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Brief Communication

Porcine epidemic diarrhea virus (PEDV; single-stranded 
RNA; Coronaviridae) was first observed in Europe in 1971 
and then spread throughout Europe during the 1970s and 
1980s.7,15 Then, during the 1980s and 1990s, the number of 
PED outbreaks decreased markedly in Europe, while PED 
became an endemic disease in Asian countries, such as 
Korea, China, Japan, the Philippines, and Thailand.7,13 An 
outbreak of PEDV infection occurred in Ohio in 2013, and 
spread throughout the United States.5 PEDV infections have 
been reported to be associated with vomiting, diarrhea, 
anorexia, dehydration, weight loss, and high mortality, and 
this disease results in large economic losses to the global 
swine industry.15,19 The N protein is a phosphoprotein that 
plays an important role in viral genome transcription and 
replication; N protein is often used as a target for detecting 
PEDV infection.14-16

Many PEDV detection methods exist and include clinical 
observation, histologic observation, neutralization tests, 
immunofluorescence, and immunohistochemistry. These 
methods are time-consuming and unsuitable for large-scale 
clinical testing.14 Molecular methods have become more 
commonly used for detecting PEDV. A reverse-transcription 
PCR (RT-PCR) assay has been developed to allow for detec-
tion of PEDV, but this method requires in-gel analysis of the 
PCR products.12 Loop-mediated isothermal amplification is 
a novel DNA amplification method that has been devel-
oped11,14; however, this method produces false-positive 
results because of self-primer interactions. Real-time PCR 
(rtPCR) is used widely in clinical testing, and quantification 

using this method relies on a standard curve, quantification 
cycles (Cq), and the need to establish a Cq threshold line that 
can result in data bias. Therefore, a more accurate method 
needs to be established to detect PEDV infection.

Droplet PCR (dPCR) has come into use for precise quan-
tification, given that this method can provide an absolute 
measurement of nucleic acid concentration without the use 
of standard curves.1 Additionally, dPCR is more tolerant to 
inhibitors, and this allows for improved accuracy and preci-
sion of quantification of the target.4 dPCR has been widely 
used in many areas such as food authentication, identifica-
tion of genetically modified organisms, and clinical test-
ing.4,6,17 We established a method for detection and 
quantification of PEDV using droplet digital PCR (ddPCR).

The primers and probes were designed for rtPCR and 
ddPCR assays (Oligo Primer Analysis software; Molecular 
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Abstract. Porcine epidemic diarrhea, a disease caused by porcine epidemic diarrhea virus (PEDV), results in large 
economic losses to the global swine industry. To manage this disease effectively, it is essential to detect PEDV early and 
accurately. We developed a sensitive and accurate droplet digital PCR (ddPCR) assay to detect PEDV. The optimal primer-
to-probe concentration and melting temperature were identified as 300:200 nM and 59.2°C, respectively. The specificity of 
the ddPCR assay was confirmed by negative test results for common swine pathogens. The detection limit for the ddPCR 
was 0.26 copies/μL, which is a 5.7-fold increase in sensitivity compared to that of real-time PCR (rtPCR). Both ddPCR and 
rtPCR assays exhibited good linearity, although ddPCR provided higher sensitivity for clinical detection compared to that of 
rtPCR. Our ddPCR methodology provides a promising tool for evaluating the PEDV viral load when used for clinical testing, 
particularly for detecting samples with low-copy viral loads.
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Biology Insights), based on the nucleotide sequences of 
the N gene (GenBank accession NC_003436), and synthe-
sized commercially (Sangon Biotech). The sequences were 
as follows: PEDV sense (5′-CCGTGGTGAGCGAATT-
GAA-3′), PEDV antisense (5′-GGTCCTGTTCCGAGG-
TAGTAGAAA-3′) primers, and hydrolysis probes 
(FAM-5′-AACCTTCCAATTGGC-3′-MGB). The com-
plete sequence of the N gene (960 bp) was inserted into the 
PUC57 vector (Sangon Biotech) to generate the PUC57-N 
plasmid according to the manufacturer’s instructions; the 
plasmid was then transformed into Escherichia coli DH5α 
cells. Standard plasmid DNA was serially 10-fold diluted, 
and was used to generate standard curves for rtPCR, which 
were also used for ddPCR assays; ddPCR was then per-
formed (QX200 droplet digital PCR system; Bio-Rad). 
Digital PCR reactions consisted of 10 μL of 2× ddPCR 
Supermix for Probes (Bio-Rad), 300 nmol/L of PEDV 
primers, 200 nmol/L of hydrolysis probes, 1 μL of template 
DNA, and sterile distilled water to provide a final volume 
of 20 μL. Droplets were generated using the QX200 drop-
let generator (Bio-Rad) according to the manufacturer’s 
instructions, and the droplets (~ 40 μL) were transferred to 
a 96-well plate and heat-sealed for PCR (thermal cycler 
C100 Touch; Bio-Rad) using the following conditions: 
95°C for 10 min, then 40 cycles of 94°C for 30 s, 55°C for 
1 min, and 98°C for 10 min. A ramp rate of 2°C/s was used 
for all steps. After PCR, the droplets were analyzed using 
a QX200 droplet reader (QuantaSoft software v1.7; Bio-
Rad). No-template controls (NTC) used as negative con-
trols allowed for the monitoring of contamination and 
primer–dimer formation.

For the rtPCR system, the same primers and probe used 
for ddPCR were used (ABI QuantStudio 6 Flex real-time 
PCR system; Thermo Fisher Scientific). Real-time PCR 
reactions contained 2× AceQ qPCR probe master mix 
(Vazyme Biotech), 300 nmol/L of PEDV primers, 200 nmol/L 
of hydrolysis probes, 1 μL of template DNA, and sterile dis-
tilled water to provide a final volume of 20 μL. The reaction 
conditions for rtPCR included 95°C for 30 s, 35 cycles of 
95°C for 5 s, and 60°C for 35 s.

For comparison, copy numbers were calculated for rtPCR 
based on the concentration calculated by standard curve 
using a calculator (http://scienceprimer.com/copy-number-
calculator-for-realtime-pcr). Each sample was tested in trip-
licate to evaluate intra- and inter-assay repeatability. All 
statistical analyses were performed using the SPSS program 
(v.13.0; IBM).

To test if the ddPCR reaction system for PEDV could be 
improved, the primer-to-probe concentration and annealing 
temperature were optimized.8 To select an optimal annealing 
temperature, PEDV complementary DNA (cDNA; 3.9 × 107 
copies/μL) was annealed at temperatures of 55, 56, 57, 58.2, 
59.2, and 60°C. Our results indicated that 59.2°C provided 
the optimal annealing temperature (Fig. 1). The fluorescence 
amplitude difference between the positive and the negative 

droplet clusters was the highest at this temperature. The 
primer concentration was optimized using PEDV cDNA (3.9 
× 106 copies/μL for each reaction mixture). The optimal con-

Figure 1.  Influence of annealing temperature (55, 56, 57, 58.2, 
59.2, and 60°C) on the porcine epidemic diarrhea virus droplet 
digital PCR system. NTC = no-template control.

Figure 2.  Influence of primer-to-probe concentration ratio 
(300:200 nM, 400:400 nM, and 900:250 nM) used in the porcine 
epidemic diarrhea virus droplet digital PCR system. NTC = no-
template control.
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centration ratio was 300:200 nM because this ratio of reagents 
resulted in optimal separation between positive and negative 
droplets (Fig. 2). When the concentration ratio was 
400:400 nM or 900:250 nM, the rain effect (intermediate 
fluorescence of some droplets) was more pronounced and 
could affect the accuracy of the results. All results were ana-
lyzed using QuantaSoft software.

In specificity tests of the rtPCR and ddPCR assays, the 
nucleic acid extracts used as reaction templates included: 
porcine pseudorabies virus (Suid alphaherpesvirus 1), 
classical swine fever virus (CSFV; Pestivirus C), porcine 
circovirus 2, porcine reproductive and respiratory syn-
drome viruses (PRRSV; Betaarterivirus suid 1 and 2), 
Actinobacillus pleuropneumoniae, Haemophilus parasuis, 
Streptococcus suis, porcine deltacoronavirus (PDCoV), 
transmissible gastroenteritis virus and porcine respiratory 
coronavirus (TGEV, PRCV; Alphacoronavirus 1), swine 
acute diarrhea syndrome coronavirus (SADS-CoV), Esch-
erichia coli, Salmonella typhimurium, Clostridium (Clos-
tridioides) difficile, Clostridium perfringens, and PEDV; 
RNase-free H

2
O was used as a negative control. All tests 

correctly identified the target strains without producing 
false-positive or false-negative results, thereby confirming 
the specificity of these 2 assays.

A total of 147 clinical specimens (porcine small intestine, 
feces, and serum) were obtained from 10 pig farms in China. 
Field strains and clinical samples were obtained from a com-
mercial company (Yongshun Biological Pharmaceutical). 
Total RNA/DNA was extracted (RaPure viral RNA/DNA kit; 
Magen Technologies), and the RNA derived from PRRSV, 
CSFV, PEDV, PDCoV, TGEV, PRCV, SADS-CoV, and clini-
cal specimens was reverse transcribed (Primer Script RT 
reagent kit; TaKaRa) according to the kit manufacturer’s 
instructions. In the repeatability tests of the ddPCR reaction 
system, 10-fold diluted PEDV plasmids (PUC57-N) were 
simultaneously tested in triplicate. The coefficients of varia-
tion (CV) and the concentrations (copies/μL) were calcu-
lated. These experiments revealed that the intra-assay CV for 
concentration was 2.8–7.44% and that the CV of the inter-
assay was 8.5–14.4%, which indicated that the repeatability 
of the ddPCR reaction system was high (Table 1).

To compare the sensitivity, linearity, and quantification 
agreement between ddPCR and rtPCR, 10-fold diluted tem-
plates of plasmid PUC57-N (4 × 108–4 × 101 copies/μL) 
were used to conduct parallel tests (Table 2). The detection 
limit of ddPCR was 0.26 copies/μL; the detection limit of 

rtPCR was 1.47 copies/μL. Thus, the sensitivity of the 
ddPCR assay was 5.7 times higher than that of rtPCR. In this 
experiment, both rtPCR (R2 = 0.999) and ddPCR (R2 = 0.992) 
exhibited excellent linearity according to the regression  
analysis (Fig. 3A, 3B). The Pearson correlation coefficient 
was used to assess the correlation between ddPCR and rtPCR 
assays at each concentration of PEDV. The correlation coef-
ficient between rtPCR and ddPCR was 1, indicating that the 
2 methods were positively correlated (Fig. 3C).

The 147 clinical specimens were tested simultaneously 
using ddPCR and rtPCR to compare the sensitivities of the 
assays. PEDV was detected with a positive rate of 14.3% (21 
of 147) by ddPCR and 12.9% (19 of 147) by rtPCR. The 
overall coincidence rate was 98.6%, the kappa value was 
0.942, and 95% CI was 0.863~1.022. Two of the samples 
identified as negative by rtPCR were positive by ddPCR 
(Table 3). The conflicting results detected by ddPCR and 
rtPCR were subsequently sequenced, and the sequencing 
results verified that these samples were positive for PEDV. 
The conflicting results from these samples could be a result 
of the higher sensitivity provided by the ddPCR assay com-
pared to that of the rtPCR method.

Our results indicated that the 2 methods had a high coin-
cidence and that the ddPCR assay provided a more sensitive 
method for the precise quantification of PEDV compared to 
that of the rtPCR system, particularly for detecting lower 
concentrations of PEDV.9 Additionally, the ddPCR system 
quantified the DNA in a highly reproducible manner without 

Table 1.  Robustness and repeatability of the droplet digital PCR assay for porcine epidemic diarrhea virus.

Concentration of PUC57-N 
plasmid (copies/μL)

Intra-assay Inter-assay

Viral load of 3 tests (copies/μL) CV% Viral load of 3 tests (copies/μL) CV%

4 × 103 23.3 22.6 23.9 2.80 20 22 18 10.7
4 × 104 226 241 262 7.44 230 239 297 14.4
4 × 105 2,370 2,510 2,380 3.29 2,120 2,250 2,500 8.5

Table 2.  Comparison of real-time PCR (rtPCR) and droplet 
digital PCR (ddPCR) assays using serially diluted porcine 
epidemic diarrhea virus plasmids.

Concentration of 
PUC57-N plasmid 
(copies/μL)

rtPCR (mean 
Cq value)

ddPCR (mean 
concentration,* 
copies/μL)

4 × 108 11.0 ND
4 × 107 14.7 ND
4 × 106 18.2 100,000
4 × 105 21.7 2,420
4 × 104 25.2 243
4 × 103 28.6 23.3
4 × 102 32.1 1.47
4 × 101 Neg 0.26

Cq = quantification cycle; ND = not detected; Neg = 1 replicate of 3 was negative.
* Concentration based on ddPCR detection.
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relying on a standard curve.2,8 However, based on analyzing 
96 samples, the ddPCR took 3.3 times longer to complete than 
the rtPCR, the operation of ddPCR was more complicated 
than the rtPCR, and the overall cost (consumables and labor) 
of ddPCR was 2 times higher than rtPCR.2,18 In terms of 
high-throughput detection, the ddPCR instrument has only 2 
fluorescence channels, testing a maximum of 4 target genes; 
the rtPCR instrument has 5 fluorescence channels, testing a 
maximum of 5 target genes.3,10 In general, the ddPCR system 
was verified as a sensitive and accurate method for detecting 
PEDV in clinical molecular virology.
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