × 12 × 12 and 1024 ×
1024 × 6 × 6, denoted as Resolution 2 and Resolution 3,
respectively. The in-focus slices in Resolution 2 and
Resolution 3 are shown in Fig. 2c, d, respectively. The
distribution curves of the cross-sections of the three in-
focus slices with normalized intensity are shown in Fig. 2e.
We used the full width at half maximum of the dis-
tribution curves to represent the computationally resolved
size of the object point so that the reconstruction per-
formances could be compared quantitatively. Table 1 lists
the relevant data of the run times and resolved sizes.
The run times in Resolution 2 and Resolution 3 are

approximately equal and four times that in Resolution 1
and thus are approximately proportional to the total
number of decoupled light rays. Although the resolved
size in Resolution 3 is twice that in Resolution 1, their real
resolved sizes are almost the same since the spatial sam-
pling in the s- and t-dimensions in Resolution 1 is half of
that in Resolution 3. As the physical size of the object
point (15 µm pinhole) used is quite small to be solved by
the system, increasing the spatial sampling does not have
a positive impact on reducing the resolved size, but
instead leads to a quadratic increase of the run time. In
contrast, increasing the angular sampling can effectively
reduce the resolved size, as illustrated by the cases in
Resolution 1 and Resolution 2.
In the next experiment, Pattern 6 was still regarded as a

base, and the other 11 patterns were shifted with random
integer pixels (see Fig. S6) and then combined to simulate
an experimental scene consisting of multiple object points
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randomly distributed in the detectable field of view. The
simulated captured image is shown in Fig. 3a. According
to the above comparison results, the multi-point light
field was computationally reconstructed in Resolution 2.
By digital refocusing with the reconstructed light field, in-
focus slices at different depths, where each object point is
located, were obtained (see Fig. 3b). The object points are
marked by red boxes; at each in-focus depth, the view
simultaneously shows the sharp in-focus point and other
blurred defocused points. The reconstructed light field
can clearly distinguish different object points at different
depths, as illustrated by the spatial distribution in Fig. 3c.
Each in-focus object point is enlarged on the top left of
each view in Fig. 3b, and the numbers correspond to each

captured pattern. The resolved size changes with the axial
distance between the measured object point and the point
source generating the calibration pattern: the farther the
axial distance is, the larger the resolved size.

Light-field imaging for area objects
To compare with the results of distributed object points,

a USAF-1951 transmission resolution target was used.
The target was tilted with respect to the system, and the
investigated area was back-illuminated. A raw image was
captured, as shown in Fig. 4a. In this experiment, the
spatial sampling (512 × 512) remained unchanged, and
different angular samplings (6 × 6, 8 × 8, and 12 × 12) were
used for the light-field reconstruction with Pattern 6 as a
base. Figure 4b shows every three in-focus slices of the
focal stacks corresponding to respective reconstructed
light fields at different depths. Cross-sections are also
shown under each view. Increasing the angular sampling
does not improve the reconstruction results for area
objects, which is different compared with the case of
distributed object points. By using the focal stack, the
depth of the measured object was estimated in the spatial-
angular sampling of 512 × 512 × 6 × 6, as shown in Fig. 4c.

Table 1 Relevant data of run times (min) and resolved
sizes in different resolutions

Resolution 1 Resolution 2 Resolution 3

Run time 8.00 32.56 32.85

Resolved size 10.09 5.51 19.99
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Fig. 2 Light-field imaging for a single object point. a Three slices (the second one is in-focus) and b cross-sectional profile of the focal stack in
Resolution 1; c, d In-focus slices in Resolution 2 and Resolution 3, respectively; e Distribution curves of the cross-sections of the in-focus slices with
normalized intensity, corresponding to the marked lines in a, c, and d
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To investigate the impact of the spatial sampling on the
light-field reconstruction for area objects, we moved the
target closer to the system at a distance of 25 mm and
illuminated another region of the target. Figure 5a shows
the captured raw image. The angular sampling (6 × 6)
remained unchanged, and different spatial samplings
(512 × 512, 1024 × 1024, and 2048 × 2048) were used to
reconstruct light fields. However, using Pattern 6 as a base

could not obtain good results. According to the scaling
property of imaging through scattering media, we rescaled
Pattern 6 to simulate another pattern as generated by a
point source located at a different depth (see Fig. S7). The
scaled pattern was used as a base to obtain acceptable
reconstruction results. The in-focus slices of the focal
stacks are shown in Fig. 5b. By near refocusing, Element
3/Group 3 of the resolution target, equivalent to a

Group 1

654321

6 × 6 8 × 8 12 × 12
Max

Max0

Max0

0

a

b

c

Fig. 4 Light-field imaging with different angular samplings. a Captured raw image; b In-focus slices of the focal stack at different depths
indicated by red arrows, and cross-section (labelled by a white line) of each in-focus slice is drawn under each view; c Depth map
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Fig. 3 Light-field imaging for multiple sparse object points. a Simulated captured image; b In-focus slices of the focal stack at different depths, in
which the corresponding in-focus object points are marked by red boxes and enlarged on the top left; c Spatial distribution of the object points
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resolution of 49.6 µm, could be resolved in the highest
spatial sampling, while in the lowest spatial sampling the
pattern was unrecognizable. By far refocusing, Element 6/
Group 2, equivalent to a resolution of 70.1 µm, and Ele-
ment 4/Group 2, equivalent to a resolution of 88.3 µm,
were resolved in the highest and lowest spatial sampling,
respectively. Increasing the spatial sampling can improve
the resolution for area objects, which is different than the
case for distributed object points. The depth of the
measured object for the spatial-angular sampling of
2048 × 2048 × 6 × 6 is shown in Fig. 5c.
Finally, we used the experimental data of a small plant24

to test our approach. The corresponding raw image is
shown in Fig. 6a. A pattern was selected as a base for
reconstructing the objective light-field in the spatial-
angular sampling of 540 × 640 × 8 × 10. Figure 6b shows
two slices of the focal stack and the enlarged views of the
regions marked by the orange and cyan boxes. It can be
seen that the two slices are in-focus at different depths.
The depth map was estimated from the focal stack, as
shown in Fig. 6c.

Discussion
The experimental results show that the proposed

approach has different performances regarding spatio-
angular sampling and measured objects. We performed
singular value decomposition of the light-field transmis-
sion matrix T to implement an analysis. For convenience,
we considered an object composed of a few points in the
spatial sampling plane. Each point pi corresponds to a
matrix Hi, which can be constructed by shifting the

encoding kernel in H0. These matrices can be combined
into a new matrix: Tsub ¼ Hi;Hj; � � �

� �
, which is a sub-

matrix of T. We used 5 points spaced by 100 intervals to
simulate distributed object points and 20 points with zero
intervals to simulate an area object.
Figure 7 shows the distributions of normalized singular

values. We used the ratio of the maximum singular value
to the minimum value to express the condition number.
For distributed object points, the approach maintains a
lower noise sensitivity than the area object regardless of
the spatio-angular sampling. In contrast, for the area
object, the singular values decrease more quickly, which
means that the hypothesis of the linear independence
concerning the transmission matrix becomes weaker and
thus that the inverse problem is more ill-posed. In parti-
cular, the condition number becomes larger as the spatial
sampling increases and more iterations are generally
needed in order to obtain convergence (see Fig. S8). Even
so, increasing the spatial sampling may make the area
object highly resolved. In addition, the analysis indicates
that increasing the angular sampling has little effect on
the transmission matrix for both distributed object points
and the area object. However, in practice, suitably
increasing the angular sampling enables more light-field
spectrum information to be recorded, resulting in a
higher-resolved result for distributed object points. For
area objects, however, cross-talk between these spectrum
components may not be easily separated, leading to the
reduction of the resolution.
A sub-beam emitted by the point source spreads when

it propagates to a far axial distance, weakening the
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Fig. 5 Light-field imaging with different spatial samplings. a Captured raw image; b In-focus slices of the focal stack at different depths indicated
by red arrows, and cross-sections (labeled by the white lines) of each in-focus slice is drawn beside each view; c Depth map
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hypothesis of the sub-beam behaving as an elementary
light ray and thereby leading to a reduction of the lateral
resolution at the corresponding depth. The object points
far away from the point source could still be recognized
with a large resolved size since they were sparsely dis-
tributed in the measured volume. When the size of the
measured object becomes large, an arbitrary pattern
does not guarantee the success of the decoupling
reconstruction. This problem can be solved by appro-
priately scaling the pattern to be applied for the corre-
sponding depth range, although the depth range that can

be distinguished for area objects is limited by the spe-
cific pattern used.
The improvement of the proposed methodology over

the previous work on diffuser-encoding light-field ima-
ging22 mainly lies in two aspects. One is that our imaging
modality is lensless and thus compact and free of aber-
ration; the other is that the system calibration and
decoupling reconstruction become simple and flexible
since only one pattern generated by a point source is
required. Based on this single-shot lensless light-field
imaging modality, light rays, viewpoints, and focal depths

a
0 Max

c

b

Fig. 6 Light-field imaging for a small plant. a Captured raw image; b In-focus slices of the focal stack at different depths and enlarged segments
related to regions marked by the yellow and cyan boxes; c Depth map
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can be manipulated and the occlusion problem can be
addressed to some extent. This allows us to further
investigate the intrinsic mechanism of light-field propa-
gation through the diffuser. It is also possible to transform
the diffuser-encoding light-field representation into the
Wigner phase space so that the diffraction effect intro-
duced by the internal tiny structure of the diffuser can be
taken into account and so that lensless light-field micro-
scopy through diffuser encoding may be developed.
Consequently, the proposed approach can be generalized
to be used in microscopic imaging, especially fluorescence
microscopic imaging, since fluorescent particles are gen-
erally sparse in a volume.

Materials and methods
Decoupling reconstruction
Equation (2) models a forward imaging process in which

the four-dimensional spatio-angular information of a light
field, l, is coupled into a two-dimensional captured image,
d, by using the light-field transmission matrix, T. To
decouple the spatio-angular information from d and
thereby reconstruct l, Eq. (2) must be solved. This is a
typical inverse problem; however, as stated above, T has
more columns than rows, making Eq. (2) an under-
determined problem. Thus, l cannot be reconstructed
uniquely by directly inverting Eq. (2). If an object is sparse
(or sparse in some domains), the inverse problem can be
solved via a non-negativity constraint optimization pro-
cedure:

arg
l�0

min
1
2

d� Tlk k22 þ τ Ψlk k1 ð3Þ

The second term in Eq. (3) is a ‘1 regularization, where
τ is a tuning parameter to adjust the degree of sparsity,
and Ψ can be selected to be a finite-difference operator or
an identity matrix, mapping l into a sparse domain.
The light field can be reconstructed by performing the

optimization procedure described by Eq. (3) via com-
pressive sensing, provided that the column vectors of T
are linearly independent. This condition is plausible
because each light ray generates a unique pseudorandom
sub-image covering a specific region on the sensor.
However, as analysed above, linear independence is not
necessarily satisfied with various spatio-angular samplings
and measured objects. Another necessary condition is to
accurately determine the whole elements of T, namely to
calibrate the light-field transmission matrix. Some tech-
niques, such as interferometry30,31 and digital recon-
struction32, can be used to measure the transmission
matrix in imaging through scattering media, but they are
suitable only for the cases of coherent illumination.
Antipa et al. proposed an approach based on ray tracing to
computationally simulate the light-field transmission

property of diffuser encoding in incoherent illumina-
tion22. However, some system parameters, such as the
height distribution of the diffuser surface and the distance
between the diffuser and image sensor, are mandatory.
Moreover, the calibration of the light-field transmission
matrix involves the response of the system to each of the
millions of light rays in the detectable field-of-view. Such
a calibration procedure and extra large-scale matrix
operation are impractical for implementing the optimi-
zation procedure of Eq. (3).
Fortunately, the lateral shift invariance of the diffuser

encoding can be used to reduce the complexity of both
the calibration and reconstruction. By placing an aperture
close to the diffuser, the support of a pattern generated by
a point source, pi, is limited to a specific region on the
sensor (see Fig. S3). The detected intensity outside the
support is approximately negligible. The support corre-
sponds to a submatrix of Hi with a row range of a non-
zero region [rup, rdown] (see Fig. S1). We regard the sub-
matrix as an encoding kernel of the diffuser acting on the
radiant light field of the point source. Similarly, the
encoding kernel satisfies the shift invariance. Taking the
on-axis point source, p0, in the spatial sampling plane as a
base, the shift invariance of the encoding kernel can be

represented as H
rup;rdown½ �´ n
0 ¼ H

rup ± rshift;rdown ± rshift½ �´ n
i and

the vector corresponding to the sub-image as

t
rup;rdown½ �
0;j ¼ t

rup ± rshift;rdown ± rshift½ �
i;j , where rshift is the number of

rows shifted (assuming integer row-shifting for con-
venience). Thus, the forward imaging model of Eq. (2) can
be transformed into a convolution version to be efficiently
solved (see Eq. (S1)).

System calibration
According to the model and algorithm described above,

only the encoding kernel corresponding to the on-axis
point source needs to be calibrated. Thus, capturing one
pattern generated by the on-axis point source is enough
for determining the light-field transmission property of
the diffuser, without the requirement of any optical
parameters of the system. On the other hand, the pattern
is combined by the sub-images corresponding to
approximately non-overlapped sub-beams emitted angu-
larly by the point source. Non-overlapped light-beam
dividing is an ideal situation, and adjacent sub-images in
practice partially overlap. If the support of the sub-image
is not too small compared to the whole support of the
pattern, the sub-image can be considered to have a rela-
tively large centre region independent of adjacent sub-
images, so that the corresponding sub-beam can be rea-
sonably approximated to not overlap with others. Con-
sequently, the captured pattern can be evenly segmented
into a series of non-overlapping sub-images with an
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appropriate sampling rate (see Fig. S2). Finally, the
objective light field can be computationally reconstructed
from a captured image by incorporating the calibrated
encoding kernel into the optimization procedure of Eq.
(3), achieving single-exposure lensless light-field imaging
through diffuser encoding.

System setup
The lensless imaging system was constructed using a

commercially available holographic diffuser (Edmund,
Polycarbonate, 0.5°) and an sCMOS sensor (PCO.edge
4.2, resolution: 2048 × 2048 pixels, pixel size: 6.5 ×
6.5 µm2). The diffuser was placed at a distance of 10 mm
in front of the sensor to generate high-contrast pseu-
dorandom patterns. A 6 × 6mm2 square aperture was
located close to the diffuser to limit the support of the
pattern. In addition, a halogen lamp together with a
15 µm pinhole was used to produce a point source illu-
mination. This point source was placed 20–50 mm away
from the diffuser and adjusted to generate a pattern
located at the centre of the sensor. In this case, the point
source was approximated as being on the axis. A com-
puter (CPU: i7-7700K, RAM: 64 GB) and MATLAB
programs33 without parallel computing were used to
carry out the decoupling reconstruction.
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