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Abstract
Heart failure (HF) is a complex clinical syndrome characterized by the activation 
of at least several neurohumoral pathways that have a common role in 
maintaining cardiac output and adequate perfusion pressure of target organs and 
tissues. The sympathetic nervous system (SNS) is upregulated in HF as evident in 
dysfunctional baroreceptor and chemoreceptor reflexes, circulating and neuronal 
catecholamine spillover, attenuated parasympathetic response, and augmented 
sympathetic outflow to the heart, kidneys and skeletal muscles. When these 
sympathoexcitatory effects on the cardiovascular system are sustained chronically 
they initiate the vicious circle of HF progression and become associated with 
cardiomyocyte apoptosis, maladaptive ventricular and vascular remodeling, 
arrhythmogenesis, and poor prognosis in patients with HF. These detrimental 
effects of SNS activity on outcomes in HF warrant adequate diagnostic and 
treatment modalities. Therefore, this review summarizes basic physiological 
concepts about the interaction of SNS with the cardiovascular system and 
highlights key pathophysiological mechanisms of SNS derangement in HF. 
Finally, special emphasis in this review is placed on the integrative and up-to-date 
overview of diagnostic modalities such as SNS imaging methods and novel 
laboratory biomarkers that could aid in the assessment of the degree of SNS 
activation and provide reliable prognostic information among patients with HF.
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Core tip: Sympathetic nervous system activation is one of the key neurohumoral 
mechanisms that are operative in heart failure and is robustly associated with adverse 
myocardial remodeling, arrhythmias, sudden cardiac death, and overall poor prognosis in 
this population. Therefore, adequate diagnosis and quantification of the degree of 
upregulated sympathetic nervous system activity must be assessed by the clinician in every 
heart failure patient. A special emphasis must be put on adequate treatment by 
neurohumoral antagonists such as beta-blockers that will mitigate these adverse effects and 
improve outcomes. The adjunct use of advanced imaging methods and novel biomarkers 
might aid in clinical decision-making.

Citation: Borovac JA, D'Amario D, Bozic J, Glavas D. Sympathetic nervous system activation 
and heart failure: Current state of evidence and the pathophysiology in the light of novel 
biomarkers. World J Cardiol 2020; 12(8): 373-408
URL: https://www.wjgnet.com/1949-8462/full/v12/i8/373.htm
DOI: https://dx.doi.org/10.4330/wjc.v12.i8.373

INTRODUCTION
Heart failure (HF) is a complex clinical syndrome characterized by the symptoms such 
as breathlessness, fatigue and ankle edema and signs like elevated jugular venous 
pressure, lung crepitations during auscultation and peripheral edema[1]. The central 
hemodynamic consequence of HF is the inability of a heart to support required 
metabolic demands and perfusion of organs and tissues due to structural and/or 
functional cardiac abnormalities that predilect to decreased cardiac output (CO) 
and/or increased intracardiac filling pressures during the rest or exercise[2]. HF 
nowadays represents a relevant clinical entity and global pandemic that affects more 
than 26 million adults worldwide while its general prevalence in population accrues to 
about 2% with yearly incidence of approximately 0.2% in Western countries[3]. 
Projected burden of HF, assuming the stable incidence of this syndrome in persons ≥ 
65 years was already surpassed by the actual burden of the HF in the United States 
and it is expected that more than 8 million people will have this condition in the 
United States by 2030[4,5]. This increase in HF prevalence observed worldwide might be 
attributed not necessarily to increased HF incidence but to phenomena such as 
advancing age of the population and increased comorbidity burden coupled with 
improved HF survival due to progress in HF treatment and diagnosis while the 
decreased incidence of HF according to some data might partially be the consequence 
of more efficacious treatment of acute coronary syndromes, lower severity of index HF 
events and improvements in HF primary prevention programs[5,6].

Despite the advancements in therapeutic management, HF is still characterized by 
the rather high morbidity and mortality rates and considerable healthcare 
expenditures while these outcomes appear to be strongly dependent on the region of 
the world, healthcare infrastructure and the level of quality/access to specialized HF 
care[5,7-10]. Of note, HF is at least as deadly or even deadlier than some of the common 
malignancies in both men and women. Among men, patients with HF had worse 
mortality outcomes than those with prostate and bladder cancer while among women 
those with HF had worse mortality outcomes than female patients suffering from 
breast cancer[11]. Survival after a diagnosis of HF has shown only modest improvement 
in the 21st century, with an increase in average survival rates between 6.4% to 7.2% 
during nearly two decades thus clearly indicating that our clinical efforts to improve 
outcomes in HF substantially lag behind advancements in other severe conditions such 
as cancer[12]. In support to this notion, a recent data from the United States nationwide 
temporal analysis showed that age-adjusted death rates for HF did not change 
significantly, in fact there even emerges a trend of the slight rise of HF-related 
mortality recently, after nearly 15 years of modest but gradual decline in HF-related 
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mortality since the late nineties[13]. Similarly, recent longitudinal data acquired from 
the Framingham Heart Study and Cardiovascular Health Study showed that HF 
incidence was relatively stable for almost two decades and this was true for mortality 
outcomes as well (including cardiac death, non-cardiac death, and all-cause 
mortality)[14]. This study also showed that the incidence of heart failure with reduced 
ejection fraction (HFrEF) significantly declined whereas the incidence of heart failure 
with preserved ejection fraction (HFpEF) significantly increased over time in both 
sexes. Approximately 50% of community patients with HF nowadays have an HFpEF 
clinical phenotype while multimorbidity seems to be a stronger driver for HFpEF 
onset although it is a highly prevalent phenomenon in both HFrEF and HFpEF. 
Likewise, both phenotypes portend a comparable 5-year mortality[15-17]. Finally, the 
proportion of those dying of non-cardiovascular causes seems to be higher in HFpEF 
than HFrEF and this holds for non-cardiovascular-related 30-d readmissions that are 
more common among HFpEF compared with HFrEF patients[15,18].

Taken together, these recent trends strongly suggest that HF is a clinical entity that 
will continue to impose a significant burden on modern societies, urging for the 
advances in our understanding of its complex pathophysiology and development of 
new treatments. Equally important, the discovery and implementation of biomarkers 
that might aid in the diagnosis, prognosis, and risk stratification of patients with HF is 
required in a contemporary clinical practice[19]. For these reasons, aims of the present 
review are to provide recent updates regarding the HF pathophysiology with the 
special emphasis on novel biomarkers that might reflect the sympathetic nervous 
system (SNS) activation as one of the constituent neurohumoral pathways that are 
upregulated to preserve CO in the setting of a failing heart.

PATHOPHYSIOLOGY AND COMPENSATORY MECHANISMS IN HEART 
FAILURE
Any abnormality or combination of abnormalities that cause structural, mechanical, or 
electrical dysfunction of the heart carry the potential to induce HF. Most commonly 
HF is the consequence of the myocyte injury caused by coronary artery disease, 
uncontrolled arterial hypertension and diabetes mellitus, however, adverse 
myocardial remodeling can be triggered and sustained by valvular dysfunction, 
tachyarrhythmias (especially atrial fibrillation/flutter), interatrial and interventricular 
conduction abnormalities or pulmonary disorders such as chronic obstructive 
pulmonary disease or pulmonary arterial hypertension[20]. Less common etiologies 
include cardiomyopathies, myocarditis, infections, systemic toxins, and cardiotoxic 
drugs that are nowadays increasingly used in various chemotherapeutic regimens[21,22]. 
At least several pathophysiological mechanisms are at play in the setting of failing 
myocardium such as increased hemodynamic overload, ventricular dysfunction due to 
subclinical or overt ischemia, pathologic ventricular remodeling, upregulated 
neurohumoral activation, impaired intracellular calcium cycling and accelerated 
apoptosis of cardiac myocytes, imbalance in the formation and breakdown of the 
extracellular matrix, and various genetic predilections[2].

Clinically, a majority of patients with HF have both systolic and the diastolic 
dysfunction occurring at the same time and these two pathophysiological mechanisms 
often overlap but even in the isolation of each other, they cause a similar degree of HF 
signs and symptoms[23,24]. For the didactic purposes, in the systolic dysfunction, the 
primary pathomorphological substrate is the loss of functional myocardium (primary 
myocyte injury) most commonly due to ischemic disease and myocardial infarction 
causing impaired contractility and insufficient emptying of the ventricles consequently 
leading to increased left ventricular (LV) end-diastolic and end-systolic volumes and 
rise in end-diastolic pressure (LVEDP) within the left ventricle further decreasing 
stroke volume and left ventricular ejection fraction (LVEF)[25,26]. An increase in LVEDP 
might retrogradely increase left atrial (LA) pressure which consequently increases 
pressure in the pulmonary circulation, and if this cascade progresses even further can 
induce right heart failure, congestive hepatopathy and affect portal and peripheral 
circulation thus altogether precipitating fluid extravasation leading to pulmonary 
and/or splanchnic and peripheral congestion.

On the other hand, in diastolic dysfunction, the contractile ability of the heart might 
be preserved, however, functional mechanisms that are responsible for the adequate 
filling of the heart are impaired. It is estimated that up to 50% of patients presenting 
with signs and symptoms of HF have normal or near-normal LVEF but exhibit 
abnormalities predominantly in diastolic function[27,28]. Even more, those with normal 
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LVEF by conventional transthoracic echocardiography and verified diastolic 
dysfunction can often have subclinical contractile dysfunction that is captured only by 
the means of myocardial deformation studies such as LV global longitudinal strain 
and speckle tracking techniques or advanced cardiac imaging methods such as cardiac 
magnetic resonance[29-31]. These filling abnormalities may occur due to impairments in 
early diastolic relaxation of the LV (an active energy-consuming process) and/or 
increased stiffness and rigidity of the LA and LV (a passive process independent of 
energy) coupled with reduced arterial compliance in both major vessels such as the 
aorta and peripheral arteries[32,33]. Among patients with HFpEF both processes of active 
relaxation and increased passive stiffness are impaired and are predominant 
pathophysiological mechanisms leading to diastolic dysfunction[34,35]. These 
abnormalities altogether act synergistically to produce a rise in the LVEDP thus 
causing significant venous congestion in HFpEF patients that is as severe as among 
those with HFrEF[36]. Of note, significant increase in passive LV stiffness is propagated 
by aberancies in collagen-dependent and titin-dependent deposition cellular 
pathways[35]. Similarly, longstanding elevated ventricular pressures further perpetuate 
LA dilation that is clinically detected as an increased LA volume at rest and reduced 
LA filling during submaximal exercise[37]. Also, peripheral oxygen extraction is blunted 
in HFpEF resulting in exercise intolerance while reduced peak oxygen uptake and 
increased perfusion/ventilation mismatch carry important prognostic information and 
assist in the selection of patients that might require advanced HF interventions such as 
heart transplantation or deployment of ventricular assist devices[38-41].

A complex interaction of highly prevalent comorbidities such as salt-sensitive 
hypertension, obesity, diabetes mellitus, metabolic syndrome, iron deficiency, chronic 
obstructive pulmonary disease and, atrial fibrillation (AF), combined with natural 
pathophysiological effects of aging can give rise to systemic proinflammatory state 
that affects coronary microvasculature and endothelium by upregulating cytokine-
mediated inflammation pathways[42,43]. In this proposed pathophysiologic scheme, 
pioneered by Paulus and Tschöpe[44] in 2013, endothelial inflammation of coronary 
microvasculature acts as a central transitioning mechanism by which synergistic 
effects of comorbidities are translated onto heart thus causing secondary myocyte 
injury that ultimately leads to structural and functional alterations of the myocardium 
in HFpEF[44]. According to the postulated model, coronary microvascular endothelial 
inflammation reduces nitric oxide (NO) bioavailability and cyclic guanosine 
monophosphate (cGMP) content and reduces protein kinase G activity in adjacent 
cardiomyocytes thus highlighting NO-cGMP-PKG signaling pathway disruption as 
the key culprit in HFpEF pathophysiology. This disruption leads to the onset of 
cardiac hypertrophy and increased resting tension (Fpassive) of cardiomyocytes due to 
hypophosphorylation of titin and increased myocardial nitrosative/oxidative 
stress[45-47]. Furthermore, hypophosphorylation of constitutive myofilament proteins 
and increased calcium sensitivity of sarcomeres causes increased LV stiffness and 
abnormal relaxation contributing to HFpEF onset while these derangements are not 
present in normal myocardium[48]. Graziani et al[49] also proposed that microvascular 
dysfunction is the common pathophysiological pathway contributing to both 
microvascular angina and HFpEF[49]. Of note, endothelial dysfunction represents a 
pathological vascular phenotype of all systemic arteries that encompasses damaging 
effects of vasoconstrictive, prothrombotic and proinflammatory substances and 
mediators on the endothelial vascular lining and diminished repairability of 
endothelium thus further acting as an independent pathobiological driver of 
atherosclerosis and overt cardiovascular disease[50-52].

Furthermore, a novel pathophysiological concept of endothelial-to-mesenchymal 
transition has been recently proposed describing a process by which endothelial cells 
undergo a series of molecular events that lead to a loss of their endothelial properties 
and a consequent shift in phenotype toward mesenchymal cells such as 
myofibroblasts, smooth muscle cells, and osteoblasts[53]. Accumulation of these cells 
promotes plaque formation and atherosclerosis by secreting proinflammatory 
cytokines and metalloproteinases and increasing extracellular matrix and collagen 
deposition thereby affecting the structure and function of cardiac valves, native vein 
grafts that are used in coronary artery bypass graft surgery and inducing interstitial 
cardiac fibrosis, diastolic dysfunction, endocardial fibroelastosis and contributing even 
to the development of pulmonary arterial hypertension[54-59]. From the molecular 
perspective, it seems that activation of transforming growth factor-beta plays a key 
role in the initiation of endothelial-to-mesenchymal transition cascade and tissue 
fibrosis through its interaction with SMAD-2/3/4 and SLUG signaling 
pathways[57,60,61]. Furthermore, endothelial cells in which the EndoMT pathway was 
experimentally activated had significantly elevated secretion of proinflammatory 



Borovac JA et al. Sympathetic system activation in heart failure

WJC https://www.wjgnet.com 377 August 26, 2020 Volume 12 Issue 8

cytokines such as interleukin-6, interleukin-8 and tumor necrosis factor-alpha thus 
likely representing an integrative pathophysiological cross-talk between fibrosis and 
inflammation[59,62]. In summary, EndoMT might be the key link in interaction between 
inflammation, endothelial dysfunction, and chronic cardiac fibrosis, and thus might 
become a viable target for novel therapeutic solutions for cardiovascular disease[63,64]. 
Altogether, these converging and mutually complementary pathophysiological 
mechanisms may contribute to a net effect of stiffening of cardiac myocytes and overt 
interstitial fibrosis thus directly inducing myocardial dysfunction during diastole and 
subsequent HF development.

In order to maintain adequate tissue perfusion in the setting of the failing heart, 
several compensatory mechanisms are activated to increase CO via the Frank-Starling 
mechanism, increased ventricular volume and wall thickness through the process of 
ventricular remodeling and augmenting mean arterial pressure (MAP) by activating 
several neurohormonal pathways and cytokine systems[21]. These compensatory 
mechanisms are initially able to compensate for impaired myocardial function, 
however, they inflict deleterious effects on cardiac structure and function if chronically 
activated leading to further worsening of HF and progressive clinical deterioration of a 
patient. Neurohumoral systems that are upregulated act to promote beneficial short-
term changes in heart, kidneys, and vasculature to maintain cardiovascular 
homeostasis[65]. They encompass the activation of the renin-angiotensin-aldosterone 
system (RAAS), arginine-vasopressin (antidiuretic) system, kallikrein-kininogen-kinin 
system, activation of natriuretic peptides system, neprilysin signaling pathway, 
endothelin pathway, and cytokine systems[66-70]. Finally, the upregulation of 
adrenergic/SNS pathways and blunted responsiveness of the parasympathetic 
nervous system (PNS), also collectively known as autonomic nervous system (ANS) 
imbalance, is one of the hallmark neurohumoral disturbances that are operative in HF 
and is of central interest in this review[71,72]. The summary of the most common 
etiologies, pathophysiological effects, and compensatory mechanisms in HF is shown 
in Figure 1.

It is worth of brief mentioning that evidence-based treatments such as angiotensin-
converting enzyme (ACE) inhibitors, angiotensin receptor blockers, beta-blockers, 
mineralocorticoid receptor antagonists, angiotensin receptor neprilysin inhibitors, 
ivabradine, sodium/glucose cotransporter 2 inhibitors, digoxin, and cardiac 
resynchronization therapy (CRT) devices are developed around our understanding of 
compensatory and maladaptive mechanisms in HF[1,73]. Importantly, these treatment 
modalities were found successful in reducing mortality rates and hospitalizations in 
patients with HFrEF, however, no evidence-based pharmacologic treatments with 
clear beneficial effects on these endpoints were observed in patients with HFpEF while 
current guidelines stipulate symptom control with diuretics and efficacious 
management of comorbidities such as arterial hypertension, AF, obesity, and diabetes 
in this population[1,74].

Recent European Society of Cardiology and Heart Failure Association expert panel 
issued a scientific position statement in which ANS imbalance is recognized as an 
important contributor to cardiac disease progression and is designated as a prognostic 
parameter and a therapeutic target in HF by the means of novel pharmacologic and/or 
device therapies[75]. Furthermore, heart and brain are in bidirectional interaction 
meaning that depressed cardiac function affects cerebral structures and functional 
capacity while dysregulation of neuro-cardiac reflexes significantly affects the 
cardiovascular system thus aggravating and further sustaining the progression of 
HF[76].

PHYSIOLOGY OF SYMPATHETIC NERVOUS SYSTEM AND ITS 
MEDIATORS
In the advent of our understanding of HF, this syndrome was largely perceived as a 
hemodynamic disorder thus all treatment strategies were primarily directed toward 
the correction of hemodynamic abnormalities. However, since hemodynamic 
derangements could not fully explain the progression and long-term effects of the 
disease, a neurohormonal hypothesis was developed in which neurohumoral 
mechanisms encompassing RAAS and SNS activation were emphasized as 
independent drivers of cardiac dysfunction and progression of HF[77].

SNS activation is a fundamental physiological response to stress conditions (also 
known as the fight-or-flight response) such as hypovolemia, hypoglycemia, hypoxia or 
cardiovascular dysfunction[78]. SNS activity can modify and induce a wide spectrum of 
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Figure 1  A diagram showing basic etiology, pathophysiology and compensatory mechanisms that are activated in heart failure. CO: 
Cardiac output; COPD: Chronic obstructive pulmonary disease; HF: Heart failure; HFmrEF: Heart failure with midrange ejection fraction; HFpEF: Heart failure with 
preserved ejection fraction; HFrEF: Heart failure with reduced ejection fraction; MAP: Mean arterial pressure; RAAS: Renin-angiotensin-aldosterone system; SV: 
Stroke volume.

potent hemodynamic effects such as an increase in heart rate (positive chronotropic 
effect), augmentation of cardiac contractility (positive inotropic effect), accelerated 
cardiac relaxation (positive lusitropy), enhanced (shortened) atrioventricular 
conduction (positive dromotropy), reduced venous capacitance and peripheral 
vasoconstriction of resistance and cutaneous vessels[71,79]. The actions of SNS are 
dominantly mediated by secreted neurotransmitters such as norepinephrine (NE) that 
is released by sympathetic nerve terminals and, to a lesser degree, by the adrenal 
medulla and by epinephrine (EPI) that is chiefly released into peripheral circulation by 
the adrenal medulla.

Peripheral target organs are regulated by the two major sets of neurons serially 
connected to control the motor outflow of the SNS: (1) Preganglionic neurons that 
originate in the brainstem or the spinal cord; and (2) Postganglionic neurons that are 
part of sympathetic ganglia that are located outside of the central nervous system 
(CNS). Intrathoracic and extracardiac ganglia including stellate ganglia, middle 
cervical ganglia, and T2-T4 thoracic ganglia modulate the sympathetic outflow to the 
heart while sympathetic afferent impulses are carried through the dorsal root ganglia 
and reach the spinal cord, brain stem, and higher CNS centers. Cardiac sympathetic 
nerve fibers innervate myocardium at the subepicardial level, follow the path of major 
coronary arteries and are a predominant autonomic component in the ventricular 
tissue while parasympathetic nerve fibers, along with vagus nerve, run through 
subendocardium crossing the atrioventricular groove and are significantly more 
abundant in the atrial than ventricular myocardium thus exerting negative 
chronotropic effect with minimal effects on cardiac contractility[79]. Furthermore, 
sympathetic innervation has a relatively higher density in the anatomical areas around 
sinoatrial node and coronary sinus while its density gradually increases from the base 
of the ventricle to the apex (positive base-to-apex gradient)[80,81]. Intrinsic cardiac 
ganglia are located epicardially and receive innervation from post-ganglionic 
sympathetic and pre-ganglionic parasympathetic connections while most of 
sympathetic efferent and parasympathetic preganglionic fibers exhibit a large degree 
of intermixing thus most of the nerves reaching the heart in the mediastinum have 
mixed fibers (both sympathetic and parasympathetic components)[82].

The degree of SNS activation and sympathetic outflow to the heart and peripheral 
circulation, under physiological conditions, is regulated by a complex integration of 
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autonomic cardiovascular reflexes. These reflexes include arterial baroreflexes, 
cardiopulmonary mechanosensitive reflexes, cardiac chemoreflexes, peripheral and 
central chemoreceptor reflexes, pulmonary stretch reflexes, cardio-cardiac reflexes and 
reflexes that are afferently projected from skeletal muscles[72]. All of these reflexes have 
a common role in fine-tuning and maintaining adequate heart rate, mean arterial blood 
pressure, vascular tone, ventilation, and respiratory drive in response to various 
hemodynamic changes[83]. These reflexes are listed with a summary of their function 
and potential impairment in HF (Table 1). According to modern pathophysiological 
findings, any depression of ventricular systolic function (irrespective of the underlying 
etiology) is augmenting cardiac reflex sympathoexcitation in chronic HF but might 
also be a leading culprit for the acute HF onset[72]. For example, a physiological 
response to the sudden increase in the cardiac filling pressures should act to vasodilate 
venous capacitance vessels to accommodate for excessive fluid, however, paradoxical 
sympathetic discharge in HF instead causes vasoconstriction of venous pool (mainly 
splanchnic circulation) and redistributes fluid to cardiopulmonary pool thus 
precipitating congestion and causing dyspnea. For this reason, it could be that rapid 
increase in the effective circulating volume from the mobilization of fluid from the 
splanchnic bed is the dominant driving force behind increased central venous pressure 
and congestion encountered during HF decompensation episode and might depend on 
an external fluid gain to a lesser degree[84,85]. Finally, cardiovascular-low threshold 
polymodal receptors are sensory endings localized in all cardiac chambers and large 
thoracic vessels that detect both mechanical and chemical stimuli and act in positive-
feedback fashion with stimulatory effects on SNS[86].

In terms of prinicipal neurotransmitters that propagate the effects of SNS, NE is 
ejected in the synaptic cleft upon the stimulation from stellate ganglions via post-
ganglionic fibers thus activating adrenergic receptors (ARs) in the heart and 
physiologically augmenting contractile strength, chronotropy, dromotropy and 
increasing mean arterial perfusion pressure. About 80% to 90% of released NE is 
reuptaken by the noradrenaline transporter 1 which is a monoamine transporter that 
clears NE from sympathetic nerve terminals/chromaffin cells while about 10% to 20% 
of remaining NE content is spilled into circulation[87,88]. This NE turnover and 
metabolism can be evaluated with imaging methods such as scintigraphy by using 
radiolabelled guanethidine analogs of NE[89,90]. Similarly, sympathetic fibers that 
innervate the adrenal gland stimulate chromaffin cells in the adrenal medulla that act 
as modified post-ganglionic fibers to release catecholamines in response to stressors or 
exercise. This efflux of catecholamines from adrenal medulla is predominantly 
comprised of EPI (about 80%) while NE makes up the remaining 20% with small 
amounts of dopamine being released into peripheral circulation as well[91]. EPI and NE 
bind to specific ARs that are proteins embedded within the cell membrane with 7 
transmembrane structures coupled to heterotrimeric G proteins. A total of two classes 
of ARs (alpha- and beta-adrenergic receptors) with 9 subtypes have been identified 
thus far: three α1 receptors, three α2 receptors and three β receptors (β1, β2, and β3)[92]. A 
healthy human heart mostly consists of β1 (75%-80%) and β2 (20%-25%) adrenergic 
receptors and they represent the key effectors behind positive chronotropic and 
inotropic effects of catecholamines while β3 adrenergic receptors (comprising less than 
5% of total beta-receptor density) have been postulated to exert negative inotropic 
effects through upregulation of nitric oxide synthase pathway in human ventricle[93-95]. 
It has been recently confirmed that β1 and α1B receptors are present in all ventricular 
cardiomyocytes[96]. Alpha-1 adrenergic receptors (α1) and alpha-2 adrenergic receptors 
(α2) are chiefly expressed in vascular smooth muscle cells proximal and distal to 
sympathetic nerve terminals, respectively, and their activation elicits vasoconstriction 
of peripheral arteriolar and venous vessels while in the brain stem they modulate 
sympathetic outflow[97]. A recent study by Becker et al[98] showed that activation of 
neuronal endothelin B receptors can increase arterial blood pressure mediated through 
α1-adrenergic receptor signaling showing that abnormalities of endothelin system have 
a cross-talk with adrenergic systems in hypertension and HF[98].

Beta-adrenergic receptors act as powerful regulators of cardiac output and upon 
acute stimulation by catecholamines they facilitate fight-or-flight response while their 
chronic stimulation results in maladaptive and pathologic cardiac remodeling[99-101]. 
Activation of β adrenergic receptors induces the activation of the stimulatory G 
protein (Gs) which further activates adenylyl cyclase leading to an increase in levels of 
intracellular cyclic adenosine monophosphate and activation of protein kinase A that 
phosphorylates several target proteins within the cardiomyocyte such as 
phospholamban, L-type calcium channels, troponin I, contractile proteins, and the 
cardiac ryanodine receptor and this mainly is the mechanism by which β1 receptors 
regulate cardiac contractility/relaxation and heart rate[99,102]. Furthermore, activation of 
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Table 1 Cardiovascular reflexes and their pathophysiological implications in heart failure

Type of neurally-
mediated 
cardiovascular reflex

Proposed mechanism of action Pathophysiological consequence in heart failure

Arterial baroreceptor 
reflexes

In HF acts as a response to perceived reduction in stroke volume or diastolic blood pressure; It is implicated that reduced carotid 
sinus and aortic arch afferent nerve firing as a response to systolic stretch disinhibits efferent sympathetic discharge; This reflex is 
impaired in terms of heart rate control, however, efferent sympathetic nerve activity might be preserved in human HF, even in 
advance stage

↓ Reduced reflex vagal response; ↓ reduced heart rate variability; ↑ increased 
cardiac NE spillover; ←→no change in renal NE spillover; ↑mean 
sympathetic discharge to peripheral muscles is increased

Cardiac chemosensitive 
reflexes

Myocardial ischemia and reperfusion elicits increased sympathoexcitatory response by chemically (reactive oxygen species) 
stimulating sympathetic afferent fibers in both anterior and infero-posterior regions of the left ventricle; Platelet activation and local 
release of serotonin (5-HT) through a 5HT3 receptor mechanism and regional changes in pH from lactic acid stimulate sympathetic 
afferents in myocardium; Cardiac sympathetic afferent reflex is enhanced in HF and acts in the positive-feedback fashion

↑ Increased shift and predominance of sympathetic efferent discharge; ↓ 
parasympathetic depletion; ↑ sympathetic activation; ↑ increased blood 
pressure; ↑ adverse left-ventricular remodeling; ↑ increased propensity for 
malignant arrhythmias and sudden cardiac death

Cardiopulmonary 
mechanosensitive 
reflexes

Normally elicited by the stretch of unmyelinated afferents sensitive to mechanical input, located intracardially and within 
pulmonary veins; It is implicated that impairement of this reflex decreases efferent sympathoinhibition to periphery; Cardiac-
specific myelinated afferent are responsible for observed sympathoexcitatory effects characterized by the increased local cardiac NE 
spillover due to increased filling pressures (e.g. ↑ high LA pressure); Bezold-Jarisch reflex – mediated by nonmyelinated vagal 
afferent pathways – acts in sympathoinhibitory fashion and promotes reflex bradycardia, vasodilation and hypotension

↓ Reduced cardiopulmonary reflex regulation of central sympathetic outflow 
to peripheral tissues (dominantly skeletal muscles); ↑ paradoxical excitation 
and increase in sympathetic outflow in the setting of high LA pressure

Cardio-cardiac reflexes Coronary occlusion elicits the activity of preganglionic fibers in left thoracic sympathetic ramus communicans (T3) and increases 
discharge towards heart via efferent sympathetic innervation

↑ Increased myocardial oxygen consumption; ↑ facilitation of malignant 
arrhythmias; ←→ might also have a protective effect in sense that they 
augment contractility, therefore, opposing ventricular dilatation and/or 
impending cardiogenic shock

Peripheral and central 
chemoreceptor reflexes

These receptors monitor partial pressures of oxygen and CO2 within arterial vessels and close to heart and escalate afferent sensory 
discharge according to changes; Peripheral chemoreceptors – dominantly respond to hypoxia; Central chemoreceptors – dominantly 
respond to hypercapnia; Peripheral and central receptor chemosensitivity is significantly increased in HF and is linked to 
augmented MSNA

↑ Increased ventilation; ↑ increased sympathetic outflow; ↑ increased heart 
rate and systolic blood pressure; ↓ suppressed inhibition of sympathetic 
outflow that is mediated by arterial baroreflexes; ↑ increased peripheral and 
central chemoreflex-mediated sympathoexcitation is linked to poor 4-yr 
survival in HF patients

Pulmonary stretch 
receptor reflex

Fast and shallow breathing (high respiratory rate and low tidal volume) decreases stimulation of sympathoinhibitory reflex that is 
initated with lung stretch; HF patients with such breathing had increased MSNA burst frequency or amplitude; There is a 
correlation between decrease in resting tidal volume and attenuated sympathoinhibitory effect of lung inflation reflex with 
increased sympathoexcitation

↓ Decreased the resting tidal volume; ↓ attenuated sympathoinhibitory effect 
of lung inflation reflex

Reflexes originating 
from skeletal muscles

Autonomic responses of skeletal muscles during exercise are modulated by skeletal ergo-receptors in order to optimize muscle 
work; HF patients had augmented afferent reflexes originating from skeletal muscles

↑ Increase in the efferent ventilatory and sympathoneural responses to 
exercise

HF: Heart failure; LA: Left atrium; MSNA: Muscle sympathetic nerve activity; NE: Norepinephrine.

β1 receptors results in apoptotic and maladaptive remodeling signaling in the heart via 
protein kinase A-independent pathway mediated by Ca2+/calmodulin-dependent 
protein kinase II[99]. On the other hand, β2 receptors are distributed widely in the lungs, 
kidneys and blood vessels and possess a distinct function from the β1 subtype as they 
are coupled both to Gs and inhibitory G protein (Gi) in cardiomyocytes and their 
activation enhances cardiac function and myocyte viability[103].

Finally, β3 adrenergic receptors have a relatively minimal expression in the heart 
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and they mediate unique downstream cellular effects once activated by 
catecholamines as they are mostly expressed in white adipose tissue where they 
mobilize stored fatty acids and regulate the release of adipokines while in brown 
adipose tissue they stimulate adaptive nonshivering thermogenesis[104]. A study by 
Napp et al[105] showed that β3 adrenergic receptors were mostly expressed in the 
endothelium of failing myocardium thus negative inotropic effect was most likely 
elicited by the NO liberation from the cardiac endothelial cells while β3 stimulation 
itself seemed to deactivate rather than activate endothelial NOS[105]. A study by Dessy 
et al[106] showed that β3 receptors are abundantly expressed in the microvasculature of 
human coronary arteries in which their activation caused vasodilatation through NO-
dependent pathway and vessel hyperpolarization[106]. Of note, the expression of β3 
adrenergic receptors in diverse cardiovascular pathologies seems to be upregulated 
and resistant to desensitization while in normal heart their activation resulted with a 
moderate negative inotropic effect[107,108]. Similarly, in septic cardiomyopathy, 
functional β3 receptors were upregulated and they increased negative inotropic 
response to β3 agonists[109]. Furthermore, in the setting of HF, activation of these 
receptors conferred beneficial effects with respect to excitation-contraction coupling 
and electrophysiological and mechanical remodeling of cardiomyocytes while also 
mediating vasodilatative pathways when β1 and/or β2 receptors are inoperative[110]. In 
the clinical and translational realm, relevant studies confirmed these initial findings as 
they showed that the third-generation beta-blocker, nebivolol, exhibited agonistic 
action on β3 adrenergic receptors in human ventricle thus providing evidence that 
highly selective blockade of β1 receptors coupled with NO-dependent endothelial 
vasodilatation and neoangiogenesis in coronary microcirculation could improve 
cardiac energetics[111,112]. Taken together, in the HF context, β3 adrenergic stimulation 
might confer cardioprotection by attenuating excessive catecholaminergic stimulation 
mediated by β1 adrenoceptors thereby presenting an attractive therapeutic target. The 
physiological effects of beta-adrenergic receptors are summarized and shown in 
Figure 2.

Finally, the expression of β-adrenergic receptors is physiologically modulated 
through G protein-coupled receptor kinases (GRKs), β-arrestins and complex 
intracellular signalosome[113]. GRK family consists of seven different protein kinases 
that canonically recognize and phosphorylate agonist-activated G protein-coupled 
receptor signaling and initiate downstream β-arrestin-mediated cellular pathways[114]. 
β-arrestins have a crucial role in the desensitization of activated seven transmembrane 
receptors such as β-adrenergic receptors, and they are key mediators of receptor 
endocytosis, ubiquitylation, and G-protein-independent cellular signaling[115]. 
Therefore, it becomes obvious that the normal expression of GRKs is a cellular 
prerequisite to maintain physiological homeostasis regarding β-adrenergic receptor 
turnover by phosphorylation, degradation or clathrin-mediated receptor 
downregulation and internalization[116].

SYMPATHETIC NERVOUS SYSTEM PATHOPHYSIOLOGY AND 
ADRENERGIC DYSREGULATION IN HEART FAILURE
A chronic SNS overactivity is one of the key pathophysiological mechanisms that are 
operative in HF. In the acute phase, this upregulated SNS activity is an essential 
compensatory response initiated in order to counteract reduced contractility, however, 
in the long-term, it becomes a major contributor to cardiac dysfunction as it promotes 
maladaptive cardiac hypertrophy and cell death.

In a seminal study performed more than three decades ago, Swedberg et al[117] 
showed that patients with chronic HF (CHF) had significantly higher arterial and 
coronary sinus venous NE concentrations compared to patients without HF while the 
net myocardial NE release in patients with CHF was about 20 times higher than that in 
patients without CHF[117]. This was subsequently confirmed by Viquerat et al[118] 
demonstrating that endogenous plasma levels of NE and dopamine were significantly 
higher among patients with CHF compared to patients without CHF thus reflecting 
enhanced sympathetic activity in response to failing heart[118]. Such overt sympathetic 
activity in HF closely paralleled increases in pulmonary artery pressures while 
activation of noradrenergic neurons in the brain might also be an underlying CNS 
mechanism of generalized sympathoexcitatory response observed in HF[119,120]. In fact, it 
has been shown that the RAAS axis is the major regulator of the SNS activity in the 
brain via angiotensin II type 1 receptors[121]. This likely occurs due to the upregulated 
expression of angiotensin II type 1 receptors (promoting sympathoexcitation) and 
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Figure 2  The function and physiological actions of beta-adrenergic receptors and adrenergic signaling. β: Beta; Gi: Inhibitory alpha subunit of G 
protein; Gs: Stimulatory alpha subunit of G protein; NO: Nitric oxide.

decreased expression of  angiotensin II  type 2 receptors (promoting 
sympathoinhibition) in the rostral ventrolateral medulla[122]. Likewise, historical 
studies showed that 24-h urinary excretion of NE, EPI, and their O-methylated 
metabolites – normetanephrine and metanephrine was significantly higher in patients 
with congestive HF and reflected functional disease severity as assessed by the New 
York Heart Association (NYHA) class[123,124]. Furthermore, there is not only a significant 
increase in circulating catecholamines but there is also an augmented neuronal NE 
spillover due to increased cardiac sympathetic nerve activity (SNA) while renal SNA 
nearly reached its maximum in the state of HF and showed to be an independent 
predictor of mortality in HF[125-127]. Recent research efforts demonstrated that NE 
spillover does not only depend on increases in SNA but it also partially occurs due to 
mechanisms controlling NE release and reuptake in the synapse and these 
mechanisms seem to be deranged in HF[128]. Increased NE spillover is in most cases 
paralleled by the reduced neuronal NE reuptake thus higher net concentrations of NE 
are present in the sympathetic synaptic cleft which further desensitizes myocardial β-
adrenergic receptors[129,130]. A study by Hasking et al[131] further showed that cardiac and 
renal NE spillover in subjects with congestive HF was increased by 540% and 206%, 
respectively, compared to patients without HF while adrenomedullary-mediated EPI 
spillover was also markedly increased among these patients[131].

As previously mentioned, in a fai l ing human heart ,  an important 
pathophysiological characteristic is a decreased sensitivity of β-adrenergic receptors to 
catecholamines while β-receptors are downregulated and decreased in their density 
and quantity[132]. For example, β1 adrenergic receptors are reduced up to 50% in HF and 
there is a 200% increase in Gi-mediated cellular pathways with concomitant significant 
upregulation of GRK2 activity (also known as β-adrenergic receptor kinase 1 or 
βARK1) that further promotes adrenergic receptor internalization[133]. Myocardial 
GRK2 activity and expression have been increased in the failing heart as shown in 
several studies[134]. Conversely, experimental inhibition of βARK1 resulted in a marked 
reversal of ventricular dysfunction[135]. Finally, a wide variability of HF phenotypes 
and different response to HF treatment might suggest variants and functional 
polymorphisms of  beta  and alpha-adrenergic  receptor  genes[79]. Some 
pharmacogenomic studies suggested that polymorphisms in β1-adrenergic receptors 
might affect susceptibility to HF such as Gly389 allele and Gly389 homozygotes; 
improved response to β-blocker treatment among Arg389 homozygotes while none of 
the candidate polymorphisms was an independent predictor of prognosis in HF[136,137]. 
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Likewise, specific β2-adrenergic receptor polymorphisms were linked with lower 
myocardial infarction rate and improved reverse left ventricular remodeling among 
patients with HF[138,139].

From the structural perspective, catecholamine spillover is cardiotoxic and its 
overexpression promotes senescence and inflammation of cardiomyocytes, 
upregulates tumor suppressor p53 pathway, and production of adhesion molecules by 
endothelial cells and macrophages and mediates cardiac dysfunction[140]. Chronic and 
persistent stimulation by catecholamines in HF causes interstitial fibrosis, myocyte 
hypertrophy, oxidative stress, and impairs the responsiveness and function of cardiac 
β-adrenergic receptors[141]. Engelhardt and colleagues experimentally demonstrated 
that increased chronic stimulation of β1 adrenergic signaling resulted in a significant 
cardiomyocyte hypertrophy and apoptosis resulting in a marked loss of contractility 
and progressive reduction of LVEF with histological and functional deficits typical of 
HF[142]. Catecholamine toxicity and generalized autonomic storm also have an 
important pathophysiological role in causing acute stress-related cardiomyopathies 
such as Takotsubo cardiomyopathy, acute LV dysfunction associated with 
subarachnoid hemorrhage, pheochromocytoma, and exogenous catecholamine 
administration as well as acute LV dysfunction in critically ill[143]. Contrary to this, 
activation of β2 adrenergic receptors delivered an antiapoptotic signal to cardiac 
myocytes through Gi-dependent coupling to phosphoinositol 3-kinase[144]. 
Furthermore, it seems that the number of β2-adrenergic receptors does not change 
significantly in HF[145]. These findings suggest that a fine balance between proapoptotic 
and antiapoptotic pathways initiated by differential adrenergic signaling is of 
fundamental importance for physiological cardiomyocyte function[146].

Importantly, studies have shown that the activation of SNS in the course of heart 
failure exhibits specific temporal dynamics and regional sympathetic profile. 
Rundqvist et al[147] showed that a selective increase in cardiac NE spillover (defined as 
increased amounts of NE at neuroeffector junctions) in patients with mild-to-moderate 
CHF was higher for more than a three-fold compared to healthy subjects while total 
body and renal NE spillover, as well as sympathetic outflow to skeletal muscles, were 
not different in HF patients compared to healthy controls[147]. This study clearly 
showed that in the early stages of HF, selective increase in cardiac adrenergic drive 
precedes generalized sympathetic hyperactivity and outflow towards the periphery 
(skeletal muscles and kidneys) which is characteristic of advanced HF. In the early 
stages of HF, such cardiac sympathoexcitation might trigger ventricular arrhythmias 
and is associated with poor prognosis[126,148]. Furthermore, local cardiac NE spillover 
might be the first component required for further β-receptor downregulation and 
depletion, adverse myocardial remodeling, depletion of NE stores, and impairment in 
G-protein signaling pathways, as discussed earlier. This might further drive 
hemodynamic deterioration and progressive LV dysfunction. Even more, blunted 
response and withdrawal of parasympathetic cardiac control seem to precede 
sympathetic activation during the development of HF. In support of this claim, in the 
tachycardia-induced model of HF, Ishise et al[149] showed that parasympathetic 
withdrawal occurs rapidly and correlates with the decline in LV contractility and 
plasma NE increased gradually as LV diastolic function worsened while all of these 
changes recovered toward baseline values once pacing was ceased[149]. The proposed 
mechanism was that depressed contractility resulted in the attenuated stimulation to 
the carotid sinus baroreceptor which diminished vagal efferent activity towards the 
heart thus demonstrating parasympathetic tonic withdrawal. Together, these findings 
suggest that in the course of SNS dysfunction in HF, sympathovagal imbalance might 
occur earliest as evidenced in parasympathetic withdrawal while sympathetic 
hyperactivity likely first occurs at the cardiac level before it is propagated to 
peripheral tissues and organs as observed in the advanced stages in HF.

Furthermore, dysfunction of cardiac reflexes is a hallmark of SNS hyperactivity in 
HF and it occurs to a similar degree regardless of HF etiology (ischemic or 
nonischemic)[150,151]. There is a diminished baroreflex sensitivity in HF characterized by 
the marked suppression of inhibitory SNS reflexes such as arterial baroreceptor reflex 
while excitatory SNS reflexes such as those fired from peripheral chemoreceptors are 
enhanced[152]. Floras et al[153] showed that a failing heart reacts to increased 
cardiopulmonary filling pressures through responsive and sensitive arterial baroreflex 
that elicits potent sympathoexcitatory hemodynamic actions[153]. Furthermore, even 
among patients with mild CHF, an SNS-inhibiting baroreceptor function is already 
significantly impaired thus implying that baroreflex dysfunction might be one of the 
earliest constitutive phases in SNS activation during the natural course of CHF[154]. 
Reduction in baroreflex sensitivity is even more severe if obesity and arterial 
hypertension are present among HF patients[155]. Conversely, baroreflex activation 
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therapy in HF, encompassing the deployment of a device electrically stimulating 
carotid sinus, succeeded in improving muscle sympathetic nervous activity and 
relevant clinical indices thus showing that modulation of autonomic balance in HF 
might improve relevant outcomes[156,157].

Collectively, these findings are of clinical relevance because ANS imbalance and 
predominance of sympathetic excitation cause electrophysiological perturbations in 
the vulnerable cardiac syncytium and can initiate arrhythmogenesis[158]. For example, 
simultaneous stimulation of both sympathetic and parasympathetic systems can 
trigger AF while increased sympathetic stimulation is a contributing culprit to 
initiation of ventricular fibrillation (VF) or ventricular tachycardias (VT) or sudden 
cardiac death (SCD)[159]. Beat-to-beat variability of ventricular action potential duration 
is increased with elevated sympathetic activity in HF patients and might precipitate 
ventricular arrhythmias while beta-blocker, bisoprolol, attenuated these effects[160]. It 
was previously shown by Brunner-La Rocca et al[161] that high cardiac sympathetic 
activity in HF was an independent risk factor for sudden death, especially if 
sympathetic innervation was intact[161]. Sympathetic denervation in the heart combined 
with the presence of high NE levels is tightly correlated to progression of HF and 
SCD[162]. From the other way around, stellate ganglion blockade was effective in the 
acute reduction of ventricular arrhythmia burden and suppression of electrical storm 
thus clinically validating the concept that attenuation of sympathetic outflow to the 
heart from sympathetic ganglia can indeed mitigate the risk of future arrhythmic 
events[163-165]. These clinical observations were inspired by the previous animal study 
demonstrating that spontaneous high-amplitude discharge activity from left stellate 
ganglion was strongly associated with the induction of malignant ventricular 
arrhythmias[166]. Modern state-of-the-art neuromodulation strategies that are capable of 
mitigating VT/VF and atrial arrhythmias are, therefore, focused on increasing 
parasympathetic drive and inhibiting sympathetic neurotransmission[167,168].

Finally, it should also be noted that the widespread SNS activation also affects the 
function of skeletal muscles and promotes exercise intolerance in HF. Of note, 
diminished exercise capacity in terms of reduced peak oxygen uptake is present 
among HF subjects and is related to increased efferent sympathetic traffic to skeletal 
muscles, compared to control subjects[169]. This study also showed that resting muscle 
SNA is inversely related to peak oxygen uptake thus suggesting that there is a 
peripheral neurogenic limit to exercise in HF. As later validated, this reduced exercise 
capacity in HF is more dependent on sympathetic outflow to skeletal muscles than to 
cardiac sympathetic outflow, as assessed by NE spillover[170]. Furthermore, a 
subsequent study showed that muscle SNA was significantly higher while peak 
oxygen uptake was significantly lower in patients with ischemic vs nonischemic 
cardiomyopathy[171]. The most recent clinical study also demonstrated that the α-
adrenergic-mediated vasoconstriction in HFrEF patients elicited a marked decrease in 
exercising skeletal muscle blood flow thus contributing to reduced exercise capacity in 
this population[172]. Finally, HF patients present with a high degree of chronotropic 
incompetence and attenuated heart rate response to exercise which is partially due to 
postsynaptic desensitization of the β-adrenergic receptor pathways[173].

CARDIAC IMAGING AND SYMPATHETIC ACTIVATION IN HEART FAILURE
A noninvasive in vivo imaging modalities can assess sympathetic innervation of the 
heart and for these purposes single-photon emission computed tomography and 
positron emission tomography (PET) are used by employing radiolabeled analogs of 
NE. The myocardial uptake of these radioanalogs dominantly represents presynaptic 
nerve function and their density in the heart. The most commonly used single-photon 
emission computed tomography tracer is 123I-metaiodobenzylguanadine (123I-mIBG) 
while most common PET tracer in clinical use is 11C-hydroxyephedrine (11C-HED)[174,175].

Recent studies demonstrated that impaired myocardial sympathetic innervation and 
regional sympathetic denervation, as detected by the presence of 11C-HED by PET 
imaging, were independently associated with grade 2-3 diastolic dysfunction and 
contractile dysfunction and fibrotic burden among patients with HFpEF, 
respectively[176,177]. Similarly, data from prospective HF cohort studies demonstrated 
that diminished 123I-mIBG uptake quantified as the reduced heart-to-mediastinum 
uptake ratio (H/M, indicating neuronal function including uptake and release of 123I-
mIBG) or increased myocardial 123I-mIBG washout rate (indicating higher adrenergic 
drive) were strong markers of abnormal myocardial sympathetic innervation and 
consistent predictors of poor prognosis among patients with HF[90,178-180]. Furthermore, 
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the ADMIRE-HFX study confirmed that H/M remained as a significant and 
independent predictor of all-cause mortality and the composite endpoint of death or 
death-equivalent events among nearly thousand NYHA II-III HF subjects during the 
median of 24 mo follow-up[181].

An elegant study by Wakabayashi et al[182] exploring 123I-mIBG kinetics in terms of 
underlying HF etiology showed that 123I-mIBG activity provided independent long-
term prognostic information for both ischemic and non-ischemic etiologies of HF with 
lower H/M values having a greater impact on cardiac death among patients with 
ischemic compared to non-ischemic cardiomyopathy[182]. In concordance with such 
findings among HF patients with ischemic cardiomyopathy, 11C-HED PET-based 
studies revealed that regional myocardial sympathetic denervation and volume of 
denervated myocardium accurately predicted the risk of sudden cardiac arrest thus 
clearly correlating SNS innervation abnormalities with future arrhythmogenic 
events[183,184]. Similar findings were confirmed by another research group showing that 
denervated myocardium quantified using PET strongly predicted the risk of sudden 
cardiac arrest, independent of LVEF, infarct volume and other clinical variables among 
HF patients with ischemic cardiomyopathy and with LVEF < 35% that were eligible 
for implantable cardioverter-defibrillator device for primary prevention[185]. Finally, the 
most recent study conducted among patients admitted for acute decompensated heart 
failure and prospectively enrolled in the OPAR registry demonstrated that patients 
with cardiac sympathetic nerve dysfunction, defined as low late H/M, had a 
significantly greater risk of future adverse cardiac events, irrespective of clinical 
phenotype based on the LVEF values[186]. This study also showed that even a mild 
impairment in cardiac contractility (as shown in borderline LVEF values represented 
in HFmrEF cohort) was associated with sympathetic nerve dysfunction and was 
independently linked to poor outcomes thus suggesting that use of beta-blocker 
therapy in patients with HFmrEF phenotype is a viable pharmacotherapeutic option, 
as also supported by expert consensus statement and data from a large meta-
analysis[73,187].

Taken together, these studies suggest that non-invasive cardiac imaging with 
norepinephrine analogs provides a reliable estimation of cardiac sympathetic nerve 
activity and this activity is strongly associated with clinical outcomes, regardless of 
clinical phenotypes or if HF is of chronic or acute onset. Such findings validate the 
concept that SNS overactivity is an important pathophysiological target in HF that 
must be efficaciously treated to improve outcomes and prevent sudden cardiac death.

HEART RATE VARIABILITY
Heart rate variability (HRV) is an established and widely used noninvasive method for 
the assessment of autonomic modulation of heart rate. It uses electrocardiographic 
(ECG) signal to measure subtle variations in the beat-to-beat heart intervals and is 
considered as a surrogate parameter of the complex interaction between CNS and 
cardiovascular system[188,189]. These periodic oscillations in heart rate signals are 
transformed into different frequency areas and their relative intensity is reported as a 
numerical value[190]. Briefly, low-frequency power (LF) and high-frequency power 
(HF), as well as the LF/HF ratio, are the most commonly used parameters in HRV 
analysis[189,191]. In most of the studies, HF power is regarded as a surrogate of PNS 
activity while LF power is modulated by both SNS and PNS. Likewise, high LF power 
values are associated with increased sympathetic activity while the LF/HF ratio 
reflects global sympathetic/vagal balance[191]. Generally, decreased HRV is associated 
with various pathologies and decreased life expectancy in several studies[188].

Regarding cardiovascular diseases, depressed HRV has been associated with 
autonomic neuropathy, heart transplantation, congestive HF, MI, and other incident 
cardiac conditions[192,193]. Most data for low HRV and increased mortality have been 
corroborated from studies investigating populations with cardiovascular diseases such 
as post-MI patients, patients with HF and those experiencing SCD, and in contrast to 
this, such associations of HRV were historically more diluted when it comes to risk 
stratification among the general asymptomatic population[194]. However, a recent study 
by Hillebrand et al[195] showed that low HRV was associated with a 32%-45% increased 
risk of a first cardiovascular event in populations without known cardiovascular 
disease[195]. In a similar fashion, abnormal HRV parameters were independently 
associated with incident CHF in asymptomatic older adults[196].

In the setting of a failing heart, HRV is significantly reduced in most patients and 
associated with the high risk of death due to progressive HF, SCD and syndrome 
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severity[197-199]. Ponikowski et al[200,201] demonstrated that depressed HRV on 24-h 
ambulatory ECG monitoring was an independent risk factor for poor prognosis in 
patients with CHF and was related to a higher risk of ventricular tachycardia[200,201]. 
Similar findings were also confirmed in patients hospitalized for decompensated 
HF[202]. An important study by Pousset et al[203] showed that a beta-blocker, bisoprolol, 
administered in a single dose of 5 mg per day managed to reduce heart rate and 
significantly increase HRV as per 24-h Holter ECG monitoring among patients with 
HF[203]. This effect was attributed to the increased parameters of parasympathetic 
activity in HF thus showing that increased vagal tone may be responsible for the 
protective effect of beta blockers and may provide prognostic implications in HF. 
Similarly, beta-blockers improved cardiac autonomic regulation during high 
sympathetic stress of decompensated HF[204].

However, the foundational framework that links low-frequency and high-frequency 
components of HRV with sympathetic and parasympathetic nervous system division 
was developed decades ago and this algorithm does not integrate findings and data on 
HRV that were gathered in the past 30 years thus might have certain limitations in 
clinical practice[205]. Another potential limit for the use of HRV in risk stratification of 
HF patients might lie in the fact that these parameters tend to be very low in most HF 
subjects, therefore, data dispersion might be small thus limiting survival regression 
models while many confounding non-neural factors might affect HRV values in 
HF[206]. The future of risk stratification of events in HF likely lies in the improvement of 
HRV spectral analyses algorithms and integration of HRV data with other biosignals 
acquired from novel HF devices, imaging methods, and laboratory biomarkers.

LABORATORY BIOMARKERS OF SYMPATHETIC NERVOUS SYSTEM 
ACTIVATION IN HEART FAILURE
Laboratory biomarkers that can be measured in the peripheral circulation of HF 
patients can give us insight on underlying pathophysiological mechanisms that are 
occurring in patients with both acute and chronic HF. Since HF is a complex syndrome 
characterized by the high prevalence of comorbidities an integrated approach using 
multiple biomarkers could aid in the diagnosis, accurate risk stratification regarding 
mortality and future hospitalizations and perhaps enable optimal tailoring of 
pharmacotherapeutic and/or device therapies for the individual HF patient[207,208]. A 
wide array of novel biomarkers reflecting pathophysiological processes of myocardial 
stretch, matrix remodeling, myocyte injury, oxidative stress, inflammation, 
neurohumoral activation, and renal dysfunction are becoming increasingly studied 
and integrated into the process of care for HF patient and clinical decision-making[19]. 
The early adoption of these novel biomarkers in modern clinical practice has a great 
potential to complement traditional biomarkers that are regularly used in the workup 
of HF patients such as N-terminal prohormone of brain natriuretic peptide (NT-
proBNP), brain natriuretic peptide (BNP), high sensitivity cardiac troponin (hs-cTn), 
soluble suppression of tumorigenicity 2 or C-reactive protein[19].

In this last section of the review, we will focus on both established and novel 
laboratory biomarkers that are implicated in the pathophysiology of SNS activation in 
HF and as such might be potentially used in clinical practice. The summary of 
pathophysiological effects, cellular mechanisms of action, circulating levels, and 
association of selected biomarkers with outcomes in HF is presented in Table 2.

Norepinephrine
As previously discussed, circulating plasma levels and urinary excretion of 
norepinephrine (NE) are significantly higher among patients with congestive HF 
compared to those without, reflecting elevated sympathetic drive[117,118,124]. A recent 
study by Matsushita et al[209] showed that the endogenous catecholamine surge might 
be the cause of urgently presenting acute HF by eliciting an abrupt and excessive rise 
in blood pressure leading to increased after-overload and volume-shift lung 
congestion[209]. A few decades ago, Cohn and colleagues showed that plasma NE has 
been independently related to subsequent risk of mortality among patients with 
chronic congestive HF and was also higher among those that had progressive HF 
compared to patients that died suddenly[129]. This was later confirmed in the V-HEFT II 
study that enrolled patients with congestive HF showing that plasma NE was an 
independent predictor of prognosis and plasma NE values > 900 pg/mL were 
associated with significantly greater mortality risk compared to lower NE tertiles[210]. In 
the longitudinal follow-up of patients with HF from the Val-HeFT trial, changes of 
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Table 2 Selected biomarkers in respect to their pathophysiological effects, cellular mechanisms, circulating levels and outcomes in heart failure

NE NPY GAL ET-1 CST

Pathophysiological 
effects in heart failure 
or cardiovascular 
diseases

↑ Promotes cardiac hypertrophy; ↑ 
promotes induction of fetal genes in 
myocardial remodeling; ↑ mediates and 
enhances apoptosis of cardiac myocytes 
in vitro; ↑ promotes arterial 
vasoconstriction; ↑ promotes 
tachyphylaxis; ↑ increased cardiac and 
renal spillover in HF; ↓ impaired 
oxygen utilization and exercise 
efficiency in patients with stable HF; ↑ 
increased sympathetic nerve activity 
and reduced clearance of 
norepinephrine

↑ Vasoconstriction; ↑ promotes adverse cardiac 
remodeling; ↑ increased cardiac spillover; ↑ 
promotes angiogenesis; ↑ associated with 
increased platelet aggregation and adhesion 
following thrombosis; ↑ stimulates 
atherosclerosis; ↑ promotes vasoconstriction of 
coronary microvasculature; ↑ enhancing the NE-
mediated effect of sympathetic discharge, 
associated with the increased incidence of 
ventricular arrhythmia; ↑ enhances inhibition of 
vagally-mediated ;bradycardia through Y2 
receptors; ↑ potentiates arrhyhtmias following 
STEMI, despite beta-blocker therapy

↓ Reduces cardiac cholinergic 
neurotransmission; ↓ reduces 
acetylcholine biovailability in the 
synapse junctions; ↓ reduces 
vagally-mediated bradycardia; 
↑promotes antithrombotic 
phenotype on endocardial 
endothelial cells; ↑ increased 
cardioprotective activity against 
ischemia-reperfusion injury in H9C2 
cardiomyoblasts in vitro

↑ Promotes vasoconstriction (most potent 
vasoconstrictor in humans); ↑ promotes 
vascular and cardiac hypertrophy; ↓ 
decreases NE reuptake thus propagating 
adrenergic effects; ↓ reduces coronary 
flow; ↑ promotes inotropic and 
chronotropic responses in 
cardiomyocytes; ↑ promotes mitogenic 
actions; ↑ activation of endothelin-
dependent pathways is observed in HF; ↑ 
correlates with hemodynamic impairment 
and severity of pulmonary hypertension 
in HF; ↑ promotes angiogenesis

↓ Decreases arterial blood pressure 
(direct and indirect vasodilation); ↓ 
inhibits catecholamine release; ↓ 
decreases NPY and ATP release; ↓ 
attenuates cardiac inotropy and 
chronotropy; ↑ promotes 
angiogenesis; ↓ blunts atherosclerosis; 
↓ reduces inflammation; ↓ reduces 
thrombogenicity; ↑ promotes VSMC 
proliferation; ↓ decreases 
arrhytmogenic events; ↓ decreases 
ventricular remodeling

Cellular mechanism Activation of α and β adrenergic 
receptors (G protein-coupled)

Activation of G protein-coupled post-synaptic 
Y1-Y6 receptors (Y2 is also pre-synaptic) on 
sympathetic nerve endings

Activation of G protein-coupled 
receptors – GAL1R, GAL2R, GAL3R

Activation of endothelin A (ETA) and B 
(ETB) receptors(both G protein-coupled)

Acts on neuronal nicotinic 
acetylcholine receptor (nAchR)

Circulating levels in 
HF vs controls

↑ Circulating plasma levels;↑ urinary 
excreted levels

↑ Circulating plasma levels ←→ Not significantly different 
plasma levels

↑ Plasma levels;↑ renal tissue levels ↑ Circulating plasma levels

Association with 
mortality and 
morbidity in HF

↑ High NE levels were associated with 
significantly increased mortality and 
morbidity in patients with congestive 
HF; ↑ circulating NE levels positively 
correlate with HF syndrome severity

↑ Elevated levels in coronary sinus were 
associated with composite endpoint of VAD 
implantation, death, and cardiac transplant 
among patients with stable chronic HF 
undergoing CRT implantation

Not established (no studies 
available)

↑ Increased ET-1 levels associated with 
higher HF syndrome severity;↑ increased 
ET-1 levels associated with mortality in 
HF

↑ Increased CST levels were 
independently associated with all-
cause and cardiac mortality in 
patients with chronic HF; ↑ correlates 
with NYHA functional class

NE: Norepinephrine; NPY: Neuropeptide Y; GAL: Galanin; ET-1: Endothelin; CST: Catestatin; CRT: Cardiac resynchronization therapy; FU: Follow-up; HF: Heart failure; NYHA: New York Heart Association; STEMI: ST-elevation 
myocardial infarction; VAD: Ventricular assist device; VSMC: Vascular smooth muscle cell.

BNP and NE from baseline to 4 and 12 mo post-discharge significantly correlated to 
changes in morbidity and mortality[211]. However,  the administration of 
neurohormonal antagonists such as ACE inhibitors and beta-blockers in HF patients 
had variable and heterogeneous effects on circulating NE levels and there was a 
significant incongruency of these levels with endpoints such as mortality and reverse 
ventricular remodeling in a handful of relevant trials[212]. These data suggested that 
reducing NE levels might not be the appropriate goal of neurohumoral antagonists 
and that NE is not a feasible laboratory biomarker of choice when it comes to 
measuring response to HF-directed pharmacotherapy. Finally, the fact that circulating 
NE measurements require high-performance liquid chromatography is a significant 
limitation to its wide use in clinical practice and imposes several analytical challenges 
and physiological limitations thus making it likely impractical as a routine biomarker 
in HF[213].
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Neuropeptide Y
Neuropeptide Y (NPY) is a sympathetic co-transmitter with a longer half-life than NE 
and is widely distributed in the CNS and peripheral nervous system with pleiotropic 
physiological actions. In the cardiovascular system, NPY is co-released from cardiac 
sympathetic nerve terminals along with catecholamines (predominantly NE) and 
galanin[214]. These sympathetic nerves supply vasculature, cardiomyocytes and 
endocardial endothelial cells in the ventricle while NPY physiologically modulates 
cardiovascular function, potentiates pressor effects of angiotensin II, elicits arterial and 
venous constriction, blunts parasympathetic activity, augments cardiomyocyte 
calcium loading, participates in cardiomyocyte remodeling and promotes 
angiogenesis[215-223]. NPY and galanin have a direct ability to modulate vagus nerve to 
release acetylcholine and control heart rate while NPY plasma levels had a strong 
correlation with coronary microvascular function among patients with ST-elevation 
myocardial infarction[224]. Maisel and colleagues were the first to report on elevated 
levels of plasma NPY in patients with congestive HF and this was later confirmed in 
several subsequent studies[225-227].

In the recent clinical study by Ajijola et al[228], NPY was sampled from the coronary 
sinus (CS) among patients with stable CHF during the elective CRT device 
implantation[228]. Researchers sought to answer if NPY as a peptide involved in 
adrenergic signaling is associated with outcomes among patients with stable CHF. 
They found that patients with NPY CS levels > 130 pg/mL had significantly worse 
outcomes compared to those with lower NPY CS levels, even after adjusting for age, 
estimated glomerular filtration rate (eGFR), and LVEF (HR: 9.5, 95%CI: 2.92-30.5, P < 
0.001) during the median follow-up of 28.8 mo while the composite endpoint consisted 
of death, ventricular assist device placement and cardiac transplant. Most of the signal 
from the composite endpoint was driven by death events and interestingly, CRT data 
at 6-mo follow-up showed that CS NPY levels did not significantly differ between CRT 
responders and non-responders (P = 0.76). Finally, immunohistochemical analyses 
revealed that sympathetic ganglia (stellate and middle cervical ganglion) of CHF 
patients contained less NPY compared to ganglia tissue obtained from healthy donors 
while no significant difference was observed in the NPY production between both 
groups as examined by the measured NPY mRNA levels. This study showed that CS 
NPY levels were elevated in stable CHF patients and associated with adverse 
outcomes and relevant clinical and laboratory characteristics while increased stellate 
ganglia sympathetic discharge was likely the culprit for these elevated levels.

Although CS NPY levels provided robust prognostic information among stable CHF 
patients, a problem in clinical practice arises in the peripheral venous sampling of NPY 
since those levels are not cardiac-specific and are mostly of hepatomesenteric origin 
since NPY has been identified as a stimulator to food intake[229]. In cardiac failure, there 
is an increase in resting NPY spillover within the myocardium, however, the net 
overflow of NPY to plasma was dominantly from hepatic circulation, but not the 
cardiac, forearm or cerebral circulations showing a marked difference in regional 
distribution of NPY content[230]. It has also been shown that sympathetic activation by 
exercise produced only a modest increase in cardiac NPY overflow without the 
concomitant change in arterial NPY concentrations finally concluding that plasma 
NPY concentrations are less sensitive than those of plasma NE in terms of quantifying 
SNS responses regulating the systemic circulation and cardiac hemodynamics in HF, 
as implied in some previous studies[225,230,231]. Finally, a recent preclinical study showed 
that NPY blockade by experimental Nur77 agent protected against adverse cardiac 
remodeling by l imit ing NPY-mediated s ignal ing (NPY-NPY1R) in  the 
cardiomyocytes[232]. Most important characteristics and effects of NPY are depicted in 
the Figure 3. In the future, antagonists of NPY receptors Y1 and Y2 might be a feasible 
therapeutic option in acute myocardial infarction but also during chronic HF and 
hypertension[224]. These pharmacotherapeutic options would complement beta-blockers 
and implantable vagus nerve stimulators to improve outcomes in patients with 
cardiovascular diseases[224].

Galanin
Similarly to NE and NPY, galanin is an adrenergic co-transmitter with a short half-life 
(about 5 min) released from peripheral postganglionic neurons and is implicated in 
attenuation of cardiac cholinergic tonus after burst sympathetic activity thus 
contributing to autonomic imbalance and the pathophysiological phenomenon known 
as “sympathovagal crosstalk“[224,233]. This phenomenon can remain chronically 
activated and sustained even in the presence of beta-adrenergic blockade thereby it 
could be a valid therapeutic target in the spectrum of neurohumoral activation in 
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Figure 3  Physiological and pathophysiological implications of neuropeptide Y and galanin with respect to cardiovascular system. Ach: 
Acetylcholine; ERP: Effective refractory period; HF: Heart failure; IRI: Ischemia-reperfusion injury; LV: Left ventricular; MI: Myocardial infarction; NPY: Neuropeptide 
Y; STEMI: ST-elevation myocardial infarction; VIP: Vasoactive intestinal peptide.

HF[224]. Furthermore, nerve terminals of parasympathetic neurons in the heart express 
both galanin receptors and NPY receptors (NPY Y2) which, upon activation, reduce 
acetylcholine release[233]. During the prolonged sympathetic activation there is a release 
of a slowly diffusing co-transmitter galanin, together with NPY, that bind to these 
receptors and reduce cholinergic neurotransmission in the heart[234]. Furthermore, 
galanin through its receptors interacts with other neuropeptides such as NPY and 
angiotensin II and their receptors, namely Y1 and AT1 thus having a potential role in 
neurochemical modulation of central cardiovascular control[235].

A recent prospective case-control study in the clinical realm showed that unlike pro-
BNP, copeptin and NPY, galanin levels were similar among patients with HF patients 
and control subjects while pro-BNP was the only significant determinant of galanin 
levels in HF patients[236]. Authors postulated that galanin most likely has a 
predominant paracrine modulatory function at the level of peripheral cardiac 
sympathetic nerves, therefore, its circulating levels in plasma might not reflect the 
degree of its local involvement in sympathovagal crosstalk. Finally, since natriuretic 
peptides promote catecholamine release from cardiac sympathetic neurons, authors 
suggested biological plausibility of their finding that galanin positively correlated with 
BNP[237]. On the other hand, galanin promoted anti-thrombotic phenotype on cultured 
endocardial endothelial cells from HF patients through attenuation of von Willebrand 
factor extrusion and multimer expression while this effect was not elicited by the 
NPY[238]. One preclinical study in the animal model of HF showed that galanin receptor 
type 1 agonist improved cardiac function and attenuated ventricular remodeling[239]. 
Most important characteristics and effects of galanin are depicted in Figure 3. Due to 
the scarcity of studies examining the role of galanin in HF, future preclinical and 
clinical studies are warranted to further elucidate its biological functions and its 
potential as a biomarker in HF.

Endothelin
Endothelins represent a family of three similar 21 amino acid length peptides – 
endothelin 1 (ET-1), 2 (ET-2) and 3 (ET-3) of which ET-1 and ET-2 bind to G-protein 
coupled endothelin receptors A (ETA) and B (ETB) on vascular smooth muscle cells 
with equal affinity to both while ET-3 exhibits lower affinity for ETA relative to ETB 
receptor[240]. Of all endothelins, ET-1 is predominantly produced by vascular tissue, has 
inotropic, chemotactic and mitogenic properties, induces collagen synthesis by cardiac 
fibroblasts, and is biologically the most potent vasoconstrictor in the human 
cardiovascular system[241]. Furthemore, autocrine binding of ET-1 to ETB receptors 
promotes NO and prostaglandin release and consequent relaxation of vascular smooth 
muscle cells. ET-1 plays a role in neuronal development, growth, and function while 
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biologically promoting vascular and cardiac hypertrophy, inflammatory responses 
and is an independent factor contributing to exacerbation of the cardiovascular 
disease[242-244]. The main source of ET-1 and its precursor, big endothelin-1 (BigET-1) are 
pulmonary vascular endothelial cells, therefore, elevated plasma levels of ET-1 or 
bigET-1 might closely reflect the degree of pulmonary endothelial dysfunction in HF 
while ET-1 was significantly overexpressed in the lungs of patients with pulmonary 
hypertension[245-247]. Stangl et al[246] demonstrated that in severe congestive HF lungs act 
as a producer while coronary and peripheral circulation act as consumers of BigET-1 
and ET-1 while short-term vasodilator therapy decreased endothelins and restored 
pulmonary, coronary, and peripheral balance[246]. Endothelin receptors are also 
expressed in the CNS and central administration of endothelin modulated endocrine 
and cardiovascular regulation, behavior and MAP[248]. In the preclinical experiment, an 
injection of ET-1 in different regions of the brainstem of normotensive rats resulted in 
a differential response in heart rate, arterial blood pressure, and respiratory frequency 
indicating that endothelin has a modulatory role in cardiovascular function[249].

Previous studies showed that HF is associated with high levels of ET-1 in plasma 
and renal tissue and these levels correlated with syndrome severity, especially with 
the extent of pulmonary hypertension, and overall contributed to the progression of 
chronic HF[250-254]. In a preclinical study, infusion of tezosentan (ET-1 antagonist) 
significantly decreased MAP in both normal and HF animals and reduced cardiac 
sympathetic nerve activity (CSNA) in normal animals, however, no decrease was 
observed in HF animals[255]. Therefore, this study showed that endogenous levels of 
ET-1 contribute to the baseline levels of CSNA in healthy animals, however, this 
correlation was absent in experimentally induced HF. Contrary to this, a non-selective 
experimental ETA and ETB antagonist (TAK-044) suppressed sympathetic activity and 
improved arterial baroreflex function in rats with HF[256]. Similarly, the addition of 
ACE inhibitor to ETA receptor antagonist significantly improved cardiac failure after 
extensive MI in a rat model of congestive HF, compared with ACE inhibition 
monotherapy[257]. A cross-talk between the endothelin system and the adrenergic 
system has been demonstrated as activation of ETB receptors on sympathetic neurons 
caused an increase in arterial blood pressure through vasoconstriction mediated by α1-
adrenergic receptors[98]. Sympathoexcitatory effects are also promoted through the 
interaction of ET-1 with ETA receptors as this resulted in cardiomyocyte hypertrophy 
through adrenergic signaling pathways and massive NE release while it also 
contributed to impaired responsiveness of renal mechanosensory nerves in congestive 
HF[258,259]. In the rat model of HF, endogenous ET-1 impaired NE reuptake through 
activation of ETA receptors while in a healthy heart ETA-mediated inhibition of NE 
reuptake was countered, but to a lesser degree, by the ETB-mediated silencing of NE 
release resulting in a net increase in left ventricular contractility suggesting that fine 
balance between NE reuptake and exocytotic release is modulated by endothelin 
signaling as it was also suggested in previous studies[260,261].

However, while endothelin pathway inhibition seemed promising in animal and 
preclinical models of HF, these observations did not translate to human clinical studies 
as ET-1 antagonist tezosentan did not improve symptoms or clinical outcomes in 
patients with acute HF although ET-1 levels were independently associated with short 
term in-hospital outcomes and 180-d mortality in patients hospitalized for acute HF, as 
demonstrated in ASCEND-HF substudy[262-264]. A predictive value of BigET-1 in 
patients with left ventricular dysfunction after AMI on the composite endpoint of 
cardiovascular death or hospitalization for worsening HF has been demonstrated in 
the subanalysis from EPHESUS study, however, neurohumoral antagonist – 
eplerenone seemed to have no significant effect in modifying BigET-1 levels at follow-
up[265]. Authors proposed that levels of BigET-1 (as a precursor of ET-1) likely reflect 
the degree of ET-1 synthesis while BigET-1 is also a more feasible laboratory 
biomarker due to its longer half-life than that of ET-1[266]. This notion has been 
confirmed in a previous study that established how elevated plasma ET-1 levels in 
human CHF dominantly represent the elevation of Big-ET-1 while ET activity was not 
changed in CHF compared to a healthy state[267]. Furthermore, increased ET-1 levels 
were detected only in moderate or severe CHF and not among asymptomatic patients 
or those with mild CHF while plasma concentrations in range 5-40 pmol/L seemed to 
exhibit vasoactive effects[267,268]. Previous studies confirmed that BigET-1 provided 
prognostic information regarding the cardiovascular mortality during the 12-mo 
follow-up (HR: 1.42, 95%CI: 1.04-1.95, P = 0.03), all-cause mortality during the 23-mo 
follow-up (HR: 1.49, 95%CI: 1.20-1.84, P = 0.0003) and the composite endpoint of 
mortality and morbidity (HR: 1.43, 95%CI: 1.20-1.69, P < 0.001) at 23 mo, however, in 
the latter study BNP remained the strongest neurohormonal prognostic factor[269,270]. In 
the small study that enrolled patients with severe CHF, Big-ET-1 and ET-1 levels were 
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higher at baseline than in patients with mild to moderate CHF or healthy subjects and 
were found as robust independent predictors of survival, even beyond natriuretic 
peptide levels[271].

When 32 studies with 18497 HF patients were summarized in the meta-analysis, it 
was shown that plasma ET-1 and its related peptides were associated with poor 
prognosis and mortality in diverse spectrum of HF populations[272]. On the other hand, 
a meta-analysis of randomized clinical trials showed that neurohumoral antagonism of 
ET receptors in HF patients improved cardiac output, pulmonary and systemic 
hemodynamics but had a modest effect on clinical outcomes[273]. Therefore, these data 
suggest that there is a significant discrepancy between these observations – on one 
hand, ET signaling has been consistently associated with poor outcomes and prognosis 
in HF and on the other hand, pharmacological targeting of these adverse pathways 
seems less impressive in improving outcomes.

Perhaps there is a need to fine-tune and identify which subgroups of HF patients 
would have the greatest benefit from drugs interfering with ET pathways. In that 
regard, ET-1 and its fragments have shown some potential as valuable biomarkers 
among HFpEF patients with pulmonary hypertension or pulmonary dysfunction as its 
levels were associated with the degree of pulmonary hemodynamic derangements, 
reduced functional reserve of the right ventricle, diminished cardiac output and 
impaired cardiac response to exercise and peak oxygen consumption[274,275]. Even in the 
general population, elevated plasma ET-1 levels were in strong relation with elevated 
pulmonary artery systolic pressures on the echocardiogram and correlated with 
mortality and incident HF[276].

Therefore, current data suggest that activation of the endothelin system may play an 
important role in the pathophysiology of pulmonary hypertension in HFpEF and that 
it might present a viable target and a step towards precision medicine approach in 
HFpEF[277]. Regarding the potential ET pathway inhibition in HFpEF, thus far there are 
limited but encouraging preliminary reports. In the preclinical murine model of 
HFpEF, dual ETA/ETB blockade by macitentan improved HFpEF by abrogating 
aldosterone-induced cardiomyocyte hypertrophy and reducing stiffness through 
decreased expression of type I collagen and titin n2B in the left ventricle[278]. In the 
clinical domain, in patients with HFpEF, ETA receptor antagonist sitaxsentan improved 
exercise tolerance, however, failed to decrease left ventricular mass or improve 
diastolic function while the study was not powered for mortality and rehospitalization 
analyses[279]. A small and prematurely stopped study showed that ET receptor blocker 
bosentan did not improve outcomes in HFpEF patients with pulmonary 
hypertension[280]. Therefore, due to the size and scarcity of available studies, a question 
whether ET-1 antagonists would improve outcomes in HFpEF yet remains to be 
answered by future and adequately powered randomized controlled trials. It is 
possible that neurohumoral biomarkers such as endothelin and its derivatives will 
enable us a more precise phenotyping of HFpEF patients to identify those that have a 
significantly impaired pulmonary function and that would receive the greatest benefit 
from ET pathway-oriented therapeutic interventions. The summary of synthesis, 
cellular effects, and pathophysiological implications of ET-1 are presented in Figure 4.

Catestatin
Catestatin (CST) is a product of precursor hormone chromogranin A (ChgA) and was 
isolated in 1997 by Mahata et al[281]. Its principal physiological action is the negative 
regulation of catecholamine release into circulation through the mechanism of non-
competitive and reversible antagonism of neuronal nicotinic cholinergic receptors 
(nAChR)[281,282]. Its precursor molecule, ChgA, and other soluble secretory proteins are 
co-stored and co-released with catecholamines from vesicles in the neuroendocrine, 
endocrine and immune cells and sympathetic neurons thus have an important 
modulatory role of the adrenergic system[283]. Upon stimulation of chromaffin cells or 
sympathetic axons, a marked elevation of ChgA levels was detected[284]. Levels of 
ChgA are elevated in peripheral blood of patients with chronic HF and AMI and 
correlate with mortality and poor outcomes[285-287]. Even more, an intramyocardial 
production of ChgA is established in humans and was associated with negative 
inotropic and lusitropic effects on the mammalian heart thus providing evidence for 
neuroendocrine regulation of cardiac function by ChgA[288]. Furthermore, 
immunohistochemical biopsy studies showed that ChgA is co-localized with BNP in 
the dilated and hypertrophic left ventricle while ChgA levels correlated with end-
diastolic left ventricular pressures[288].

CST is a 21 amino acid fragment derived from ChgA (ChgA352-372) and is secreted by 
neuroendocrine tissues and nerve endings while it is widely distributed in the 
secretory granules of skin, sensory organs, and myocardium[289]. Its most important 
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Figure 4  Physiological and pathophysiological implications of endothelin-1 in circulation and on various cell types and adrenergic 
neurons. ECE: Endothelin converting ezyme; ET-1: Endothelin-1; NE: Norepinephrine; NO: Nitric oxide; PGI2: Prostacyclin (prostaglandin I2); VSMCs: Vascular 
smooth muscle cells.

physiological effect is the autocrine action on the chromaffin cells in the adrenal 
medulla and adrenergic neurons by which it modulates spillover of catecholamines 
(primarily NE) into peripheral circulation while concomitantly exhibiting paracrine 
and endocrine effects since it can be readily measured in the venous and arterial 
blood[290]. Furthermore, CST is potent regulator of arterial blood pressure since it exerts 
direct vasodilatative effect in humans in vivo, activates histamine release from mast 
cells and stimulates production of NO within endothelial cells[291-293]. In the chromaffin 
cell, ACh is a physiological agonist that, upon activation of ionotropic nAChR 
receptor, permits Na+ entry into the cell which further depolarizes cellular membrane 
and enables activation of voltage-gated Ca2+ channels and subsequent Ca2+ entry that 
mobilizes chromaffin granules and initiates exocytosis of several neurohormones, 
neuropeptides, and catecholamines[281,294]. Once secreted outside of the cell through the 
process of exocytosis, extracellular post-translational proteolytic processing of the 
ChgA molecule will release several bioactive peptides and CST that will ultimately 
bind nAChR receptors of chromaffin cells in autocrine fashion thus antagonizing ACh 
actions in the periphery as depicted in Figure 5[295].

In the perspective of previously discussed catecholamine storage vesicle 
neurotransmitters, Mahapatra and colleagues demonstrated that CST inhibited 
nicotinically triggered exocytotic release of several co-transmitters from chromaffin 
granules such as NPY, adenosine triphosphate, chromogranins and catecholamines 
thereby demonstrating that CST is a potent regulator of neuropeptide transmission in 
the sympathochromaffin system[296]. However, in the CNS, CST exhibits both 
sympathoexcitatory and procholinergic effects depending on the region of medulla 
where its expressed[297,298]. Of established cardiovascular effects, CST suppresses beta-
adrenergic activation and acts in a negative inotropic and chronotropic fashion, 
stimulates angiogenesis and proliferation of vascular smooth muscle cells, decreases 
thrombogenicity of endothelial cells, suppresses atherosclerosis and inflammation 
while also exerts cardioprotective effects by abrogating cardiomyocyte ischemia-
reperfusion injury[299-306]. A very recent study by Alam et al[307] showed that CST has a 
direct and independent inhibiting effect on hypertrophy elicited by NE in the cultured 
H9c2 cardiac myoblasts and that is involved in the regulation of a large number of 
fetal genes that are upregulated during the process of myocardial hypertrophy[307]. 
Furthermore, the same study showed that CST effectively blunted stimulative effects 
of NE and other mitogenic signals on β1 and β2 adrenergic receptors thus providing 
novel evidence that CST has a direct modulatory effect on adrenergic transmission at 
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Figure 5  Mechanism of catestatin autocrine modulation of chromaffin cell in the adrenal medulla during sympathetic stimulation. ACh: 
Acetylcholine; ATP: Adenosine triphosphate; Ca2+: Calcium; ChgA: Chromogranin A; nAchR: Neuronal type of nicotinic cholinergic receptors; Na+: Sodium; NPY: 
Neuropeptide Y.

the level of adrenergic receptors. Similarly, in the model of rat heart, CST activated β2 
and β3 adrenergic receptors thus upregulating the activity of eNOS and consequently 
increasing cyclic GMP and phosphodiesterase type 2 (PDE2) levels[308].

In line with its sympatholytic effects, chronic administration of exogenous CST 
improved autonomic function, shortened QT interval, and action potential duration 
and reduced the incidence of experimentally-induced ventricular arrhythmias in a rat 
model of myocardial infarction[309]. Similarly, in the rat model of hyperadrenergic 
hypertension, rats with ablated ChgA gene showed significantly longer QT interval, R-
amplitude, and QRS time-voltage and this was accompanied by increased resting heart 
rate and QT variability thus demonstrating that arrhythmogenic ventricular assault 
develops in the status of low circulating CST levels[310]. These preclinical observations 
were clinically validated as elevated CST levels were an independent predictor of 
complicated malignant arrhythmias among AMI patients[311]. This observation might 
seem counterintuitive at first, however, it could be explained in the sense that CST 
levels reflect a compensatory response for the increased SNS activity and excess 
catecholamine discharge and are attempting to restore autonomic balance. Therefore, 
circulating CST levels likely “mirror“ biological catecholamine turnover and degree of 
sympathetic activity as CST co-localizes and is co-released with catecholamines and 
other neuropeptides. Finally, cardioprotective effects of CST are likely 
pathophysiologically overpowered by sympathetic discharge in conditions in which 
cardiovascular homeostasis is disrupted such as AMI or decompensated HF, despite 
the relatively high circulating CST levels.

There are only a few available studies that examined the role of CST in HF and 
investigated its prognostic role in this syndrome.

In the first study by Zhu et al[312] CST levels gradually decreased from stage A to C of 
HF while there was a significant difference between stage A and B in terms of CST 
concentrations with a cut-off value of 19.73 ng/mL providing 90% sensitivity and 
50.9% specificity for the detection of B stage of HF[312]. This finding is of clinical 
relevance since stage B presumes structural cardiac disorder but without symptoms, 
while stage A assumes patients at high risk for developing HF but without functional 
or structural heart disorder. Therefore, this study showed that there is a utility for 
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decreased CST levels implying structural heart disease among asymptomatic patients. 
In the study by Liu et al[313] performed in the similar setting, CST was found higher in 
patients with HF compared to control subjects and it positively correlated with 
functional syndrome burden as assessed by the NYHA class[313]. Furthermore, etiology 
of HF (ischemic or not) and NYHA class predicted plasma CST levels while BNP 
provided better area under the curve value than CST in terms of detecting moderate to 
severe HF diagnosis (area under the curve values of 0.831 and 0.626, respectively). 
Adding CST to BNP did not improve diagnostic accuracy.

Recently, Borovac et al[314] showed in CATSTAT-HF study, that patients with acutely 
decompensated HF had higher serum CST levels if they belonged to a higher NYHA 
functional class while circulating CST levels were significantly higher among patients 
with ischemic vs non-ischemic etiology of disease thus likely reflecting an augmented 
SNS neurohumoral activation in patients with ischemic etiology of the disease (in the 
study defined as those with the history of myocardial infarction)[314]. The same study 
revealed that CST levels did not differ in respect to LVEF phenotypes while CST levels 
independently correlated with NYHA class, waist-to-hip ratio, HbA1c, LDL 
cholesterol, non-HDL cholesterol, high sensitivity cardiac troponin I and the heart rate 
at admission and rest. Finally, higher CST levels were strongly associated with 
favorable echocardiographic profile as they positively correlated with smaller LV 
volumes and dimensions, as well as with decreased left ventricular mass and smaller 
dimensions of the left atrium and this finding clinically validates the concept that CST 
locally has cardioprotective effects, attenuates adverse ventricular remodeling and acts 
in antihypertrophic fashion, as these biological effects were postulated in a few earlier 
preclinical studies[307,315].

CONCLUSION
Finally, the prognostic value of CST as a biomarker was demonstrated among chronic 
HF patients. In the multivariate Cox regression analysis, plasma CST was an 
independent risk factor for all-cause death (HR: 1.84, 95%CI: 1.02-3.32, P = 0.042) and 
cardiac death (HR: 2.41, 95%CI: 1.26-4.62, P = 0.008), respectively, during the median 
follow-up of 52.5 mo[316]. If patients had both high CST and BNP levels during 
hospitalization the risk of all-cause death increased 3-fold while the risk of cardiac 
death increased 4-fold.

Based on these findings it is plausible that CST could be a reliable indirect marker of 
SNS activity and it is likely that high CST levels reflect advanced disease burden and 
high sympathoexcitatory profile of an individual HF patient. Furthermore, CST 
provides complementary prognostic information to natriuretic peptides in terms of 
mortality in HF and could aid in the risk stratification of chronic HF patients. 
However, since the latter finding is based on only one clinical study further large-scale 
studies are required to validate these findings and clarify the role of circulating CST 
levels in predicting HF prognosis. Finally, patients with elevated CST levels might be 
suitable candidates for the introduction or up-titration of sympatholytic agents such as 
beta-adrenergic blockers, however, the effects of neurohumoral antagonists on 
circulating CST levels are yet to be determined.
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