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Objective. The metabolism of three major nutrients (sugar, lipid, and protein) will change during pregnancy, especially in the
second trimester. The present study is aimed at evaluating carnitine alteration in fatty acid metabolism in the second trimester
of pregnancy and the correlation between carnitine and GDM. Methods. 450 pregnant women were recruited in the present
prospective study. Metabolic profiling of 31 carnitines was detected by LC-MS/MS in these women. Correlation between
carnitine metabolism and maternal and neonatal complication with GDM was analyzed. Results. We found the levels of 7
carnitines increased in age > 35, BMI > 30, weight gain > 20kg, and ART pregnant groups, but the level of free carnitine (C0)
decreased. Nine carnitines were specific metabolites of GDM. Prepregnancy BMI, weight gain, and carnitines (C0, C3, and C16)
were independent risk factors associated with GDM and related macrosomia. CO was negatively correlated with FBG, LDL, TG,
and TC. A nomogram was developed for predicting macrosomia in GDM based on carnitine-related metabolic variables.
Conclusion. The carnitine metabolism in the second trimester is abnormal in GDM women. The dysfunction of carnitine
metabolism is closely related to the abnormality of blood lipid and glucose in GDM. Carnitine metabolism abnormality could

predict macrosomia complicated with GDM.

1. Introduction

Pregnancy is a complex process accompanied by substantial
changes in sugar, protein, and lipid metabolism [1]. Maternal
lipid and protein metabolism of the second trimester is an
anabolic state combined with accelerating maternal fat stores
and increasing protein synthesis [2]. Dyslipidemia is associ-
ated with maternal metabolic disorder (GDM, hyperlipemia,
and hypertension) and adverse neonate outcomes (macroso-
mia, fetal growth restriction) [3]. Fatty acid oxidation
decreases in obesity during pregnancy and has linked to
GDM development [4].

GDM is a common metabolic disorder during pregnancy
and occurs in approximately 10-15% of pregnancies globally
[5]. Pregnant women with GDM are more prone to

hypertension and metabolic syndrome. The risks to the fetus
include macrosomia, respiratory distress syndrome, child-
hood obesity, and type 2 diabetes mellitus (T2DM) in adults
[6]. GDM is associated with profound changes in metabo-
lism. Free carnitine (CO) has a critical role in energy metabo-
lism of transporting long-chain fatty acid from the cytosol
into the mitochondria, which results in C0 transforming into
acylcarnitine (AC) [7, 8]. Carnitine deficiency is defined as a
serum CO level < 20 umol/L [9]. CO deficiency might impair
lipid metabolism resulting in GDM [10]. Evaluated circulat-
ing AC (such as C3 and C5) is associated with GDM and
induces pancreatic f3-cell dysfunction [11]. A previous study
proposed that CO and AC decreased in pregnancy in the first
trimester compared with nonpregnancy [12]. However, stud-
ies of metabolic profiling of carnitine in the second trimester
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FIGURE 1: Study workflow of the present prospective study.

among diverse pregnant women are rare. Herein, we provide
a study of the metabolism of carnitine to investigate the
potential risk factors in GDM.

In the present study, a LC-MS/MS-based metabolomics
approach was used to quantify the maternal plasma level of
AC in order to identify the correlation between nonglucose
metabolism abnormalities and pregnancy metabolic dis-
eases during the second trimester. We analyzed metabolic
alteration in the second trimester and detected the indepen-
dent risk factors of GDM. Moreover, we established a
prognostic nomogram of incorporating AC for predicting
GDM macrosomia.

2. Method

2.1. Subject. This study was a prospective study. Between June
2017 and April 2018, 450 pregnant women in the second tri-
mester were recruited in this study at Women’s Hospital,
School of Medicine, Zhejiang University, in Hangzhou. The
study design has been approved by the Ethics Committee of
the hospital. All participants were of Chinese Han ethnicity.
We obtain maternal characteristic information as follows:
gravidity, parity, age, height, prepregnancy BMI, weight gain
during pregnancy, use of assisted reproductive technique
(ART), and method of pregnancy termination. The following
information of the offspring was collected: termination of
pregnancy weeks, sex, birth length, actual birth weight, head
circumference, abdomen circumference, and abdomen
minus head circumference (data from fetal growth measure-
ment ultrasound before labor).

GDM was defined according to the Chinese Current Care
Guidelines for GDM as one or more pathological glucose
values in a standard oral glucose tolerance test (OGTT)
[13]. The diagnostic thresholds were fasting plasma glucose:
5.1mmol/L, 1h 10.0mmol/L, and 2h 8.5mmol/L [14].
According to the guideline, 64 GDM cases were diagnosed.
The control group was composed of 128 randomly sampled
women without GDM from residual pregnant women partic-
ipating in this study matched by birthday, age, delivery mode,

and number of fetuses with 2:1 ratio. The 2:1 design can
eliminate the interference of many factors (such as age,
height, and gestational week at delivery) in the study, and a
double sample has good statistical performance. The com-
mon definition of macrosomia is birth weight over 4000 g
[15]. Biochemical status of the GDM and control groups
was also collected and analyzed.

2.2. Metabolic Profiling Detection by LC-MS/MS. We used the
method of LC-MS/MS to investigate the level of 31 plasma
carnitines of pregnant women in the second trimester. We
also obtain their neonate blood plasma sample. Blood sam-
ples were taken via venipuncture, using 4mL Vacutainer
Tubes containing K2-EDTA as anticoagulant centrifuged at
2500 g for 15 min; then, samples of plasma were stored at —
20°C and detected monthly. For plasma analysis, plasma
was pipetted into a 2.0 mL 96-deep-well plate. To this, inter-
nal standard solution was added, and the plate was vortex
mixed for 1min. Proteins were precipitated by adding
0.3 M zinc sulfate in methanol (1:5 v/v), and the plate was
vortexed again for 1 min. Water was added, and the plate
was sealed and centrifuged. Following centrifugation, super-
natant was injected for analysis [16]. Furthermore, sample
preparation used in tandem mass spectrometry (4000
QTrap™; AB Sciex, Darmstadt, Germany) test the concentra-
tion. The method used in the present study was essentially a
modification of the procedure described elsewhere [17]. AA
and AC were quantified using appropriate isotope-labelled
standards. LC separation was performed on an Acquity
UPLC HSS T3 column (2.1 * 100 mm, 100 A, 1.81m particle
size; Waters Corporation, MA) using water with 0.1% formic
acid, 5mM ammonium acetate, and 0.015% heptafluorobu-
tyric acid as solvent A and methanol with 0.1% formic acid
and 5mM detected with a Xevo-G2-QTOF MS (Waters
Corporation) operating in a positive mode. Raw data was
processed using Targetlynx as described previously. Accu-
racy of quantification was below 6% for all quantified metab-
olites except glutamic acid (13.9%). Quantitative data was
obtained using MetIDQTM Software [18].
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2.3. Statistical Analysis. Data distributed normally were
expressed as means + standard deviation. The statistical
method used for testing difference between two groups was
Student’st-test. One-way ANOVA was used in more than
two groups. For correlation analysis, the Spearman correla-
tion coefficient was calculated in the level of AA and AC
between the mothers in the second trimester and their neo-
nates. In PLS-DA, metabolomics data were log-transformed
to ensure a normally distributed data set; R* (goodness of fit-
ness) and Q* (goodness of prediction) were assessed in the
PLS-DA models. Multivariate logistic regression analysis
was used to determine the association of GDM and macroso-
mia with prepregnancy BMI, weight gain, and ACs. Odds
ratios (ORs) and 95% confidence intervals (CIs) were
reported per standard deviation. All statistical analysis was
performed using IBM SPSS 23.0 edition, SIMCA 14.0, and
R vision 3.6.0. A significance level of 0.05 was used for all sta-
tistical tests.

3. Results

The study setup is illustrated in Figure 1. We identified the
metabolic alternation in 450 pregnant women of the second
trimester. We also investigated the metabolic risk factors in
GDM and established a prognostic nomogram based on AC
risk factors for predicting macrosomia.

3.1. Maternal Plasma AC Levels of the Second Trimester in
450 Pregnant Women. The baseline characteristics of 450
study participants divided into different categories according
to natural conditions of pregnant women such as gravidity,
parity, age, height, prepregnancy BMI, weight gain, ART,
and method of pregnancy termination. The statistically sig-
nificant results are shown in Table 1 and Figure 2. In the
age subgroup, there was a trend that the level of AC (C2,
C3, C4DC+C50H, C16, C18, and C18:1) was higher in the
age > 35 group, whereas the level of CO0 in the age > 35 group
was lower. In prepregnancy BMI >25.0 and 30 subgroups,
several ACs (C2, C3, C5, C16, and C18:1) were higher,
whereas the level of CO was lower. In the weight gain group,
C3, C5, C16, and C18:1 were higher in the weight gain > 20
kg group than the other groups, while CO was lower. In the
ART group, C2, C3, and C5 were higher while CO was lower.
There was no statistical difference in gravity, parity, height,
and method of pregnancy termination subgroups (data not
shown).

Additionally, we investigated the maternal level AC in
second trimester pregnancy under the different neonate sub-
groups (termination of pregnancy weeks, sex, birth length,
birth weight, head circumference, abdomen circumference,
and abdomen minus head circumference). The results are
shown in Table 2 and Figure 3. In the birth weight > 4000 g
group, we found that ACs (C2, C3, C5, C16, and C18:1) were
higher; these metabolites increased with birth weight, while
C0 was lower. In the abdomen circumference > 35 cm group,
several ACs (C2, C3, C5, and C16) were higher; CO was lower.
In the abdomen minus circumference subgroup, the metabo-
lite characteristics have a similar trend with the abdomen
circumference > 35 cm subgroup.

Journal of Diabetes Research

M N N VRN

3.0 1

The plasma level (umol/L)

0.0 ~ !
n n n 9 N o n
R@mwwmmﬁaﬁﬁgg
Vo A s AN S s L A =
IS\l Voonw <2 AN T
s 0 —

Age Prepregnancy BMI ~ Weight gain (g) ~ ART

-8- C0 —— C5
A C2 —— Cl6
—o— C3 —— C18
—=— C4DC+C50H =0— Cl18:1

FIGURE 2: The maternal plasma levels of acylcarnitine (AC) at the
second trimester in 450 pregnant women according to clinical
characteristic. The AC level was higher in the age > 35 group, in
prepregnancy BMI > 25.0 and 30, in the weight gain group, and in
the ART group, while CO was decreased. Values are presented as
the mean + SEM.

3.2. Specific AC Distribution in GDM. We examined the
serum metabolite in 64 GDM patients and 128 matched
patients without GDM. Our study used the PLS-DA model
(R?=0.527, Q* = 0.464) to analyze differences between two
groups. The PLS-DA scatterplot showed a clear class separa-
tion with GDM at the left and the control group at the right
(Figure 4(a)). Furthermore, we used variable importance in
projection (VIP) to estimate the contribution of every AC
to class separation (GDM vs. control). A VIPvalue > 1.0
was considered with a high contribution to class separation.
The VIP analysis (Figure 4(b)) showed that CO (VIP =1.87)
plays the main role in class separation.

3.3. Clinical Characteristics and AC Plasma Level of GDM.
Table 3 shows the characteristics of GDM patients and con-
trol. The prepregnancy BMI, weight gain, ART, and the
serum levels of C2, C3, C4DC+C50H, C6DC, C8, Cl6,
C18, and C18:1 were higher, while those of CO was lower in
the GDM group.

3.4. Multiple Logistic Regression Analysis of the Association
between GDM and Other Factors. We selected significant fac-
tors from univariate analysis to enter multiple logistic regres-
sion analysis to examine whether acting independently.
Prepregnancy BMI (OR = 1.15, 95%CI = 1.06-1.78), weight
gain (OR =1.18, 95%CI = 1.03-1.64), CO (OR =0.70, 95%
CI=0.60-0.83), C3 (OR=1.03, 95%CI=1.02-2.08), Cl16
(OR =1.30, 95%CI =1.12-3.28), and C18 (OR =1.27, 95%
CI=1.00-3.01) were statistically associated with GDM.
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FIGURE 3: The maternal plasma levels of acylcarnitine (AC) at the
second trimester in 450 pregnant women according to different
neonate subgroups. The AC level was higher in the birth weight >
4000 g group, in the abdomen circumference > 35cm group, and
in the abdomen minus circumference >5 subgroup. Values are
presented as the mean + SEM.

These factors can work as independent risk factors involve in
the process of GDM (Table 4).

3.5. Association of CO Deficiency and Blood Glucose and Lipid
in GDM and Control. When divided into two groups accord-
ing to the CO level (<20 ymol/L or >20 umol/L), we found
that 81.25% of GDM women of the second trimester preg-
nancy are in CO deficiency status. In GDM women, FBG,
TG, TC, LDL, and homocysteine (HCY) were significantly
higher in the C0 < 20 ymol/L group. Similar results were also
seen in the control group of CO < 20 umol/L (Table 5). In
GDM and control groups, CO was negatively correlated with
FBG, LDL, TG, TC, and HCY and positively correlated with
HDL. There were no significant correlations between C0 and
OGTT-1h and OGTT-2h (Figure 5).

3.6. Cluster Correlation Heat Map. The heat map depicting
the internal correlations between metabolites revealed the
predominant clusters of intercorrelated metabolites: C2, C4,
C6, and C8 (Figure 6). The four metabolites included in the
final model showed strongly internal correlations. There
were no strong intercorrelations in others.

3.7. Clinical Characteristics and AC Plasma Level and a
Nomogram of Prediction of Macrosomia. Here, we investi-
gated the clinical characteristics and AC metabolite between
GDM with macrosomia and GDM without macrosomia
(Table 6). We found that prepregnancy weight, BMI, weight
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gain, C0, C2, C3, C16, and C18 were higher in GDM with
macrosomia (P <0.05). In the multiple logistic regression
analysis, we found that prepregnancy BMI, weight gain, CO,
C3, and C16 were also evaluated (Table 7, P < 0.05). These
factors are independent risk factors involved in the process
of GDM-induced macrosomia. The nomogram of predicting
GDM-induced macrosomia had incorporated these signifi-
cant variables. Among these metabolites, CO deficiency
showed the highest OR (OR=0.75, 95%CI=0.50-0.87).
Vertical lines should be drawn from the correct location from
each independent risk factor. “Total points” which could be
obtained by adding all points of the axis to the bottom axes
made the conversion into a macrosomia probability. The
accuracy of the model was well assessed by the AUC equal
to 0.78 (Figure 7).

4. Discussion

In the present study, we have identified metabolic alteration
in the second trimester of pregnancy by LC-MS/MS. We
found that 9 carnitines including free carnitine (C0) were
significantly related to GDM. Combined with clinical infor-
mation, multivariable logistic regression had demonstrated
that prepregnancy BMI, weight gain, C0, C3, C16, and C18
were independent metabolic risk factors associated with
GDM. CO0 played a vital role in GDM and GDM-
complicated macrosomia. CO deficiency was significantly
related to GDM, and abnormal metabolism of blood glucose
and lipid was accompanied by GDM. We also had developed
a nomogram to predict probability of macrosomia with
GDM based on CO-related metabolites. To our knowledge,
this is the first study reporting carnitine alteration during
the second trimester of pregnancy and abnormal metabolism
of carnitine in GDM and macrosomia with GDM.

Carnitine metabolism is an important part of fatty acid
metabolism. Several experimental works have indicated char-
acteristics of carnitine-related metabolites during pregnancy
[12, 19, 20]. Total carnitine consisted of CO and AC. CO is
required for fatty acid transfer into the mitochondrial mem-
brane; in this process, the ester carnitines are formed. Ester
carnitine presented as AC releasing into plasma [21].

An interesting finding appears that there is a pronounced
fall of the plasma content of C0, AC, and total carnitine dur-
ing pregnancy [22]. In our study, we found that some carni-
tines (CO0, C2, C3, C4DC+C50H, C5, C16, C18, and C18:1)
increased in the age > 35, BMI > 30, and weight gain > 20 kg
groups. However, CO was decreased in these groups. These
results were similar with the findings of a study by Fujiwara
et al. which demonstrated that AC was accumulated in
obesity of hepatocellular carcinoma [23]. The plasma AC
accumulation suggested an incomplete long-chain fatty acid
oxidation and altered tricarboxylic acid activity. Oxidative
stress associated with AC accumulation is likely responsible
for insulin resistance and diabetes. The study demonstrated
that long-term AC accumulation was a feature of T2DM
[24]. CO may increase fatty acid -oxidation and basal meta-
bolic rates. Other studies had proved that the oxidation rate
of fatty acids gradually decreased with age [25].
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TasBLE 3: Clinical characteristics and ACs of women with GDM and
matched control women. Values are presented as the mean + SD for
continuous variables and percentage for dichotomous variables.
Cases and controls were matched for birth day, age, delivery mode,
and number of fetuses with a 2:1 ratio. *P value for Student’s ¢-test
(continuous variables) or chi-squared test (dichotomous variables).

GDM Control P value
Total 64 128
Maternal age (years) — 34.32+3.42 32.41+£3.65 0.28
Height (cm) 160.34 £ 5.45 161.23 £ 4.45 0.35
Prepregnancy 60.52+4.53  64.45+3.69 021
weight (kg)
Prepregnancy 23.82+3.42  21.25+232 .
BMI (kg/mz) 3.82+3. 25+2.3 0.03
Weight gain (kg) 2253+£437  17.23+2389  0.02°
Gestational weekat 3537, 067 39454072 054
delivery (weeks)
Nulliparous 76.40 80.20 0.64
ART 19.6 14.2 0.04
Smoker 7.1 8.0 0.35

Birth weight (g) 3847.23 £100.78 3304.56+92.65 0.03"

CO (pmol/L) 16.66 + 3.37 24.12+£8.34 0.03*
C2 3.60£0.77 3.06 +1.08 0.03*
C3 0.54+0.16 0.63+0.29 0.02*
C4DC+C50H 0.13+0.04 0.16 £ 0.07 0.01%
C6DC 0.06 £0.01 0.04+0.01 0.03"
C8 0.07 £0.04 0.04 £ 0.02 0.04"
Cl6 0.84+0.14 0.46 +0.20 0.04*
C18 0.47 £0.09 0.28+£0.14 0.02*
C18:1 0.78+£0.16 0.50 £ 0.24 0.04"

TaBLE 4: Multiple logistic regression analysis of the association
between GDM and other factors. OR: odds ratio; 95% CI: 95%
confidence intervals.

OR 95% CI P value
Prepregnancy BMI (kg/m?) 1.15 1.06-1.78 0.03*
Weight gain (kg) 1.18 1.03-1.64 0.03"
ART 1.24 1.00-1.39 0.73
CO (umol/L) 0.70 0.60-0.83 0.02*
C2 1.32 0.65-4.37 0.32
C3 1.03 1.02-2.08 0.01*
C4DC+C50H 1.01 1.01-2.48 0.81
C6DC 1.93 1.20-3.72 0.93
C8 1.26 1.10-4.35 0.56
C16 1.30 1.12-3.28 0.03*
C18 1.27 1.00-3.01 0.04*
C18:1 1.17 1.13-2.76 0.17

GDM is defined as glucose intolerance dysfunction during
pregnancy. The prevalence of GDM increased from 5% to 14%
in USA [26]. The plasma carnitine concentrations show a
strong correlation with the development of diabetes [27]. In
our present study, CO could be confirmed as the potential risk
factor in GDM. A study by Batchuluun et al. stated that eval-
uated AC was associated with GDM through impairing insulin
synthesis [28]. Our study also found that serum concentration
of some AC significantly increased in the GDM group. A
research by Hansen et al. reported that excess of AC in mito-
chondria might be harmful for metabolism dynamic balance
due to aerobic glycolysis disturbance [29]. Previous studies
suggested that accumulation of AC affected glucose and lipid
metabolism in GDM [10, 28]. An interesting finding by Yau
et al. reported that AC might impair mammalian insulin signal
transduction through acting at mTOR phosphorylation [30].
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TaBLE 5: The association of CO deficiencies and maternal lipid and glucose in GDM and non-GDM groups. Values are presented as the
mean * SD for continuous variables and percentage for dichotomous variables. *P value for Student’s ¢-test.

GDM P value Control P value
C0<20 C0=>20 C0<20 C0=>20
n 52 (81.25%) 12 (128.75) 96 (75%) 32 (25%)
FBG (mmol/L) 5.62+0.82 5.19+0.63 0.02* 5.03 £0.65 4.65+0.32 0.03*
OGTT-1h (mmol/L) 10.12+0.29 10.14 £ 0.26 0.43 9.84 +0.44 9.43+0.51 0.36
OGTT-2h (mmol/L) 8.67 +0.45 8.59+0.41 0.39 8.35+0.26 7.92+0.33 0.28
TG (mmol/L) 3.12+0.32 1.64+0.25 0.02* 3.02+0.27 1.94+0.21 0.02*
TC (mmol/L) 6.32+0.45 4.43 +0.62 0.03* 5.18 £ 0.62 4.32+0.32 0.03*
HDL (mmol/L) 1.78 +£0.26 1.83 +£0.31 0.39 1.71+0.13 1.92+0.28 0.04*
LDL (mmol/L) 4.89+0.82 3.16 £0.76 0.02* 4.63+0.21 3.04 +0.65 0.02*
HCY (‘umol/L) 17.67 £1.02 12.31+1.11 0.03* 15.32 £ 0.64 11.01 £0.82 0.03*
g > 0.756 é\ ] g 7
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FiGure 5: The relationship between CO and blood glucose and lipid in GDM (n = 64) and non-GDM (n = 128) groups. The correlation
between CO and FBG (a), OGTT-1h (b), OGTT-2h (c), HCY (d), TG (e), TC (f), HDL (g), and LDL (h). r=Spearman’s correlation

coefficient.

Lack of CO may elevate the lipid level and further results
in GDM [31]. A meta-analysis by Asadi et al. showed a signif-
icant relationship between C0 and TG, TC, LDL, and HDL in
adults with cardiovascular risk factors. The study indicated a

significant effect of CO supplement (1500 mg/d) on lowering
serum levels of TG, TC, and LDL in atherosclerosis patients
[32]. Our study reported that serum CO concentration was
negatively correlated with FBG, LDL, TG, TC, and HCY
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TasLE 6: Clinical characteristics and ACs of GDM with macrosomia
and nonmacrosomia. Values are presented as the mean + SD for
continuous variables and percentage for dichotomous variables. *P
value for Student’s ¢-test (continuous variables) or chi-squared test
(dichotomous variables).

Macrosomia ~ Nonmacrosomia P value

n 12 52

x:;ig‘al age 34.98 + 4.68 3223+443 079
Height (cm) 159.46+594  161.46+595 033
Prepregnancy 56.25 +9.98 5242+7.84  0.04*
weight (kg)

gﬁ?r("fgr}if)y 24.55+4.15 2221+3.02  0.03"
Weight gain (kg) 24.07 +4.11 18.42+4.10  0.02"
g;f‘t]zt:;r(l‘fezf;k at 3844078 39.6 +0.97 0.83
Nulliparous (%) 74.2 62.5 0.82
ART 19.6 14.2 0.55
Smoker 7.4 8.2 0.96
Birth weight (g) 424752 £100.78 3597.34+98.65 0.02*
CO (umol/L) 10.68 +3.28 17.12+5.66  0.03*
2 3.64+0.76 3.58+£1.25  0.03"
c3 0.43+0.17 0.64+026  0.02
C4DC+C50H 0.12 +0.04 0.14+0.05 0.05
Cc6DC 0.06 +0.01 0.06 £ 0.01 0.77
C8 0.08 £ 0.04 0.07 £0.01 0.54
C16 0.86+0.12 0.84+0.20  0.03"
C18 0.50 +0.09 047+0.13  0.04"
C18:1 0.52+0.16 0.48 +0.24 0.55

TaBLE 7: Multiple logistic regression analysis of factors associated
with GDM macrosomia. OR: odds ratio; 95% CI: 95% confidence
intervals.

OR 95% CI P value
Prepregnancy weight (kg) 1.28 0.76-1.98 0.64
Prepregnancy BMI (kg/m?) 1.27 1.02-2.37 0.03*
Weight gain (kg) 1.24 1.46-3.45 0.04*
Co 0.75 0.50-0.87 0.02*
C2 1.15 1.02-3.37 0.68
C3 1.16 1.12-1.98 0.03"
C16 1.15 1.03-1.22 0.04"
C18 1.17 1.24-3.23 0.97

and positively correlated with HDL especially in the GDM
group, which is consistent with previous researches [33]. In
Nowak et al’s study, CO showed no association with insulin
resistance during OGTT, and C10 and C12 decreased during
OGTT with worse insulin resistance as well [34]. Our present
study confirmed that CO was significantly related to FBG but
not 1h and 2h during OGTT. It is widely accepted that FBG
represented the severity of GDM. Our results confirmed that
CO deficiency was significantly related to the abnormal
metabolism of glucose and lipid in the second trimester of
pregnancy with GDM.

Macrosomia is associated with an increased risk of neo-
natal morbidity and obesity in adult [35]. GDM is associated
with an increasing risk of macrosomia [36]. Many studies
have proved that carnitine deficiency is associated with lipid
metabolism in GDM [37, 38]. So, we speculated that carni-
tine is involved in macrosomia with GDM. C0O supplement
is effective in normalizing insulin sensitivity of GDM and
controlling the synthesis of key glycolytic and gluconeogenic
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FIGURE 7: Predictive graphic nomogram for probability of GDM macrosomia and ROC curve. (a) Prepregnancy BMI, weight gain, C0, C3,
and Cl6-based nomogram for predicting macrosomia, predictor points (points” scale; top) correspond to each variable. Points for all
these variables are added and translated into the probability of macrosomia in GDM. (b) Receiver operating characteristic (ROC) curves

for validated models. AUC = 0.88.

enzymes. Macrosomia is regarded as a disorder of energy bal-
ance, which perturbs body weight homeostasis [39]. Antima-
crosomia effect of CO supplement might be mediated by the
induction of lipolysis and fatty acid oxidation. Our study
confirmed that CO is a protective factor for macrosomia.
However, C3 and C16 were risk factors for macrosomia with
GDM. Therefore, the characteristics of carnitine metabolism
had enabled us to discover reliable biomarkers and set up a
nomogram model to predicting GDM-related macrosomia.

Our study has several limitations. We should expand the
sample size and detect more metabolites to clarify the signif-
icance of nonglycometabolism during pregnancy. Also, the
metabolites in the other trimesters such as the first trimester
should be detected for predicting the occurrence of GDM by
carnitine or other metabolites.

5. Conclusions

In conclusion, by analyzing the metabolic alteration in the
second trimester, we found abnormal metabolism of carni-
tine including CO, C3, C16, and C18 which are independent

risk factors of GDM. CO deficiency during pregnancy is
significantly obvious in GDM and closely related to the
abnormality of blood lipid and glucose of GDM. Carnitine
metabolism abnormality could predict macrosomia compli-
cated with GDM. In all, the abnormality of fatty acid metab-
olism is of great significance in the pathogenesis and the
maternal and neonatal complications of GDM.
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