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Deep learning–based cell composition analysis 
from tissue expression profiles
Kevin Menden1*, Mohamed Marouf2, Sergio Oller2, Anupriya Dalmia1,  
Daniel Sumner Magruder2,3, Karin Kloiber2, Peter Heutink1, Stefan Bonn1,2*

We present Scaden, a deep neural network for cell deconvolution that uses gene expression information to infer 
the cellular composition of tissues. Scaden is trained on single-cell RNA sequencing (RNA-seq) data to engineer 
discriminative features that confer robustness to bias and noise, making complex data preprocessing and feature 
selection unnecessary. We demonstrate that Scaden outperforms existing deconvolution algorithms in both pre-
cision and robustness. A single trained network reliably deconvolves bulk RNA-seq and microarray, human and 
mouse tissue expression data and leverages the combined information of multiple datasets. Because of this sta-
bility and flexibility, we surmise that deep learning will become an algorithmic mainstay for cell deconvolution of 
various data types. Scaden’s software package and web application are easy to use on new as well as diverse 
existing expression datasets available in public resources, deepening the molecular and cellular understanding 
of developmental and disease processes.

INTRODUCTION
The analysis of tissue-specific gene expression using next-generation 
sequencing [RNA sequencing (RNA-seq)] is a centerpiece of the mo-
lecular characterization of biological and medical processes (1). A 
well-known limitation of tissue-based RNA-seq is that it typically 
measures average gene expression across many molecularly diverse 
cell types that can have distinct cellular states (2). A change in gene 
expression between two conditions can therefore be attributed to a 
change in the cellular composition of the tissue or a change in gene 
expression in a specific cell population, or a mixture of the two. To 
deconvolve the cell type composition from a change in gene expres-
sion is especially important in systems with cellular proliferation 
(e.g., cancer) or cellular death (e.g., neuronal loss in neurodegenera-
tive diseases) due to systematic cell population differences between 
experimental groups (3).

To account for this problem, several computational cell decon-
volution methods have been proposed during the last years (4, 5). 
These algorithms use gene expression profiles (GEPs) of cell type–
specifically expressed genes to estimate cellular fractions using linear 
regression to detect, interpret, and possibly correct for systematic 
differences in cellular abundance between samples (4). While the 
best-performing linear regression algorithms for deconvolution seem 
to be variations of support vector regression (6–10), the selection of 
an optimal GEP is a field of active research (10, 11). It has been re-
cently shown that the design of the GEP is the most important factor 
in most deconvolution methods, as results from different algorithms 
strongly correlate given the same GEP (11).

In theory, an optimal GEP should contain a set of genes that are 
predominantly expressed within each cell population of a complex 
sample (12). They should be stably expressed across experimental 
conditions, for example, across health and disease, and resilient to 
experimental noise and bias. However, bias is typically inherent to 
biomedical data and is imparted, for instance, by intersubject vari-
ability, variations across species, different data acquisition methods, 

different experimenters, or different data types. The negative im-
pact of bias on deconvolution performance can be partly improved 
by using large, heterogeneous GEP matrices (11). It is therefore ex-
pected that recent advancement in cell deconvolution relied almost 
exclusively on sophisticated algorithms to normalize the data and 
engineer optimal GEPs (10).

While GEP-based approaches lay the foundational basis of mod-
ern cell deconvolution algorithms, we hypothesize that deep neural 
networks (DNNs) could create optimal features for cell deconvolu-
tion, without relying on the complex generation of GEPs. DNNs such 
as multilayer perceptrons are universal function approximators that 
achieve state-of-the-art performance on classification and regression 
tasks. Whereas this feature is of little importance for strictly linear 
input data, it makes DNNs superior to linear regression algorithms 
as soon as data deviate from ideal linearity. This means, for instance, 
that as soon as data are noisy or biased and classical linear regres-
sion algorithms may falter, the hidden layer nodes of the DNN learn 
to represent higher-order latent representations of cell types that do 
not depend on input noise and bias. We theorize, therefore, that by 
using gene expression information as network input, hidden layer 
nodes of the DNN would represent higher-order latent representa-
tions of cell types that are robust to input noise and technical bias.

An obvious limitation of DNNs is the requirement for large train-
ing data to avoid overfitting of the machine learning model. While 
ground-truth information on tissue RNA-seq cell composition is 
scarce, one can use single-cell RNA-seq (scRNA-seq) data to obtain 
large numbers of in silico tissue datasets of predefined cell compo-
sition (7–9, 13–15). We do this by subsampling and subsequently 
merging cells from scRNA-seq datasets, this approach being limited 
only by the availability of tissue-specific scRNA-seq data. It is to be 
noted that scRNA-seq data suffer from biases, such as dropout, to 
which RNA-seq data are not subject (16). While this complicates the 
use of scRNA-seq data for GEP design (8), we surmise that latent 
network nodes could represent features that are robust to these biases.

On the basis of these assumptions, we developed a single cell– 
assisted deconvolutional DNN (Scaden) that uses simulated bulk 
RNA-seq samples for training and predicts cell type proportions for 
input expression samples of cell mixtures. Scaden is available as down-
loadable software package and web application (https://scaden.ims.bio). 
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Scaden is trained on publicly available scRNA-seq and RNA-seq 
data, does not rely on specific GEP matrices, and automatically in-
fers informative features. Last, we show that Scaden deconvolves 
expression data into cell types with higher precision and robustness 
than existing methods that rely on GEP matrices.

RESULTS
Scaden overview, model selection, and training
In this part, we focus on the design and optimization of Scaden by 
training, validation, and testing on in silico data. Note that the gen-
eration of in silico data is a strictly linear mathematical operation. 
Our aim in this context, to corroborate Scaden’s basic functionality, 
is to show that Scaden’s performance compares with (but not nec-
essarily exceeds) that of state-of-the-art algorithms.

The basic architecture of Scaden is a DNN that takes gene counts 
of RNA-seq data as input and outputs predicted cell fractions (Fig. 1). 
To optimize the performance of the DNN, it is trained on data that 
contain both the gene expression and the real cell type fraction infor-
mation (Fig. 1B). The network then adjusts its weights to minimize 
the error between the predicted cell fractions and the real cell fractions 
(Fig. 1C). We restricted feature selection to the removal of “uninform-
ative” genes that have either zero expression or an expression vari-
ance below 0.1, leaving ~10,000 genes for training. In our hands, this 
feature selection step decreases training time and memory usage.

For the model selection and training, we made use of the large 
numbers of artificial bulk RNA-seq datasets with defined composi-
tion that can be generated in silico from published scRNA-seq and 
RNA-seq datasets (simulated tissues; Fig. 1A and tables S1 and S2). 
The only constraint is that the scRNA-seq and RNA-seq data must 
come from the same tissue as the bulk data subject to deconvolution.

To find the optimal DNN architecture for cell deconvolution, we 
generated bulk peripheral blood mononuclear cell (PBMC) RNA-seq 
data from four publicly available scRNA-seq datasets (tables S1 and 
S3). We performed leave-one-dataset-out cross-validation, training 
Scaden on mixtures of synthetic datasets from three scRNA-seq 
datasets and evaluating the performance on simulated tissue from a 
fourth scRNA-seq dataset.

We used the root mean square error (RMSE), Pearson’s correla-
tion coefficient (r), the slope and intercept of the regression fitted 
for ground-truth and predicted cell fractions, and Lin’s concordance 
correlation coefficient (CCC) (17) to assess algorithmic performance. 
The CCC is a measure sensitive not only to scatter but also to devi-
ations from linearity (slope and intercept). Within the main text, we 
report on CCC and RMSE values only; other metrics can be found 
in the Supplementary Materials.

The final Scaden model is an ensemble of the three best- 
performing models (table S4), and the final cell type composition 
estimates are the averaged predictions of all three ensemble models 
(Fig. 1 and fig. S1). Using an ensemble of models increased the de-
convolution performance as compared to single best models (table 
S6). Details of the model and hyperparameters are given in table S5. 
We also evaluated the effect of the size of the training dataset on 
Scaden deconvolution performance, repeating leave-one-dataset-out 
cross-validation on PBMC data with training dataset sizes from 150 
up to 15,000 samples (fig. S2). The increase in CCC value starts to 
level off from about 1500 simulated samples for this dataset but con-
tinues to increase slowly with sample size. We specifically addressed 
the question to what degree the DNN, trained on simulated sam-

ples, tends to overfit, failing to generalize to real bulk RNA-seq data. 
To understand after how many steps a model trained on in silico 
data overfits on real RNA-seq data, we trained Scaden on simulated 
data from an ascites scRNA-seq dataset (table S1; 6000 samples) and 
evaluated the loss function on a corresponding annotated RNA-seq 
dataset (18) (table S2; three samples) as a function of the number of 
steps (fig. S3). All models converged after approximately 5000 steps 
and slightly overfit when trained for longer. On the basis of this re-
sult, we opted for an early-stop approach after 5000 steps for evalu-
ation on real bulk RNA-seq data.

We then compared Scaden to four state-of-the-art GEP-based cell 
deconvolution algorithms, CIBERSORT (CS) (6), CIBERSORTx (CSx) (7), 
Multi-subject Single Cell deconvolution (MuSiC) (8), and Cell Popula-
tion Mapping (CPM) (9). While CS relies on hand-curated GEP matrices, 
CSx, MuSiC, and CPM can generate GEPs using scRNA-seq data as input.

To get an initial estimate of Scaden’s deconvolution fidelity, we 
trained the model on 24,000 simulated PBMC RNA-seq samples from 
three datasets and tested its performance in comparison to CS, CSx, 

Fig. 1. Overview of training data generation and cell type deconvolution with 
Scaden. (A) Artificial bulk samples are generated by subsampling random cells 
from an scRNA-seq dataset and merging their expression profiles. (B) Model train-
ing and parameter optimization on simulated tissue RNA-seq data by comparing 
cell fraction predictions to ground-truth cell composition. (C) Cell deconvolution of 
real tissue RNA-seq data using Scaden.
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MuSiC, and CPM on a fourth dataset of 500 samples each (e.g., train-
ing on data6k, data8k, and donorA and evaluation on donorC). We 
used corresponding scRNA-seq datasets for the construction of GEPs 
as input for CSx and MuSiC, and CPM. For CS, we used the PBMC- 
optimized LM22 GEP matrix (6), which was developed by the CS 
authors for the deconvolution of human PBMC data.

For two of four test datasets (donorA and donorC), Scaden ob-
tained the highest CCC and lowest RMSE, followed by CSx, MuSiC, 
CS, and CPM (fig. S4 and table S7). CSx and MuSiC obtained the 
highest CCC values for the data8k and data6k datasets, respectively. 
Scaden obtained the highest average CCC and lowest RMSE (0.88 and 
0.08, respectively), followed by MuSiC (0.85 and 0.10), CSx (0.83 and 
0.11), CS (0.63 and 0.15), and CPM (0 and 0.20; fig. S4). As expected, 
all algorithms that use scRNA-seq data as reference performed well, 
with the notable exception of CPM. We want to mention that CPM 
focuses on the reconstruction of continuous spectra of cellular states, 
while it incorporates cell deconvolution as an additional feature. We 
therefore report CPM’s deconvolution performance in the Supple-
mentary Materials from here on. On average, Scaden also obtained 
the highest correlation and the best intercept and slope values on 
simulated PBMC data (table S7). A closer inspection on a per–cell 
type basis (Fig. 2A) revealed that Scaden yields consistently higher 
CCC values and lower RMSEs when compared to the other algorithms.

A specific feature of the MuSiC algorithm is that it preferentially 
weighs genes according to low intersubject and intracell cluster vari-
ability for its GEP, which increases deconvolution robustness when 
high-expression heterogeneity is observed between human partici-
pants, for example (8). To understand whether Scaden can use mul-
tisubject information to increase its deconvolution performance, we 
trained Scaden, CSx, and MuSiC on scRNA-seq pancreas data from 
several participants (19) and assessed the performance on a separate sim-
ulated pancreas RNA-seq dataset (20). To allow for direct compari-
son, we chose the same pancreas training and test datasets that were 
used in the original MuSiC publication (table S1). To enable Scaden 
to leverage the heterogeneity of multisubject data, training data were 
generated separately for every participant in the dataset (see Methods). 
CSx cannot profit from multisubject data but performed well on the 
artificial PBMC datasets and was therefore included in the compar-
ison. The best average performance (across cell types) is achieved by 
Scaden (CCC = 0.98), closely followed by MuSiC (CCC = 0.93), while 
CSx does not perform as well (CCC = 0.75; Fig. 2B and table S8). On a 
per–cell type basis, Scaden’s predictions are clearly superior to the 
other two algorithms for all cell types. This provides strong evidence that 
Scaden, by separating training data generation for each participant, 
can learn intersubject heterogeneity and outperform specialized multi-
subject algorithms such as MuSiC on the cell type deconvolution task.

In addition, we wanted to test how the best-performing decon-
volution algorithms Scaden, MuSiC, and CSx behave when unknown 
cell content is part of the mixture. To test this, all cells falling into 
the “Unknown” category were removed from the training or refer-
ence PBMC datasets but added to the simulated mixture samples at 
fixed percentages (5, 10, 20, and 30%; see Methods). Scaden obtains 
the highest CCC for all tested percentages of unknown cell content 
(fig. S5 and table S9). The general deconvolution performance de-
clines linearly with increasing percentage of unknown content for 
all tested algorithms, indicating that Scaden, MuSiC, and CSx have 
a similar robustness against unknown mixture content.

We next compared the runtime and memory footprint of Scaden 
and MuSiC on an Intel Xeon six-core central processing unit (CPU) 

to the runtime of the CSx web application. Scaden is the only algo-
rithm that requires the generation of in silico training data, which 
takes 13 min for 2000 samples with a peak memory usage of 8 GB. 
Similar values were obtained for the human brain data. Next, we 
used the PBMC data to benchmark the runtime and memory con-
sumption of the deconvolution task. For Scaden, model training took 
~11 min and cell fraction prediction ~8 s for 500 samples, using less 
than 1-GB memory. We used the web application of CSx with batch 
correction to deconvolve the 500 PBMC samples in 35 min. MuSiC 
took only 2 min and 15 s to deconvolve all 500 samples, with the mem-
ory usage peaking at 4.5 GB. As Scaden can take advantage of a graphics 
processing unit (GPU), we additionally compared training duration 
on an AMD Ryzen 5 2600 CPU and GeForce RTX 2600 GPU on the 
same machine. Training on the CPU took 9 min and 39 s, while it 
took only 3 min and 2 s on the GPU, corresponding to a roughly 
three times shorter runtime for Scaden if a GPU is available.

Robust deconvolution of bulk expression data
The true use case of cell deconvolution algorithms is the cell fraction 
estimation of tissue RNA-seq data. In particular for noisy and bi-
ased bulk RNA-seq data, we hypothesize that Scaden’s latent feature 

Fig. 2. Performance comparison of deconvolution algorithms on simulated 
tissue data. (A) Boxplots of the cell type prediction CCC and RMSE for four simulated 
PBMC datasets. Tables S14 and S16 contain information on the five (six for CS) cell 
types used. (B) Scatterplots for four pancreas cell types of ground-truth (x axis) and 
predicted values (y axis) for Scaden, CSx, and MuSiC on artificial pancreas data (20). 
Numbers inside the plotting area and in parenthesis signify CCC values.
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representations might help it to more robustly predict cell fractions as 
compared to GEP-based algorithms.

We therefore assessed the performance of Scaden, CS, CSx, and 
MuSiC to deconvolve two publicly available human PBMC bulk 
RNA-seq datasets, for which curated GEP matrices and RNA-seq 
data with associated ground-truth cell type compositions from flow 
cytometry are available (see the “Data availability” section). We will 
refer to these datasets that consists of 12 samples each as PBMC1 
(21) and PBMC2 (10) (table S2). Both datasets have similar cell type 
compositions across samples, with CD4 and CD8 T cells making up 
the biggest fractions. Deconvolution for all methods was performed 
as described in the previous section, with the difference that data from 
all four PBMC scRNA-seq datasets were now deployed for Scaden 
training. Results are given in Fig. 3 (A to C) and tables S10 and S11.

On the PBMC1 dataset and using all cell types, Scaden obtained 
the highest CCC and lowest RMSE (0.56 and 0.13), while CSx (0.55 

and 0.16) and CS (0.43 and 0.15) performed well yet notably worse 
than Scaden (Fig. 3A and tables S10 and S11). CPM (0 and 0.18) and 
MuSiC (−0.19 and 0.32) both failed to deconvolve the cell fractions 
of the PBMC1 data. Scaden also obtained the best CCC and RMSE 
(0.68 and 0.08) on the PBMC2 dataset, while CS (0.58 and 0.10) and 
CSx (0.42 and 0.13) obtained good deconvolution results. Similar to 
the PBMC1 data deconvolution results, CPM (−0.16 and 0.11) and 
MuSiC (−0.13 and 0.30) did not perform well on the PBMC2 deconvo-
lution task. In addition to CCC and RMSE metrics, Scaden achieves 
the best correlation, intercept, and slope on both PBMC datasets 
(tables S10 and S11).

In particular, Scaden outperforms classical algorithms on a per–
cell type basis (Fig. 3, B and C). These results show weaker correla-
tions and a strong dependence on the cell type. A closer examination 
of the metrics in table S11 and fig. S6 shows that the largest varia-
tions are found in the slope and intercept.

Fig. 3. Comparison of deconvolution algorithms on PBMC tissue RNA-seq data. (A) Per–cell type scatterplots of ground-truth (x axis) and predicted values (y axis) for 
Scaden, CS, CSx, and MuSiC on real PBMC1 and PBMC2 cell fractions. Numbers inside the plotting area signify CCC values. For Scaden, the CCC using only scRNA-seq 
training data is shown in parenthesis, and the CCC using mixed scRNA-seq and RNA-seq training data is shown without parentheses. (B) Boxplots of RMSE values for real 
PBMC1 and PBMC2 data. (C) CCC values for real PBMC1 and PBMC2 data.
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We further evaluated how good the Scaden ensemble performs 
compared to the best single DNN model (M512, 512 nodes input 
layer). While the M512 model shows good deconvolution perform-
ance on the PBMC1 (CCC, 0.57) and PBMC2 (CCC, 0.68) datasets, 
the ensemble model achieves the best average cross-validation per-
formance (table S6). We therefore opted to use the ensemble method 
to reduce interdataset performance variation observed with M512 
and other single models.

An additional algorithmic feature of Scaden is that it seamlessly 
integrates increasing amounts of training data, which can be of dif-
ferent types, such as a combination of simulated tissue and real tis-
sue data with cell fraction information. In theory, even limited real 
tissue training data could make Scaden robust to data type bias and 
consequently improve Scaden’s deconvolution performance on real 
tissue data. We therefore trained Scaden on a mix of simulated PBMC 
and real PBMC2 (12 samples) data and evaluated its performance 
on real PBMC1 data (Fig. 3, A and B, fig. S6, and tables S10 and S11). 
While the training contained very little (~2%) real data, Scaden’s 
CCC increased from 0.56 to 0.72, and the RMSE decreased from 
0.13 to 0.10. We observed similar performance increases when Scaden 
was trained on simulated PBMC and real PBMC1 data and evaluated 
on real PBMC2 data (Fig. 3, A and B, fig. S6, and tables S10 and 
S11). Next, we wanted to investigate how a Scaden model trained on 
only few real samples compares to the models trained on simulated 
or simulated and real data. While a Scaden model trained on only 
bulk PBMC1 samples (n = 12) deconvolves PBMC2 data with a CCC 
of 0.62, it does not reach the CCC of models trained on simulated 
data (CCC of 0.68) or on simulated and bulk data (CCC of 0.86). 
We would also not advise training models on so few training sam-
ples, as these models are usually overfit.

This further validates that Scaden reliably deconvolves tissue 
RNA-seq data into the constituent cell fractions and that very accu-

rate deconvolution results can be obtained if reference and target 
datasets are from the same experiment.

We next wanted to test how the algorithm performs on postmortem 
human brain tissue of a subsample from the Religious Orders Study 
and Memory and Aging Project (ROSMAP) study (22), for which 
ground-truth cell composition information was recently measured 
by immunohistochemistry (41 samples with all cell types given) (23). 
The data provided by this study consist of bulk RNA-seq data from 
the dorsolateral prefrontal cortex and pose a special challenge due 
to the complexity of its cell type composition, which is further com-
plicated by the fact that the data originate from brains of healthy 
individuals as well as patients with Alzheimer’s disease (AD) at various 
stages of neuronal loss. As reference datasets, we used the scRNA-
seq dataset provided by Darmanis et al. (24) from the anterior tem-
poral lobe of living patients and the Lake dataset that isolates nuclei 
of neurons from two (visual and frontal) cortical regions from a 
postmortem brain and subjects them to RNA-seq (25). From these, 
we generated 2000 training samples (Darmanis) and 4000 samples 
(two regions from the Lake dataset).

Figure 4A shows the deconvolution results for all three algorithms 
with the Darmanis (scRNA-seq) reference dataset. Scaden achieves 
the highest CCC value (0.92) followed by MuSiC (0.87) and CSx (0.81; 
table S12). Compared to Scaden, MuSiC and CSx overestimate neural 
percentages, leading to higher RMSE values of 0.09 and 0.12, re-
spectively (Scaden, 0.06). Notably, all methods showed a lower CCC 
on the per–cell type level (Fig. 3B), demonstrating that some per–
cell type correlations are poor, either in slope, intercept, variance, or 
a combination of them. This emphasizes the need for a cell type–
specific inspection of results and highlights that, depending on the 
dataset, cell type–specific deconvolution results can be far from perfect.

In addition to comparing the predictive power of Scaden, CSx, 
and MuSiC on human brain tissue with different reference datasets, 

Fig. 4. Deconvolution performance comparison on brain tissue RNA-seq data. (A) Prediction of human brain cell fractions of the ROSMAP dataset using the Darmanis 
dataset as a reference: scatterplots of ground-truth (x axis) and predicted values (y axis) for Scaden, CSx, and MuSiC of data. CCC values are shown as inserts. (B) Per–cell 
type CCC values for ROSMAP using the Darmanis data as a reference. (C) Neuronal content determined by Scaden trained on mouse brain data and evaluated on the Braak 
stage of the ROSMAP study.
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we also tested how the choice of reference datasets affected Scaden’s 
deconvolution results. Notably, all methods substantially drop in per-
formance when the Lake single-nucleus RNA-seq dataset is used as 
a reference as we had presumed (fig. S7A). We want to emphasize 
that Scaden, in contrast to CSx and MuSiC, has the possibility to 
simultaneously use both datasets as reference, whereas for CSx and 
MuSiC, the user has to choose one of the two, unaware of which will 
give the correct results.

We found that the performance of Scaden was almost unaffected 
when the Lake dataset was added to the Darmanis training samples 
(CCC = 0.90, RMSE = 0.06; fig. S7A and table S12). These results 
show that cell deconvolution with Scaden is robust to training data 
bias (Darmanis single-cell versus Lake single-nucleus data). An add-
ed benefit of Scaden is that it allows for the inclusion and mixing of 
different scRNA-seq experiments in the training dataset, further in-
creasing its robustness (fig. S7A). Last, when calculating the CCC val-
ues on a per-sample basis, Scaden achieves the best scores for most 
samples (fig. S7B).

In a next step, we wanted to assess whether Scaden’s deconvolu-
tion performance was robust across species by trying to predict the 
cell fractions of the ROSMAP study (22) with a Scaden model trained 
on in silico data from five mouse brain scRNA-seq datasets (table S1). 
Intriguingly, Scaden was able to achieve a CCC value of 0.83 and an 
RMSE of 0.079, showing that Scaden can reliably deconvolve RNA-seq 
data across related species.

The ROSMAP study also contains information on the Braak stages 
(26) corresponding to 390 human postmortem prefrontal cortex sam-
ples, which correlate with the severity and progression stage of AD 
and the degree of neuronal loss. We used the Scaden model trained 
on artificial data generated from five mouse brain scRNA-seq datasets 
to predict neuronal cell fractions of this larger human dataset. Over-
all, Scaden’s cell fraction predictions capture the increased neuronal 
loss with increasing Braak stage (Fig. 4C). The largest drop in neural 
percentage is observed at stage 5, when the neurodegeneration typi-
cally reaches the prefrontal cortex of the brain.

Given the robustness with which Scaden predicts tissue RNA-seq 
cell fractions using scRNA-seq training data, even across species, we 
next wanted to investigate whether an scRNA-seq–trained Scaden 
model can also deconvolve other data types. To this end, we mea-
sured the deconvolution performance on a bulk PBMC microarray 
dataset (20 samples) (6) of a Scaden model trained on scRNA-seq 
and RNA-seq PBMC data (see above). We compared Scaden to CS 
using the microarray-derived LM22 matrix. CS achieved a slightly 
higher CCC and slightly lower total RMSE (0.72 and 0.11) than Scaden 
(0.71 and 0.13), while Scaden obtained the highest average CCC (0.50) 
compared to CS (0.39; fig. S8 and table S13). Notably, in this scenario, 
Scaden was trained entirely on simulated scRNA-seq and RNA-seq 
data, while CS’s LM22 GEP was optimized on PBMC microarray data.

Overall, we provide strong evidence that Scaden robustly decon-
volves tissue data across tissues, species, and even data types.

DISCUSSION
Scaden is a novel deep learning–based cell deconvolution algorithm 
that, in many instances, compares favorably in both prediction ro-
bustness and accuracy to existing deconvolution algorithms that rely 
on GEP design and linear regression. We believe that Scaden’s per-
formance relies to a large degree on the inherent feature engineer-
ing of the DNN. The network does not only select features (genes) 

for regression but also creates new features that are optimal for the 
regression task in the nodes of the hidden layers. These hidden fea-
tures are nonlinear combinations of the input features (gene expres-
sion), which makes it notoriously difficult to explain how a DNN 
works (27). It is important to highlight that this feature creation is 
fundamentally different from all other existing cell deconvolution 
algorithms, which rely on heuristics that select a defined subset of 
genes as features for linear regression.

Another advantage of this inherent feature engineering is that 
Scaden can be trained to be robust to input noise and bias (e.g., batch 
effects). Noise and bias are all prevalent in experimental data, be-
cause of different sample quality, sample processing, experimenters, 
and instrumentation, for example. If the network is trained on dif-
ferent datasets of the same tissue, however, then it learns to create 
hidden features that are robust to noise and bias, such as batch ef-
fects. This robustness is pivotal in real-world cell deconvolution use 
cases, where the bulk RNA data for deconvolution and the training 
data (and therefore the network and GEP) contain different noise 
and biases. In this study, we tested Scaden with training data from 
scRNA-seq datasets generated with a variety of different protocols 
and could not identify a specific protocol that is not suitable. While 
especially recent cell deconvolution algorithms include batch correc-
tion heuristics before GEP construction, Scaden optimizes its hidden 
features automatically when trained on data from various batches. 
Potential protocol-specific biases can therefore be alleviated when 
employing training data from multiple protocols.

The robustness to noise and bias, which might be due to hidden 
feature generation, is especially evident in Scaden’s ability to decon-
volve across data types. A network trained on in silico bulk RNA-seq 
data can seamlessly deconvolve microarray data of the same tissue. 
This is quite noteworthy, as microarray data are known to have a 
reduced dynamic range and several hybridization-based biases com-
pared to RNA-seq data. In other words, Scaden can deconvolve bulk 
data of types that it has never been trained on, even in the face of 
strong data type bias. This raises the possibility that Scaden trained 
on scRNA-seq data might reliably deconvolve other bulk omics data 
as well, such as proteomic and metabolomic data. This assumption 
is strengthened by the fact that Scaden, trained on scRNA-seq data, 
attains state-of-the-art performance on the deconvolution of bulk 
RNA-seq data, two data types with very distinct biases (16).

As highlighted in the introduction, a drawback for many DNNs 
is the large amount of training data required to obtain robust per-
formance. Here, we used scRNA-seq data to create in silico bulk 
RNA-seq data of predefined type (target tissue) with known com-
position, across datasets. This immediately highlights Scaden’s biggest 
limitation, the dependency on scRNA-seq data of the target tissue. 
In this study, we have shown that Scaden, trained solely on simulated 
data from scRNA-seq datasets, can outperform GEP-based decon-
volution algorithms. We did observe, however, that the addition of 
labeled RNA-seq samples to the training data did substantially im-
prove deconvolution performance in the case of PBMC data. We 
therefore believe that efforts to increase the similarity between sim-
ulated training data and the target bulk RNA-seq data could increase 
Scaden’s performance further. Mixtures of in silico bulk RNA-seq 
data and publically available RNA-seq data, of purified cell types, 
for example, could further increase the deconvolution performance 
of Scaden. Furthermore, domain adaptation methods can be used 
to improve performance of models that are trained on data (here, 
scRNA-seq data) that are similar to the target data (here, RNA-seq 
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data) (28). In future versions, Scaden’s simple multilayer perceptron 
architecture could leverage domain adaptation to further stabilize 
and improve its cell deconvolution performance.

Scaden uses an ensemble approach by averaging the predictions 
of three different models to increase performance and improve gen-
eralization. Increasing the number of models per ensemble would 
allow for the estimation of the prediction uncertainty. While not im-
plemented in this study, this could be an interesting extension to 
Scaden’s ensemble architecture.

Recent cell deconvolution algorithms have used cell fraction es-
timates to infer cell type–specific gene expression from bulk RNA-seq 
data. It is straightforward to use Scaden’s cell fraction estimates to 
infer per-group (3) and per-sample (7) cell type–specific gene ex-
pression using simple regression or non-negative matrix factoriza-
tion, respectively. We would like to add a note of caution, however, 
as the error of cell fraction estimates, which can be quite large, is 
propagated into the gene expression calculations and will affect any 
downstream statistical analysis.

While Scaden achieves good performance on the samples and tis-
sues used in this study, it is important to keep in mind that cell type 
similarity, sample heterogeneity, and complexity, as well as experi-
mental noise and bias, can severely limit deconvolution accuracy. 
Furthermore, Scaden is currently not attempting to model cell size 
differences in its algorithm, which might be useful to consider for 
the interpretation of prediction results.

In summary, the deconvolution performance, robustness to noise 
and bias, and the flexibility to learn from large numbers of in silico 
datasets, across data types (scRNA-seq and RNA-seq mixtures) and 
potentially even tissues, make us believe that DNN-based architectures 
will become an algorithmic mainstay of cell type deconvolution.

METHODS
Datasets and preprocessing
scRNA-seq datasets
The following human PBMC scRNA-seq datasets were downloaded 
from the 10X Genomics data download page: 6k PBMCs from a 
Healthy Donor, 8k PBMCs from a Healthy Donor, Frozen PBMCs 
(Donor A), and Frozen PBMCs (Donor C) (29). Throughout this 
paper, these datasets are referred to with the handles data6k, data8k, 
donorA, and donorC, respectively. It was not intended to incorpo-
rate as many datasets as possible. Instead, these four datasets were 
chosen with the goal to dispose of a set of samples with consistent 
cell types and gene expression. This limited our choice to datasets that 
displayed clearly identifiable cell types for the majority of cells. The 
Ascites scRNA-seq dataset was downloaded from https://figshare.
com as provided by Schelker et al. (18). Pancreas and mouse brain 
datasets were downloaded from the scRNA-seq dataset collection of 
the Hemberg laboratory (https://hemberg-lab.github.io/scRNA.seq.
datasets/). The human brain datasets from Darmanis et al. (24) and 
Lake et al. (25) where downloaded from Gene Expression Omnibus 
(GEO) with accession numbers GSE67835 and GSE97930, respec-
tively. A table listing all datasets including references to the original 
publications can be found in table S1.
scRNA-seq preprocessing and analysis
All datasets were processed using the Python package Scanpy (v. 1.2.2) 
(30) following the Scanpy’s reimplementation of the popular Seurat’s 
clustering workflow. First, the corresponding cell-gene matrices were 
filtered for cells with less than 500 detected genes and genes expressed 

in less than five cells. The resulting count matrix for each dataset 
was filtered for outliers with high or low numbers of counts. Gene 
expression was normalized to library size using the Scanpy function 
“normalize_per_cell.” The normalized matrix of all filtered cells and 
genes was saved for the subsequent data generation step.

The following processing and analysis steps had the sole purpose 
of assigning cell type labels to every cell. All cells were clustered using 
the louvain clustering implementation of the Scanpy package. The 
louvain clustering resolution was chosen for each dataset, using the 
lowest possible resolution value (low-resolution values lead to less 
clusters) for which the calculated clusters appropriately separated the 
cell types. The top 1000 highly variable genes were used for cluster-
ing, which were calculated using Scanpy’s “filter_genes_dispersion” 
function with parameters min_mean = 0.0125, max_mean = 3, and 
min_disp = 0.5. Principal components analysis was used for dimen-
sionality reduction.

To identify cell types, marker genes were investigated for all cell types 
in question. For PBMC datasets, useful marker genes were adopted 
from public resources such as the Seurat tutorial for 2700 PBMCs 
(31). Briefly, interleukin-7 receptor (IL7R) was taken as marker for 
CD4 T cells, LYZ for monocytes, MS4A1 for B cells, GNLY for nat-
ural killer cells, FCER1A for dendritic cells, and CD8A and CCL5 as 
markers for CD8 T cells. For all other scRNA-seq datasets, marker 
genes and expected cell types were inferred from the original publi-
cation of the dataset. For instance, to annotate cell types of the mouse 
brain dataset from Zeisel et al. (32), we used the same marker genes 
as Zeisel and colleagues. We did not use the same cell type labels 
from the original publications because a main objective was to as-
sure that cell type labeling is consistent between all datasets of a cer-
tain tissue.

Cell type annotation was performed manually across all the clus-
ters for each dataset, such that all cells belonging to the same cluster 
were labeled with the same cell type. The cell type identity of each 
cluster was chosen by crossing the cluster’s highly differentially ex-
pressed genes with the curated cell type’s marker genes. Clusters that 
could not be clearly identified with a cell type were grouped into the 
“Unknown” category.
Tissue datasets for benchmarking
To assess the deconvolution performance on real tissue expression 
data, we used datasets for which the corresponding cell fractions 
were measured and published. The first dataset is the PBMC1 data-
set, which was obtained from Zimmermann et al. (21). The sec-
ond dataset, PBMC2, was downloaded from GEO with accession 
code GSE107011 (10). This dataset contains both RNA-seq pro-
files of immune cells (S4 cohort) and from bulk individuals (S13 
cohort). As we were interested in the bulk profiles, we only used 
12 samples from the S13 cohort from these data. Flow cytometry 
fractions were collected from the Monaco et al. publication (10).

In addition to the above mentioned two PBMC datasets, we used 
Ascites RNA-seq data. This dataset was provided by the authors, and 
cell type fractions for this dataset were taken from the supplemen-
tary materials of the publication (18).

For the evaluation on pancreas data, artificial bulk RNA-seq sam-
ples created from the scRNA-seq dataset of Xin et al. (20) were used. 
This dataset was downloaded from the resources of the MuSiC publica-
tion (8). The artificial bulk RNA-seq samples used for evaluation were 
then created using the “bulk_construct” function of the MuSiC tool.

To assess how Scaden and the GEP algorithms deal with the pres-
ence of unknown cell types, we generated PBMC bulk RNA samples 

https://figshare.com
https://figshare.com
https://hemberg-lab.github.io/scRNA.seq.datasets/
https://hemberg-lab.github.io/scRNA.seq.datasets/
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from the four scRNA-seq datasets (6000 each). The undefined amount 
of unknown cells that was generated by this approach was removed 
to be replaced by defined amounts of 5, 10, 20, and 30% of unknown 
cells, respectively. Cell fractions of all four samples were predicted with 
Scaden trained on the other three.

Performance on these samples was then assessed to test robustness 
against unseen cell types in the bulk mixture. Scaden was trained on 
samples from all datasets but the test dataset, while CSx and MuSiC 
used data8k as a reference.

The microarray dataset GSE65133 was downloaded from GEO, and 
cell type fractions were taken from the original CS publication (6).

Last, we wanted to get insights into neurodegenerative cell frac-
tion changes in the brain. While it is known that neurodegenerative 
diseases like AD are accompanied by a gradual loss of brain neurons, 
stage-specific cell type shifts are still hard to come by. Here, we use 
the ROSMAP study cortical RNA-seq dataset along with the corre-
sponding clinical metadata, to infer cell type composition over six 
clinically relevant stages of neurodegeneration (22). Furthermore, 
to assess deconvolution accuracy on postmortem human brain tis-
sue, we used 41 samples from the ROSMAP, for which cell compo-
sition information from immunohistochemistry (23) was recently 
released and for which fractions for all cell types were reported. The 
ROSMAP RNA-seq data were downloaded from www.synapse.org/. 
The cell composition values were provided by the authors of the 
study (23).
RNA-seq preprocessing and analysis
For the RNA-seq datasets analyzed in this study, we did not apply 
any additional processing steps but used the obtained count or ex-
pression tables directly as downloaded for all datasets except the 
ROSMAP dataset. For the latter, we generated count tables from raw 
FastQ files using Salmon (33) and the GRCh38 reference genome. 
FastQ files from the ROSMAP study were downloaded from Synapse 
(www.synapse.org).

Simulation of bulk RNA-seq samples from scRNA-seq data
Scaden’s DNN requires large amounts of training RNA-seq samples 
with known cell fractions. This explains why the generation of artificial 
bulk RNA-seq data is one of the key elements of the Scaden workflow.

To generate the training data, preprocessed scRNA-seq datasets 
were used (see the “Datasets and preprocessing” section), compris-
ing the gene expression matrix and the cell type labels. Artificial 
RNA-seq samples were simulated by subsampling cells from indi-
vidual scRNA-seq datasets; cells from different datasets were not 
merged into samples to preserve within-subject relationships. Data-
sets generated from multiple participants were split according to 
participant, and each subsampling was constrained to cells from one 
participant to capture the cross-subject heterogeneity and keep subject- 
specific gene dependencies.

The exact subsampling procedure is described in the following. 
First, for every simulated sample, random fractions were created for 
all different cell types within each scRNA-seq dataset using the ran-
dom module of the Python package NumPy. Briefly, a random num-
ber was chosen from a uniform distribution between 0 and 1 using 
the NumPy function “random.rand()” for each cell type, and then 
this number was divided by the sum of all random numbers created 
to ensure the constraint of all fractions adding up to 1

   f  c   =    r  c   ─ 
 ∑  C  all      r  c   

    

where rc is the random number created for cell type c and Call is the 
set of all cell types. Here, fc is the calculated random fraction for cell 
type c. Then, each fraction was multiplied with the total number of 
cells selected for each sample, yielding the number of cells to choose 
for a specific cell type

   N  c   =  f  c   *  N  total    

where Nc is the number of cells to select for the cell type c, and Ntotal 
is the total number of cells contributing to one simulated RNA-seq 
sample (500, in this study). Next, Nc cells were randomly sampled 
from the scRNA-seq gene expression matrix for each cell type c. After-
ward, the randomly selected single-cell expression profiles for 
every cell type are then aggregated by summing their expression val-
ues, to yield the artificial bulk expression profile for this sample.

Using the above-described approach, cell compositions that are 
strongly biased toward a certain cell type or are missing specific cell 
types are rare among the generated training samples. To account for 
this and to simulate cell compositions with a heavy bias to and the 
absence of certain cell types, a variation of the subsampling proce-
dure was used to generate samples with sparse compositions, which 
we refer to as sparse samples. Before generating the random frac-
tions for all cell types, a random number of cell types was selected to 
be absent from the sample, with the requirement of at least one cell 
type constituting the sample. After these leave-out cell types were 
chosen, random fractions were created and samples generated as de-
scribed above. The average cell type proportions of the training dataset 
generated as described above are equal for all cell types. This allows 
for unbiased deconvolution as the true cell composition of a given 
tissue is not known beforehand. Using different sampling distribu-
tions (e.g., Gaussian and Uniform) or excluding sparse samples did 
not change Scaden’s deconvolution performance notably on the 
simulated PBMC datasets. This shows that Scaden is relatively ro-
bust to training data generated by different sampling procedures.

Using this procedure, we generated 32,000 samples for the hu-
man PBMC training dataset, 14,000 samples for the human pancreas 
training dataset, 6000 samples for human brain, and 30,000 samples 
for the mouse brain training dataset (table S3).

Artificial bulk RNA-seq datasets were stored in “h5ad” format 
using the Anndata package (30), which allows to store the samples 
together with their corresponding cell type ratios while also keeping 
information about the scRNA-seq dataset of origin for each sample. 
This allowed to access samples from specific datasets, which is use-
ful for cross-validation.

Scaden overview
The following section contains an overview of the input data pre-
processing, the Scaden model, model selection, and how Scaden pre-
dictions are generated.
Input data preprocessing
The data preprocessing step is aimed to make the input data more 
suitable for machine learning algorithms. To achieve this, an opti-
mal preprocessing procedure should transform any input data from 
the simulated samples or from the bulk RNA-seq to the same fea-
ture scale. Before any scaling procedure can be applied, it must be 
ensured that both the training data and the bulk RNA-seq data sub-
ject to prediction share the same features. Therefore, before scaling, 
both datasets are limited to contain features (genes) that are avail-
able in both datasets. In addition, uninformative genes that have 

http://www.synapse.org/
http://www.synapse.org
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either zero expression or an expression variance below 0.1 were re-
moved, leaving ~10,000 genes for model training and inference. The 
two-step processing procedure used for Scaden is described in the 
following:

First, to account for heteroscedasticity, a feature inherent to 
RNA-seq data, the data were transformed into logarithmic space by 
adding a pseudocount of 1 and then taking the Logarithm (base 2).

Second, every sample was scaled to the range [0,1] using the 
MinMaxScaler() class from the Sklearn preprocessing module. Per- 
sample scaling, unlike per-feature scaling that is more common in 
machine learning, assures that intergene relative expression pat-
terns in every sample are preserved. This is important, as our hy-
pothesis was that a neural network could learn the deconvolution 
from these intergene expression patterns

   x  scaled,i   = ( x  i   − min( X  i   ) ) / (max( X  i   ) − min( X  i   ) )  

where xscaled, i is the log2 expression value of gene x in sample i, Xi is 
the vector of log2 expression values for all genes of sample i, min(Xi) 
is the minimum gene expression of vector Xi, and max(Xi) is the 
maximum gene expression of vector Xi.

Note that all training datasets are stored as expression values and 
are only processed as described above. In the deployment use case, 
the simulated training data should contain the same features as in 
the bulk RNA-seq sample that shall be deconvolved.
Model selection
The goal of model selection was to find an architecture and hyper-
parameters that robustly deconvolve simulated tissue RNA-seq data 
and, more importantly, real bulk RNA-seq data. Because of the very 
limited availability of bulk RNA-seq datasets with known cell frac-
tions, model selection was mainly optimized on the simulated PBMC 
datasets. To capture interexperimental variation, we used leave-one- 
dataset-out cross-validation for model optimization: A model was 
trained on simulated data from all but one dataset, and performance 
was tested on simulated samples from the left-out dataset. This al-
lows to simulate batch effects between datasets and helps to test the 
generalizability of the model. In the process of model selection and 
(hyper-) parameter optimization, performed on PBMC and Ascites 
datasets, we found three models with different architectures and 
dropout rates but comparable performance. To address overfitting 
in individual models, we decided to use a combination of models, 
expecting this to serve as another means of regularization. We did 
not test multiple combinations but rather used an informed choice 
with varying layer sizes and dropout regularization, with the goal to 
increase model diversity. We observed that the average of an en-
semble of models generalized better to the test sets than individual 
models. Model training and prediction is done separately for each 
model, with the prediction averaging step combining all model pre-
dictions (fig. S1 and tables S4 and S6). We provide a list of all tested 
parameters in the Supplementary Materials (table S5).
Final Scaden model
The Scaden model learns cell type deconvolution through supervised 
training on datasets of simulated bulk RNA-seq samples simulated 
with scRNA-seq data. To account for model biases and to improve 
performance, Scaden consists of an ensemble of three DNNs with 
varying architectures and degrees of dropout regularization. All 
models of the ensemble use four layers of varying sizes between 32 
and 1024 nodes, with dropout regularization implemented in two of 
the three ensemble models. The exact layer sizes and dropout rates 

are listed in table S4. The rectified linear unit is used as activation 
function in every internal layer. We used a Softmax function to pre-
dict cell fractions, as we did not see any improvements in using a linear 
output function with consecutive non-negativity correction and sum- 
to-one scaling. Python (v. 3.6.6) and the TensorFlow library (v. 1.10.0) 
were used for implementation of Scaden. A complete list of all software 
used for the implementation of Scaden is provided in table S15.
Training and prediction
After the preprocessing of the data, a Scaden ensemble can be trained 
on simulated tissue RNA-seq data or mixtures of simulated and real 
tissue RNA-seq data. Parameters are optimized using Adam with a 
learning rate of 0.0001 and a batch size of 128. We used an L1 loss 
as optimization objective

  L1( y  i  ,    ̂  y    i   ) = ∣  y  i   −  ̂   y  i    ∣  

where yi is the vector of ground-truth fractions of sample i and   ̂   y  i     is 
the vector of predicted fractions of sample i. Each of the three en-
semble models is trained independently for 5000 steps. This “early 
stopping” serves to avoid domain overfitting on the simulated tis-
sue data, which would decrease the model performance on the real 
tissue RNA-seq data. We observed that training for more steps lead 
to an average performance decrease on real tissue RNA-seq data. To 
perform deconvolution with Scaden, a bulk RNA-seq sample is fed 
into a trained Scaden ensemble, and three independent predictions 
for the cell type fractions of this sample are generated by the trained 
DNNs. These three predictions are then averaged per cell type to yield 
the final cell type composition for the input bulk RNA-seq sample

   ̂   y  c    =   
 ̂   y c  

1   +  ̂   y c  
2    +  ̂   y c  

3  
 ─ 3    

where   ̂   y  c     is the final predicted fraction for cell type c and   ̂   y c  i     is the pre-
dicted fraction for cell type c of model i.
Scaden requirements
Currently, a disadvantage of the Scaden algorithm is the necessity to 
train a new model for deconvolution if no perfect overlap in the fea-
ture space exists. This constraint limits the usefulness of pretrained 
models. Once trained, however, the prediction runtime scales linearly 
with sample numbers and is usually in the order of seconds, making 
Scaden a useful tool if deconvolution is to be performed on very large 
datasets. While the requirements are dataset dependent, the Scaden 
demo was profiled to require a peak of 3.2 GB of random-access 
memory (RAM) during the DNN training process, so a computer 
with 8 GB of RAM should be able to run it smoothly. In our tests 
with an Intel(R) Xeon(R) CPU E5-1630 workstation, the demo could 
run in 22 min, spending most of the CPU time in the DNN training 
process. The most prominent and obvious issue of Scaden is the dif-
ference between simulated scRNA-seq data used for training and 
the bulk RNA-seq data subject to inference. While Scaden is able to 
transfer the learned deconvolution between the two data types and 
achieves state-of-the-art performance, we hypothesize that efforts to 
improve this translatability could improve Scaden’s prediction ac-
curacy even further. Algorithmic improvements are therefore likely 
to address this issue and are planned for future releases.

Algorithm comparison
We used several performance measures to compare Scaden to four 
existing cell deconvolution algorithms, CS with LM22 GEP, CSx, 



Menden et al., Sci. Adv. 2020; 6 : eaba2619     22 July 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 12

MuSiC, and CPM. To compare the performance of the five decon-
volution algorithms, we measured the RMSE, Lin’s CCC, Pearson 
product moment correlation coefficient r, and R2 values, comparing 
real and predicted cell fractions estimates. In addition, to identify 
systematic prediction errors and biases, slope and intercept for the 
regression lines were calculated. These metrics are defined as follows

  RMSE(y,   ̂  y   ) =  √ 
_

 avg  (y −   ̂  y  )   2     

  r(y,   ̂  y   ) =   
cov(y,   ̂  y  )

 ─    y        ̂  y        

   R   2 (y,   ̂  y   ) = r  (y,   ̂  y  )   2   

  slope(y,   ̂  y   ) =   
y

 ─ 
  ̂  y      

  CCC(y,   ̂  y   ) =   
2r    y        ̂  y      ───────────  

    y     2  +       ̂  y       2  + (   x   −      ̂  y    )
    

where y are the ground-truth fractions,    ̂  y    are the prediction fractions, 
x is the SD of x,  cov(y,   ̂  y  )  is the covariance of y and    ̂  y   , and     y  ,      ̂  y      are 
the mean of the predicted and ground-truth fractions, respectively.

All metrics were calculated for all data points of a dataset and sep-
arately for all data points of a specific cell type. For the latter approach, 
we then averaged the resulting values to recover single values. While 
the metrics calculated on all data points might be sufficient, we deem 
that the cell type–specific deconvolution might, in many instances, be 
of even greater interest. It is noteworthy in this context that cell type–
specific deconvolution performance can be quite weak, depending on 
the dataset. This is true for all tested deconvolution algorithms, while 
Scaden achieves best performance.
CIBERSORT
CS is a cell convolution algorithm based on specialized GEPs and sup-
port vector regression. Cell composition estimations were obtained 
using the CS web application (https://cibersort.stanford.edu/). For all 
deconvolutions with CS, we used the LM22 GEP, which was generated 
by the CS authors from 22 leukocyte subsets profiled on the HGU133A 
microarray platform.

Because the LM22 GEP matrix contains cell types at a finer gran-
ularity than what was used for this study, predicted fractions of sub-
cell types were added together. For cell grouping, we used the mapping 
of subcell types to broader types given by figure 6 from Monaco et al. 
(10). We provide a table with the exact mappings used here in the 
Supplementary Materials (table S13). The deconvolution was per-
formed using 500 permutations with quantile normalization disabled 
for all datasets but GSE65133 (Microarray), as is recommended for 
RNA-seq data. We used default settings for all other CS parameters.
CIBERSORTx
CSx is a recent variant of CS that can generate GEP matrices from 
scRNA-seq data and use these for deconvolution. For additional de-
convolution robustness, it applies batch normalization to the data. All 
signature matrices were created by uploading the labeled scRNA-seq 
expression matrices and using the default options. Quantile normal-
ization was disabled. For deconvolution on simulated data, no batch 
normalization was used. For all bulk RNA-seq datasets, the S-Mode 
batch normalization was chosen. All PBMC datasets were decon-
volved using a GEP matrix generated from the data6k dataset (for 
simulated samples from data6k, a donorA GEP matrix was chosen).

MuSiC
MuSiC is a deconvolution algorithm that uses multisubject scRNA-
seq datasets as GEP matrices in an attempt to include heterogeneity 
in the matrices to improve generalization. While MuSiC tries to ad-
dress similar issues of previous deconvolution algorithms by using 
scRNA-seq data, the approach is very different. For deconvolution, 
MuSiC applies a sophisticated GEP-based deconvolution algorithm 
that uses weighted non-negative least-squares regression with an iter-
ative estimation procedure that imposes more weight on informa-
tive genes and less weight on noninformative genes.

The MuSiC R package contains functionality to generate the nec-
essary GEP matrix given an scRNA-seq dataset and cell type labels. 
To generate MuSiC deconvolution predictions on PBMC datasets, 
we used the data8k scRNA-seq dataset as reference data for MuSiC 
and follow the tutorial provided by the authors to perform the decon-
volution. For deconvolution of artificial samples generated from the 
data8k dataset, we provided MuSiC with the data6k dataset as a refer-
ence instead.

MuSiC was developed with a focus on multisubject scRNA-seq 
datasets, in which the algorithm tries to take advantage from the added 
heterogeneity that these datasets contain, by calculating a measure 
of cross-subject consistency for marker genes. To assess how Scaden 
performs on multisubject datasets compared to MuSiC, we evaluated 
both methods on artificial bulk RNA-seq samples from human pancreas. 
We used the bulk_construct function from MuSiC to combine the 
cells from all 18 participants contained in the scRNA-seq dataset 
from Xin et al. (20) to generate artificial bulk samples for evaluation. 
Next, as a multisubject reference dataset, we used the pancreas 
scRNA-seq dataset from Segerstolpe et al. (19), which contains single- 
cell expression data from 10 different participants, 4 of which with 
type 2 diabetes. For Scaden, the Segerstolpe scRNA-seq dataset was 
split by participants, and training datasets were generated for each 
participant, yielding in total 10,000 samples. For MuSiC, a pro-
cessed version of this dataset was downloaded from the resources 
provided by the MuSiC authors (8) and used as an input reference 
dataset for the MuSiC deconvolution. Deconvolution was then per-
formed according to the MuSiC tutorial, and performance was 
compared according to the above-defined metrics.
Cell Population Mapping
CPM is a deconvolution algorithm that uses single-cell expression 
profiles to identify a so-called “cell population map” from bulk RNA-
seq data (9). In CPM, the cell population map is defined as compo-
sition of cells over a cell-state space, where a cell state is defined as a 
current phenotype of a single cell. Contrary to other deconvolution 
methods, CPM tries to estimate the abundance of all cell states and 
types for a given bulk mixture, instead of only deconvolving the cell 
types. As input, CPM requires an scRNA-seq dataset and a low- 
dimensional embedding of all cells in this dataset, which represents 
the cell-state map. As CPM estimates abundances of both cell states 
and types, it can be used for cell type deconvolution by summing up 
all estimated fractions for all cell states of a given cell type, a method 
that is implemented in the scBio R package, which contains the CPM 
method. To perform deconvolution with CPM, we used the data6k 
PBMC scRNA-seq dataset as an input reference for all PBMC sam-
ples. For samples simulated from the data6k dataset, we used the data8k 
dataset as a reference. According to the CPM paper, a dimension 
reduction method can be used to obtain the cell-state space. We 
therefore used Uniform Manifold Approximation and Projection 
(UMAP), a dimension reduction method widely used for scRNA-seq 

https://cibersort.stanford.edu/
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data, to generate the cell-state space mapping for the input scRNA-seq 
data. Deconvolution was then performed using the CPM function of 
the scBio package with an scRNA-seq dataset and accompanying 
UMAP embedding as input.

Code and software availability
The source code for Scaden is available at https://github.com/
KevinMenden/scaden. Documentation is published at https://scaden.
readthedocs.io. Code to generate the figures along with the training 
datasets used in this study is published at figshare: https://figshare.
com/projects/Scaden/62834. The Scaden web application can be ac-
cessed at https://scaden.ims.bio.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/30/eaba2619/DC1

View/request a protocol for this paper from Bio-protocol.
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