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Abstract Motivated by themany diverse responses of
different countries to the COVID-19 emergency, here
we develop a toy model of the dependence of the epi-
demics spreading on the availability of tests for dis-
ease. Our model, that we call SUDR+K, grounds on
the usual SIR model, with the difference of splitting
the total fraction of infected individuals in two compo-
nents: patients that are still undetected and patients that
have been already detected through tests. Moreover,
we assume that available tests increase at a constant
rate from the beginning of epidemics but are consumed
to detect infected individuals. Strikingly, we find a bi-
stable behavior between a phase with a giant fraction
of infected and a phase with a very small fraction. We
show that the separation between these two regimes is
governed by a match between the rate of testing and
a rate of infection spread at given time. We also show
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that the existence of two phases does not depend on the
mathematical choice of the form of the term describ-
ing the rate at which undetected individuals are tested
and detected. Presented research implies that a vigor-
ous early testing activity, before the epidemics enters its
giant phase, can potentially keep epidemics under con-
trol, and that even a very small change of the testing rate
around the bi-stable point can determine a fluctuation
of the size of the whole epidemics of various orders of
magnitude. For the real application of realisticmodel to
ongoing epidemics, we would gladly collaborate with
field epidemiologists in order to develop quantitative
models of testing process.
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1 Introduction

The recent outbreak of the SARS-CoV-2 virus and the
associated illness COVID-19 has triggered unprece-
dented containment measures around the world includ-
ing the complete lockdown of the populations of all
towns in Italy and and China and different other coun-
tries in Europe [1]. The World Health Organization
has declared the diffusion of COVID-19 to be a pan-
demic and issued a strong warning of a severe global
threat[2]. In the case of the COVID-19 epidemics, we
have assisted also to an infodemics of true and false
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news about the danger, the diffusion and the treatments
of COVID-19 [3]. This context muddled the attempts
to understand the epidemics and often confused peo-
ple. At the same time, following to evolution of the
epidemics, lively debates developed among scientists
on all social media and web platforms. Some of the
most important questions raised by this situation can
be summarized as follows: (i) Howmany infected peo-
ple are undetected? (ii) How the number of available
tests and testing policies affects the dynamics of the epi-
demics? (iii) How important is early testing in fighting
the infection spreading among populations? In general,
methods to address these questions vary with the kind
of epidemics or have been recently addressed with-
out explicit modeling effort. In [4], authors statistically
evaluate different strategies of testing in the context of
Ebola epidemics and show the importance of early test-
ing. They found that availability of early testing would
determine a reduction of the epidemics spreading by
one-third. In [5], authors analyze the effectiveness of
laboratory testing for Influenza, whose virus is often
mentioned to be somehow similar to SARS-CoV-2 for
what concerns the spreading dynamics, and review all
the possible ways in which early tests can be used in
fighting the diffusion of such a disease. In [6], authors
conclude that undocumented infections represented the
main channel of the geographic spreading of SARS-
CoV-2 .

There is an ongoing international effort to model the
dynamics of COVID-19 epidemics and to set the values
of the model parameters that significantly affect its dif-
fusion [7–9]. In this paper, we adopt for these values the
available numerical estimates published in these stud-
ies. Parameters, whose calibration is impossible due to
lack of data, are implicitly set within realistic ranges.

In order to explicitly take into account the differ-
ent roles in the spreading dynamics of undetected and
detected infected individuals, and the contribution of
the available number of testing kits to put the epidemics
under control, here we extend the usual SIR model to
a novel “SUDR + K” one. In the model we propose,
four states for the individuals of a given population are
possible: S (susceptible),U (undetected), D (detected)
and R (removed). Moreover, we introduce one addi-
tional variable K that represents the total number of
available tests, in order to study its impact on the epi-
demics diffusion.

Individuals who can still be infected are susceptible.
In their turn, infected individuals can be either detected

or undetected; therefore, I = D +U , where now with
capital letters we have indicated the total number of
individuals in the corresponding state. Individuals that
are positively tested are detected, while infected indi-
viduals of whom no one knows of (although some may
be suspected) for infection are undetected. The unde-
tected individuals U clearly include the asymptomatic
and non-tested cases. As in the SIR model, removed
are those individuals that either healed and acquired
immunity or are deceased. Calling N the total number
of people in population, we indicate with lowercase
letters the fractions of population, s + u + d + r = 1
(u + d = i = I/N ) in the four states. Analogously,
k = K/N represents available number of tests per
capita.

Even though in reality, there are different kinds
of tests (including nasopharyngeal and oropharyngeal
swabs, bronchoalveolar lavage, serum testing, CT scan,
etc., [10]), we gather all the kinds in a single family.

The model we propose is defined by the following
dynamic equations:

ṡ = −βsu (1)

u̇ = βsu − δuk − γ u (2)

ḋ = δuk − γ d (3)

ṙ = γ (u + d) (4)

k̇ = α − εδuk (5)

Equation (1) is just the usual equation of SIRmodel
that represents the dynamics from susceptible to be
infected after exposure to the virus. Here, we put u
instead of i , because we assume that after detection,
the probability to spread the contagion becomes negli-
gible1. The parameter β is proportional to the probabil-
ity that a susceptible individual who enters in contact
with an infected undetected one becomes also infected.

Equation (2) needs a more detailed explanation. The
first term just represents the fraction of individuals
that changed their state from susceptible to infected,
being initially undetected. The second term models the
change of undetected to detected by testing. If there
are no tests, no one can get detected; if there are no
undetected (e.g., asymptomatic) individuals again, no

1 This assumption is reasonable in a condition of efficient and
reliable health care system, but if hospitals are under stress or
have not enough protective gear, one could actually even expect
significant contribution from detected individuals.
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one can get detected. It is then proportional to both
the numbers of undetected and of kits. It is motivated
by the idea that infected individuals report to hospital
on the basis of symptoms (proportional to u) and get
tested with higher probability if there is abundance of
kits or lower if there is a scarcity of kits. The parameter
δ measures the efficacy of single tests in detecting new
infected individuals in the subpopulation of undetected
ones. The third term represents just the fraction of indi-
viduals that gets removed without ever been detected
and γ gives the rate of recovery/removal. Equation (3)
has the first term of opposite sign with respect to the
analogous term in the previous equation and an addi-
tional removal term of detected individuals. Although
the removal of an undetected individual happens only
through healing (direct death without a transition to
d can be as a first approximation neglected), while the
removal of a detected individual canbedue to both heal-
ing and death, we chose to remove detected and unde-
tected individuals with equal rate, leading to Eq. (4), to
reduce the number of parameters. Equation refsps5
represents the dynamics of the available number of
kits. The first term in the equation represents a con-
stant growth of the number of kits (fixed production of
kits per day during the epidemics)[11–13]: The param-
eter α is simply the number of new testing kits per
individual produced in a unitary time. The second term
reasonably assumes that kits are used proportionally to
the number of undetected individuals and the number
of available kits. It also prevents the number of kits to
become negative by virtue of being proportional to k.
The parameter ε > 1 measures how many more tests
have to be done to switch an undetected individual to
detected, so that the corresponding term in the equa-
tion has to be equal or larger than the corresponding
term δuk in Eqs. (2) and (3). Notice also that a way to
write Eq. (3) is ḋ = ḋ+ − ḋ−, so that the total rate of
detected is equal to the difference of the rates of newly
detected ḋ+ = δuk and the rate of newly recovered
from detected ḋ− = γ d. Now, it is clear that Eq. (5)
can be written as k̇ = α − εḋ+. In other words, the
rate with which tests are used is proportional to the rate
of detection. It is important to stress that this equation
models policy of testing and is therefore not expected
to be unique or even a reasonable choice for countries
which adopted very different policies.

Of course, there can be higher-order contributions
in all equations; however, in our opinion Eqs. (1)–(5)

are the simplest possible system of dynamic equations
to get a plausible dynamics.

2 More general models for detection

An alternative model for detection can be obtained in
the following way. First, let us assume that in each time
increment �t , a number of �K new kits are produced,
and that a fraction of 0 < δ′ < 1 of all available kits K
is used for people accepted in the hospitals. This means
that the number of kits used on hospitalized people is
δ′K . On the other hand, the number of people arriving
at hospitals with symptoms is proportional to number
of undetected; therefore, δ′ = δu. Moreover, let us
assume that each of these newly detected individuals
had previously infected other bs individuals, and there-
fore, we could expect that the number of newly detected
is

�D = δuK (1 + bs) = u�(K , s, δ, b) (6)

�d = �D/N = uφ(k, s, δ, β) . (7)

where

φ(k, s, δ, b) = �(K , s, δ, b)/N = δk(1 + bs) .

Consequently, the model equations now become:

ṡ = −βsu (8)

u̇ = βsu − uφ − γ u (9)

ḋ = uφ − γ d (10)

ṙ = γ (u + d) (11)

k̇ = α − εφ . (12)

Alternative andmore complex coupling termsbetween
detected and undetected individuals, leading to differ-
ent coupling functions φ, can in principle be possible.
Let us call δ < 1 the parameter that describes the effi-
ciency of the detection process in all different models.
Two possibilities are

uφ(uδ−1, k) = uδk , (13)

which is a term often used in chemical kinetics in
A + B → C [14], and

uφ(k, s, u, δ) = k
u

δs + u
(14)
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Fig. 1 The red line represents the fraction of detected individu-
als among the population, at different times; blue—undetected;
black—susceptible individuals; and green—kits for parameter
values β = ln 2, δ = 0.5, γ = ln 2/7, α = 0.02, ε = 1. (Color
figure online)

which is also typical in the kinetics of chemical reac-
tions [14]. As δ < 1, the interpretation is that each unit
of kits will be used to test either susceptible or unde-
tected people, but given two individuals of the pop-
ulation, one susceptible and one undetected, and one
testing kit, the probability that the testing kit is used
for the former is smaller than the probability that it is
used for the latter; therefore, δ reduces the susceptible
cohort that is subject to testing. The number of new
detected subjects in a single time step is then propor-
tional to the ratio between u and the total fraction of
tested individualsmodeled as δs+u. The rate of finding
is then proportional to k and this factor u

δs+u .
All the above terms can be collected in a single func-

tion

uφ(u, k, δ, b, s) , (15)

that we will use in the following analysis.

3 Results

Whichevermodelwe choose,wequalitatively observed
the same qualitative behavior. We therefore report in
the figures the results for the original model defined by
Eqs. (1)–(5). Generally speaking, we find a difference
in both size and temporal position between the two
peaks of detected and undetected subpopulations, as
shown in Fig. 1. Depending on the values of the param-

Fig. 2 Fraction of detected individuals for different values of
the parameter δ , using β = ln(2)/2.7,γ = ln(2)/7, α =
7.1429 · 10−5, ε = 2. In the initial stage of the growth, we
see an “unobservable” power-law onset of epidemics

eters, sizes and time ordering of the two peaks vary,
but the peak of undetected individuals comes always
before the peak of detected ones in time.

In Fig. 2, we show that, for the chosen values of
the parameters, a power law with exponent ≈ 2 fits
very well with the early stage of the growth of detected
subjects in substantial agreement with the results by
Maier and Brockman [15]. The reason for this initial
behavior is very similar to what studied in their model
in the sense that there is a reduction of the epidemic
spreading for those individuals that enter into this new
compartment. This is also checked from the analytical
point of view, and an expression very similar to the
one found in [15] is obtained. Indeed at the start of
epidemics, we can safely assume s ≈ 1 in Eq. (2).

However, one can see that the fraction of infected
individuals in such a power-law regime, multiplied, for
instance, by the Italian population, predicts less than
one single individual, and therefore, this very initial
theoretical regime is unobserved in real data for prac-
tically all countries. On the contrary, Fig. 3 shows that
for a wide range of parameters, this virtual pre-initial
stage is followed by an typical exponential growth as
expected in any epidemic diffusion. In this respect, it
is noteworthy that the SIR model at the start of an epi-
demics exhibits an exponential increase in the infected
population∼ e(β−γ )t , while the number of infected but
undetected individuals in our SUDR+K model, at this
stage of the epidemic diffusion, grows as ∼ e(β−φ−γ )t .
The fraction of detected individuals on the other hand
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Fig. 3 Fraction of detected individuals as function of time for
parameters values β = ln 2/2.7, γ = ln 2/7, α = 7.1429 ·
10−5, ε = 2. After the initial virtually “unobservable” power-
law increase, the epidemics shows an exponential growth. Notice
that the exponential for the detected subpopulation is lower than
the one which would describe beginning of the epidemics in the
SIR model

grows slower than the infected ones in comparable
with SIR model, thus possibly significantly affecting
the measurement of the parameters of the model from
observations.

One of themost interesting aspects of our newmodel
is the appearance of two different peaks in the dynam-
ical evolution of the fractions of the two subclasses
of infected people, undetected and detected. The peak
related to undetected individuals is in general occurring
before the peak of detected ones. The earlier the peak
of detected happens, the smaller the number of total
infected at the end of the epidemics. We have found a
very interesting relationship between the time tD,max

at which the peak of detected individual occurs and
the parameter α representing the production rate of the
testing kits:

tD,max ∼ α−η. (16)

The value of the exponent obtained in Fig. 4 is η ≈ 2,
but different values of it are found for different values
of the other parameters. The power-law relation is very
clear in Fig. 4. In all cases, the higher the α, the smaller
the tD,max .

The most striking result of our model is represented
in Figs. 5 and 6.

In Fig. 5, for very realistic values of α, we observe
a switching behavior between two phases: one with

Fig. 4 Scaling behavior of the peak time tD,max of the detected
fraction of individuals at different values of the growth rate α

of testing kit production. The other parameters are set in the
following way: β = ln 2 and γ = 0.099, ε = 2. The scaling can
be well fitted by a power law (16)

Fig. 5 For the usual choice of parameters β = ln 2/2.7, γ =
0.099, δ = 10, ε = 2, we see bi-stability of the time evolution
of the epidemic diffusion, fractions u and d, at two different but
very close values of the rate α. We observe a strong response of
the system jumping from a phase of full-blown epidemics to an
almost disappearing one

a full-blown epidemics, and the other one in which
the epidemic diffusion practically disappears before
the development of a macroscopic spreading across the
population. The separation between these two different
behaviors appears to be a real bifurcation point. Indeed,
by fixing all other parameters, we observe an abrupt
transition between the explosive and the self-contained
behaviors in a very narrow interval of the parameter α.
This strongly suggests the possibility of a huge effect
on the epidemics diffusion even for a change of few
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Fig. 6 Fraction of undetected infected individuals u as function
of time at two very close values for δ, and two very close values
of initial fraction of undetected infected individuals u0. Other
parameters are set at the following values: β = ln (2)/2.7, γ =
0.099, α = 7.14 · 10−5, ε = 2. We again observe bi-stability
and a strong response of the system to small variations of δ and
initial condition u0 determining an abrupt jump from a phase of
full-blown epidemics to an almost disappearing one

percentiles of the number of new available testing kits
per day.

In Fig. 6, we can see a similar bifurcation behavior
between a full-blown epidemics, and another regime
in which the epidemic diffusion stays limited and
then vanishes, by fixing all parameters but δ which is
freely moved and later setting all the parameters except
changing the initial fraction of undetected u0. Again,
we observe a dramatic change of the epidemic diffu-
sion in a very narrow range of the parameters δ and u0.
The boundary between 2 phases of epidemics can be
crossed both by change of parameters and by change
of the starting point of the epidemics. These observa-
tions strongly suggest that the coupling between the
number of available testing kits and the fractions of
undetected and detected individuals is crucial for the
evolution of the epidemics. In the following, we will
show that these phases are dynamical and driven by the
dynamics of testing.

Since a similar behavior is observed also for other
kinds of coupling, introduced in Sect. 2, we now for-
mulate a more general argument in Eq. (2) to explain it.
Let us start from the simplest case given by Eqs. (1)–(5)
and focus on the temporal location tc of the maximum
of the fraction of undetected infected individuals. It is
obtained by solving the equation u̇(tc) = 0, which,
through Eq. (2), reduces to the condition

s(tc) = δ

β
k(tc) + γ

β
. (17)

In Fig. 7, we represent both the right-hand side of
Eq. (17) as a function of time and s(t) for the same
two different settings of parameters of Fig. 6, where
all parameters values coincide but δ for which we have
two very close values δ1 = 36.95 and δ2 = 36.98
around the bifurcation point. We will have a maximum
in u(t) at the time tc at which δ

β
k(t) + γ

β
crosses s(t).

We see that for δ = δ2, we have 100 < tc < 150 and
happens for s(t) � 1 so that the infection is strongly
limited by the testing activity and u(t) keeps small at
all time up to vanish. On the contrary for δ = δ1,
250 < tc < 300 where s(t) < 0.5. This means that
the infection exploded leading to a fraction larger than
0.5 of infected people across the population. This is a
further confirmation of the switching between the two
aforementioned phases of the epidemics.

In order to generally explain this transition, wemake
use of the general coupling term (15) in the equations of
the model. As long as the function φ is strictly positive
and continuous, we will have the same behavior, but
with changed temporal location of the switch. In that
case, the switchwill arise naturally by setting u̇(tc) = 0
which, from Eq. (2), means through the solution tc of
the equation:

φ(u(tc), k(tc), α, δ) = βs(tc) − γ (18)

In order to proceed to a classification of the two
phases, we have to study the second-order time deriva-
tive of the fraction of undetected individuals ü:

ü(tc) = β ṡ(tc)u(tc) − u(tc)φ̇(tc) . (19)

Clearly, tc will be the time of a local maximum if
ü(tc) < 0. This happens if

β ṡ(tc) < φ̇(tc) (20)

when the growth of the undetected subpopulation is
suppressed. Equation (20) says that the change of the
rate βs at which new undetected (i.e., new infected)
individuals are produced has to be smaller than the
change of the rate φ at which new undetected indi-
viduals switch to detected due to tests.
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Fig. 7 We represent both s(t) and δ
β
k(t) + γ

β
as function of

time for the same parameters values of Fig. 6: β = ln (2)/2.7,
γ = 0.099, α = 7.14 · 10−5, ε = 2, and two choices of δ,
δ1 = 36.95 and δ2 = 36.98. The fraction u(t) gets its maximum
when the two curves cross. We see that for δ = δ2, the infection
is always well limited by the testing activity up to disappear,
while for δ = δ1, the epidemics explodes up to infect more half
of population

4 Discussion

A simple interpretation of Eq. (17) is that when the
rate of successful testing δuk(tc) = ḋ+ (i.e., of detec-
tion of infected individuals) and the rate of recovery γ u
equals the rate of transmission of the infectionβsu (i.e.,
transformation of individuals from susceptible to the
infected state), the pandemic can enter into a dynam-
ical stationary state. In order for it to really happen,
inequality (20) has to also be fulfilled, which means
that the change in the rate of testing and recovery has to
be larger than the change in the rate of newly infected
individuals. Note that this does not mean that there are
no newly infected, but simply that the number of new
undetected per day is kept below a value determined
by testing and recovery. When the two rates equate,
we have a clear separation between the region with
small and manageable population of u and a full blow
up of the epidemics. The implications of this result
are that testing can have an immense impact if it is
done in time, in a smart calibrated pace on the rate
of transmission of the infection in the population, and
tests are made available at a sufficient rate. Indeed, it
is important to stress that the way Singapore handled
the COVID-19 crisis [16], at least in the first round of
the infection, is very similar to our model. Moreover,
Japan andHongKong are alsomanagingwell the diffu-

sion of the epidemics during the writing of this paper:
Indeed, α = 0.0002, as reported for the Hong Kong
case [17], is within the meaningful range of parame-
ters we used in this model. This leads us to believe that
those developed countries which are adopting testing
policies postponing a widespread testing activity until
theyhave full-blownepidemics put themselves in avery
risky situation in which the epidemics may diffuse in
a uncontrollable way across the population. This result
would also suggest that sharing of tests among nations
is fundamental in order to mitigate the epidemics dif-
fusion.

In Eq. (10), we have assumed that the spreading of
the infection and the testing activity happen at the same
time. More realistic models could include expected
incubation time τ , and then, the term would become
delayed as follows

δuk[1 + bs(t − τ)] = uφ(k, s, b, τ ). (21)

For the realistic analysis of testing toCOVID-19 epi-
demics, we believe one should use differential delayed
equations for macroscopic dynamics, while directly
simulating testing strategies on the calibrated model
of social network and using this simulations to extract
the realistic effective couplings between testings and
the fraction of undetected individuals.

Finally, we would like to once again stress that here,
we present toy model which is not calibrated and suit-
able to any kind of quantitative predictions. We believe
that the testing strategy, and the modeling of detec-
tion of cases, is of fundamental importance for the epi-
demics of COVID-19 as well as for all possible future
epidemics of unknown pathogens, and we hope this
work can open the way to collaborate with institutions
and researchers which are working on real testing to
model it as best as possible.
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