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ABSTRACT: Magnetofluidics is a dynamic research field, which requires
novel sensor solutions to boost the detection limit of tiny quantities of
magnetized objects. Here, we present a sensing strategy relying on planar
Hall effect sensors in droplet-based micro-magnetofluidics for the detection
of a multiphase liquid flow, i.e., superparamagnetic aqueous droplets in an
oil carrier phase. The high resolution of the sensor allows the detection of
nanoliter-sized superparamagnetic droplets with a concentration of 0.58
mg/cm3, even when they are biased in a geomagnetic field only. The limit
of detection can be boosted another order of magnitude, reaching 0.04 mg/
cm3 (1.4 million particles in a single 100 nL droplet) when a magnetic field
of 5 mT is applied to bias the droplets. With this performance, our sensing
platform outperforms the state-of-the-art solutions in droplet-based micro-
magnetofluidics by a factor of 100. This allows us to detect ferrofluid
droplets in clinically and biologically relevant concentrations and even
below without the need of externally applied magnetic fields. These results open the route for new strategies of the utilization of
ferrofluids in microfluidic geometries in, e.g., bio(−chemical) or medical applications.

■ INTRODUCTION

The detection, manipulation, and tracking of magnetic
nanoparticles (MNPs) are of major importance for applica-
tions in the fields of biology, biotechnology, and biomedicine
as labels as well as for drug delivery, (bio)detection, and tissue
engineering.1 Here, a very low background noise due to the
lack of any magnetic material in biological samples is provided,
and excellent biocompatibility can be found, e.g., for Fe3O4 and
γ-Fe2O3 nanoparticles.

2 Introduced into biological tissues, they
show high potential in state-of-the-art medical diagnostics in,
e.g., magnetic resonance imaging (MRI)3,4 as contrast agents
and as drug delivery vessels.5 For applications in MRI, the
MNP concentration has to be precisely controlled in the range
of less than 1 mg/cm3.6−10 One of the main emphases of
utilization of MNPs in biological context is in cancer
thermotherapy, where the concentration of MNPs (typi-
cally11−17 in the range of mg/cm3) has to be carefully assigned
owing to its severe impact on the heating efficiency. MNPs
hold big potential in the research field of biosensorics and
point-of-care diagnostics due to their possibility to capture and
isolate rare biomarkers and molecules by their high surface-to-
volume ratio and magnetic properties.18 The detection of small
quantities or low concentrations of functionalized MNPs,
bound to their specific target, allows improvement over the
existing state-of-the-art technologies.19−21 In this respect,
ultrasensitive detection of molecules and biomarkers, probed

by MNPs, was demonstrated22,23 down to a single molecule
detection level using, e.g., nanopore sensors.24

To comply with the stringent requirements of modern
research, existing chemical, biological, and medical procedures
evolve to become time and cost efficient by enabling a high-
throughput analysis of in vitro liquid samples at ultralow
volumes. Microfluidics offers vast advantages to address these
requirements as it deals with the control and manipulation of
liquids in confined channels, usually with a diameter of several
micrometers up to millimeters. Additional functionalities can
be added to this technology by introducing a second flow of an
immiscible liquid by, e.g., flow-focusing and T-junction
geometries.25,26 This transition from a continuous or single-
flow fluidics to a multi-flow fluidics (also known as droplet
microfluidics) provides major improvement of various medical
and (bio)chemical operations and assays. This technology
allows to realize homogenized isolated droplets, or micro-
environments, allowing high-throughput sample creation at
ultralow volumes down to femtoliters27 as well as high
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automatization potential by droplet splitting,28 merging,
incubation, and mixing.29 Using this methodology, various
application scenarios were demonstrated, e.g., polymerase
chain reaction (PCR),30 drug screening,31 immunoassays,32

electrophoresis,33 cell sorting,34 and single cell analysis.35 In
the research field of sensorics, it enables safe liquid sample
transport to the sensing structures, minimizing the risks of
contamination and further enables additional liquid manipu-
lation. Various strategies are present to detect microfluidic
droplets in a continuous stream, e.g., optical methods like
bright-field and fluorescence microscopy,34,36 laser-induced
fluorescence,37 and Raman spectroscopy38 as well as electro-
chemical methods using, e.g., field-effect transistors39 and
capacitors.40

During the last decades, the combination of magnetism,
micro-magnetofluidics, and microfluidics gained major interest
due to its potential for novel functionalities in lab-on-a-chip
approaches like sensing and actuating.41,42 In this regard,
droplet-based micro-magnetofluidics, also known as continu-
ous-flow micro-magnetofluidics,41 emerged as a novel analytic
tool encompassing integrated novel functionalities, e.g.,
analytics in a flow cytometry format,43−45 magnetic barcod-
ing,46 and sorting of magnetically encoded emulsion
droplets.47,48 Novel high-capacity indexing schemes were put
forth based on multiphase microfluidic networks for large-scale
screening applications.47,48 These features are crucial to
address the needs of modern medical research, e.g., drug
discovery.49

For these applications, high-performance magnetic field
sensors have to be integrated in microfluidic geometries to
enable real-time tracking of low concentrations of magnetic
species in droplets as they flow by the sensor. The detection of
magnetically active liquids and particles has been demonstrated
in both dynamic50,51 and static fashion52 down to a resolution
of one particle and down to 4 mg/cm3 for nanoparticle-based
ferrofluids in dynamic droplet flow.44,47 In a continuous flow
fluidics, giant magnetoresistance (GMR),49,53,54 anisotropic
magnetoresistance (AMR),55,56 tunnel magnetoresistance
(TMR),57,58 spin valve,59,60 and planar Hall effect (PHE)61

sensors were successfully applied to achieve detection of
various (non)biological specimens. However, only a few
investigations were carried out toward the integration of
magnetoresistive sensors (GMR and spin valves) into droplet-
based micro-magnetofluidic platforms,62−66 missing the
opportunities granted by droplet microfluidics like automa-
tization possibilities, lower sample consumption, higher
throughput, and higher sensitivity. In this context, further
improvements have to be conducted in order to boost the
sensitivity toward point-of-care analysis and biological or
medical applications by, e.g., utilization of nanosized particles
and circumventing the need of magnetic biasing of the
paramagnetic species and the sensor itself. Among the broad
variety of magnetoresistive sensors, PHE sensors gained high
interest based on their superior equivalent magnetic noise of 5
pT/√Hz at 10 Hz,67 making them promising candidates for
state-of-the-art dynamic (in-flow) magnetic droplet detection
systems. Here, we present for the first time the detection and
analysis of nanoliter-sized superparamagnetic droplets utilizing
the PHE sensor (Figure 1). Droplets encapsulate a ferrofluid
composed of 10 nm Fe3O4 nanoparticles at concentrations
ranging from 0.04 to 5 mg/cm3, which are relevant for
biological and medical applications like cancer thermotherapy
and MRI. The sensor was placed outside of a microfluidic tube,

thus avoiding liquid contamination and sensor abrasion even at
high flow rates. We examine the sensor response to moving
superparamagnetic droplets even without external biasing just
in the geomagnetic field and demonstrate the detection of
droplets at concentrations down to 0.58 mg/cm3. With this
performance, our detection platform with geomagnetic field
biasing droplets with a field of 50 μT outperforms the state-of-
the-art devices by 10 times in droplet-based micro-magneto-
fluidics with integrated GMR sensors yet biased to 1 mT
fields.44 The detection limit of our platform can be pushed
down to 0.04 mg/cm3 when biased with an external magnetic
field of 5 mT, which constitutes two orders of magnitude
enhancement over the state-of-the-art in droplet-based micro-
magnetofluidics. This technology holds great promise for
lowering the detection limit of lab-on-a-chip devices relying on
the detection of tiny quantities of MNPs and can complement
the optical detection methodologies of ferrofluid analysis since
all measured concentrations were not distinguishable using
conventional optical density (OD) measurements.

■ RESULTS AND DISCUSSIONS
Setup. Microfluidic ferrofluid droplets in hydrofluoroether

(HFE) oil were created in T-junction geometry using a
pressure-driven pump in commercial fluorinated ethylene
propylene (FEP) tubing with an inner diameter of 500 μm
(Figure 1A and Video S1). The volume of individual droplets
was varied between 70 and 250 nL by adjusting the flow ratio
of the two liquids. Various concentrations of ferrofluid per
droplet were achieved by dilution of the stock solution with
deionized water. Subsequently, the tube containing ferrofluid
droplets was aligned over the PHE sensor (Figure 1B,C),
which is a 200 nm-thick permalloy film patterned as an ellipse
(long axis along the current flow is 5 mm; short axis along the
voltage measurement electrodes is 0.625 mm). The sensor
equivalent magnetic noise is better than 200 pT/√Hz at 1 Hz

Figure 1. (A) Captured video frame of the microfluidic junction for
droplet generation (Video S1). The ferrofluid phase (top,
discontinuous phase) is separated into homogeneous nanoliter
droplets by the HFE oil phase (continuous phase, left side),
accomplished by a T-junction geometry, and guided through the
main channel (right side, emulsion phase). (B) Conceptual
illustration of the combination of the two technologies, namely,
droplet microfluidics (ferrofluid droplets in the HFE oil carrier phase)
and PHE-based sensorics. (C) Large-scale SEM image of the PHE
sensor center. The change of the in-plane voltage (Vxy) is measured
perpendicular to the applied current I. (D) Time evolution of the
transversal resistance of the PHE sensor (bottom) of passing
superparamagnetic droplets (top).
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and above (details are in Figures S1−S3), which increases
about 2.5 times when measured in a fluidic setup. The sensor
response is quantified as a change of the transversal resistance,
Rxy, measured at a 60 mA driving current.
The sensing area of the PHE sensor is between the voltage

leads, which are 0.625 mm apart (Figure 1C, details are in the
Experimental Section and Figure S1). The distance from the
sensor to the bottom of the droplet is 550 μm. To improve the
sensing performance, we adjust the characteristic diameter of a
fluidic droplet to be about 500 μm to match the sensing area of
the sensor. To bias ferrofluid droplets to an external magnetic
field of up to 5 mT, a dual Helmholtz coil setup was used, and
the magnetic field was applied perpendicular to the sensor
plane. Figure 1D shows a typical time trace of the PHE sensor
readout while a droplet chain (concentration of 5 mg/cm3

corresponding to 185 million particles per droplet; biasing field
of 5 mT) was passing above the sensor. The sensor readout is
modified by the in-plane component of the magnetic stray field
stemming from each magnetic droplet.
Droplet Detection Using PHE Sensors. Magnetic

droplets were biased using an external magnetic field generated
by a set of Helmholtz coils. The field varied from 0 to 5 mT.
When no field was applied by the coils, the droplets were
magnetized by the geomagnetic field. For our geographical
location (Dresden, Germany), the magnitude of the magnetic
field is close to 50 μT, and the field lines are inclined 66° with
respect to the surface. This field can partly align nanoparticles

in the droplet along the field lines, leading to a small stray field
emanating from the droplet. The PHE sensor response was
measured for droplet chains containing various concentrations
of a ferrofluid solution. The initial weight of ferromagnetic
nanoparticles per droplet with a volume of 100 nL was chosen
to be at 5 μg, corresponding to 1.85 × 108 particles per
nanoliter or 0.05 μg/nL or 5 mg/cm3. Further dilutions of the
solution led to 3.3, 2.5, and 2 μg of nanoparticle content, or
1.21 × 108, 9.26 × 107, and 7.3 × 107 particles per nanoliter,
respectively. These concentrations were chosen due to their
relevance for biomedical applications.6,11,12 The performance
of the PHE sensor for the detection of ferrofluid droplets with
different concentrations of ferrofluid exposed to different
magnetic fields applied perpendicular to the sensor plane is
shown in Figure 2A. The droplets flow at a constant speed of 1
mL/h at a flow ratio of ferrofluid-to-oil phases of 1. The entire
set of the collected experimental data is summarized in Figure
S4, demonstrating the actual transversal resistance readout
when droplets are biased to a specific field (5 mT−50 μT
geomagnetic field/zero external field). For instance, for a given
magnetic content of 5 μg per droplet and a volume of the
droplet of 100 nL, the sensor readout is about 40 mΩ in zero
external field and 90 mΩ at 5 mT. The sensor response is
enhanced with both the increase in the strength of the biasing
field and larger concentration of the ferrofluid solution per
droplet. Figure 2B depicts a close-up of the sensor response
when a single 250 nL droplet (indicated with red circles in the

Figure 2. (A) Composite plot showing the sensor readout for a single representative droplet (volume of 100 nL) possessing different
concentrations of ferrofluid (weight is indicated in each subpanel) biased to different magnetic fields. The data for each droplet is taken from a
measured sequence shown in Figure S4. Insets show zoomed views of the sensor response when droplets are biased to the geomagnetic field. (B)
Close-up of the time evolution of the sensor response during the event when a single droplet (5 μg; 5 mT bias) passes above the sensing area.
Insets show selected frames of a video sequence (Video S1) at the instances when the droplet (B-1) approaches the sensor, (B-2) is above the
sensor, and (B-3) departs from the sensor location. (C) Summary of the maximum sensor responses measured for droplets containing different
concentrations of ferrofluid and biased to various magnetic fields.
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insets in Figure 2B) is passing over the sensing area (indicated
with white arrows in the insets in Figure 2B).
The flow ratio of ferrofluid to oil is 2:1 at a speed of 0.5

mL/h for each flow (Supplementary Video S2). The mass of
nanoparticles in the droplet is 5 μg, and the droplet is biased
by an external magnetic field of 5 mT. The evolution of the
sensor response is correlated with the position of the droplet
with respect to the sensor location. A comparison of the
maximum PHE sensor response (peak values of the data
shown in Figure 2A) for the detection of droplets with various
concentrations and biased to different external fields is
summarized in Figure 2C (further details are in the
Experimental Section). A linear increase in the PHE signal is
observed with the increase in the external field for each of the
concentration of ferrofluid in droplets. Finally, in contrast to
previous measurements, the dynamic change of the magnetic
content in droplets was measured in the geomagnetic field in
order to evaluate the sensor platform’s performance for fast
alterations of nanoparticle contents (Figure S5). The
discrimination of the signal level is set between 5 and 1
mg/cm3, similar to the reference measurements discussed
above with a sensor resolution of 0.12 (2σ) and 0.24 mg/cm3

(4σ).
Exploring the Detection Limits. We observe a

pronounced sensor response even without application of an
external magnetic field using Helmholtz coils (Figure 2A, red
boxes), with a sensor response of about 40 μΩ for the smallest
nanoparticle mass per droplet (2 μg). This offers an appealing
possibility to use our detection platform for tracking
biologically and medically relevant ferrofluid concentrations
without the use of bulky coils or permanent magnets. In this
section, we analyze the limit of detection of our sensing
platform when 100 nL of droplets containing different
concentrations of ferrofluid are biased to the geomagnetic
field and to 5 mT (Figure 3). Each data point represents the
mean and standard deviation of the PHE sensor readout
measured for 50 droplets. Figure 3 demonstrates the successful
detection of the droplets containing down to 0.58 μg of
nanoparticles corresponding to the concentration of 0.58
mg/cm3 or 2.1 × 107 particles per nanoliter (top x-axis). If the
absolute number of nanoparticles is further reduced, to, e.g.,
1.5 × 107 (0.4 mg/cm3), no signal response could be observed
in the time domain. Still, a clear response of the sensor is
observed if the time-dependent data is transformed into the
frequency domain by Fourier transformation (Figure S6).
When droplets are biased with 5 mT, even smaller dilutions
down to 40 ng (0.04 mg/cm3) of nanoparticles per droplet are
detected, leading to a minimum number of nanoparticles per
droplet of about 1.4 millions. In this respect, the detection
limit of our sensing platform is by a factor of 100 enhanced
compared to the state-of-the-art devices for droplet-based
micro-magnetofluidics.44 We found the detection limit in 5 mT
fields via extrapolation of the signal trend at around 5 ng
(concentration of 5 μg/cm3). We account the difference of the
measured and theoretical detection limit by the distance of the
sensor to the droplets as well as the alignment of the PHE
sensor in the external magnetic field.
Sensing Performance for Different Flow Rates and

Droplet Sizes in the Geomagnetic Field. In practical
settings, it is required to perform measurements under
different flow rates and of chains of droplets of different
sizes. The result of this characterization is summarized in this
section for the case when the droplets are exposed to the

geomagnetic field only. First, we fix the ferrofluid-to-oil flow
ratio to 1:1, which allows us to produce droplets with a volume
of 100 nL. Then, the total flow rate is increased from 1 mL/h
(0.5 mL/h for each liquid phase) up to a total flow rate of 20
mL/h. This corresponds to the droplets passing the sensor at a
frequency of 0.3 Hz (flow rate of 1 mL/h) up to 13 Hz (flow
rate 20 mL/h). The analysis is shown in Figure 4A. Until a
droplet frequency of 2.2 Hz (flow rate of 4 mL/h), the peaks
can be analyzed based on the time domain data (Figure S7).
Further increase in the droplet frequency up to 13 Hz had to
be tracked in the frequency domain. Higher droplet
frequencies lead to a widening of the frequency-dependent
signal and therefore a decrease in the droplet response peak,
i.e., from 70 μΩ for 1 mL/h to 10 μΩ for 20 mL/h. We
account the difference of signal peak levels to inhomogeneities
during the droplet generation. Next, the influence of the
droplet size on the sensor response was investigated by keeping
the total flow rate constant at 1 mL/h (Figure 4B). To produce
droplets of different sizes, the ferrofluid-to-oil flow ratio was
changed (1:1, 2:1, and 1:2) resulting in droplet volumes of
100, 250, and 70 nL (insets in Figure 4B), respectively. For all
droplet volumes, the signal magnitude stays constant at about
120 μΩ. With the increase in the droplet volume, the half
width of the peak increases, which is in line with the longer
time the droplet spends above the sensor. This assumption is
supported by a calculation of the spatial distribution of
magnetic stray fields stemming from 70, 100, to 250 nL
droplets magnetized in a geomagnetic field (Figure 4C). In
these calculations, we treat a droplet as a cylinder with rounded
edges of a fixed diameter of 500 μm (details in the
Experimental Section). Further, we calculated the stray field
for each droplet volume for a pair of droplets in order to see
the interaction of the individual stray fields of each droplet in

Figure 3. Sensor response while measuring 100 nL droplets
containing ferrofluid at different concentrations when the droplets
are biased in the geomagnetic field (black points) and biased to 5 mT
using Helmholtz coils (green points). In the geomagnetic field, relying
on the analysis of the signal in time domain, the limit of detection
corresponds to 0.58 μg of nanoparticles per droplet. Fourier
transformation of the time-dependent signal allowed detection of
droplets containing an even lower concentration of nanoparticles
down to 0.4 μg (blue arrow and Figure S6). Utilizing a field of 5 mT
using Helmholtz coils, the detection limit is improved by an order of
magnitude. Droplets containing 40 ng of magnetic nanoparticles per
droplet can be readily detected. The extrapolated theoretical detection
limit is located at 0.25 μg in the geomagnetic field (black arrow) and 5
ng in the 5 mT magnetic field (green arrow). The red dashed lines are
guides for the eye, and each shown data point is an average of over 50
droplets.
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the separating oil phase between them. The calculated stray
field of all droplet volumes demonstrated the same magnetic
field strength (Figure 4C), explaining the same signal
magnitude for various droplet sizes (Figure 4B). However,
the spatial extension of stray fields along the motion direction
(along the tube) increases for larger droplets, explaining the
increased half width of the peak signal for bigger droplet
volumes. The most crucial parameter for a correct detection is
the distance between the sensor and droplets. The strength of
the stray field decays rather fast, therefore it is of advantage to
bring the sensor as close as possible to droplets. The
orientation of the millifluidic tube plays a minor part as long
as the tube passes the sensing area of the sensor, i.e., the area
between the measurement electrodes.

■ CONCLUSIONS

In summary, we present a droplet-based micro-magnetofluidics
platform with planar Hall effect sensorics. This combination
allows probing of moving superparamagnetic droplets in
tubings at various speeds, sizes, and concentrations of
magnetically active nanoparticles in the droplets. Utilizing
only the geomagnetic field, optically nondifferentiable droplets
with the concentration of ferrofluid down to 0.58 mg/cm3

could be detected, which is relevant for biological and clinical

settings. Furthermore, we boost the sensitivity by a factor of 10
in the geomagnetic field (down to 0.4 mg/cm3) and the state-
of-the-art sensitivity by a factor of 100 by using magnetic fields
up to 5 mT, thereby complementing the optical detection
methodologies of ferrofluid analysis. Doing so, even small
changes in the composition or amount of magnetic species in
microfluidic droplets become trackable, without being in direct
contact with the liquid and thus show a very low chance of
contamination the liquid sample. We are convinced that the
contactless tracking, probing, and observation of microfluidic
droplets can greatly contribute to the state-of-the-art magneto-
resistive sensing in the fields of (bio)chemistry, biology, or
medical application with dramatic downscaling of the analyzed
volume. Further improvement of this conjunction and lower
detection limits include optimization of the connecting
electronic devices and shielding geometries. Furthermore,
utilization of PHE sensors on flexible substrates68 can greatly
improve the system sensitivity since the sensing structures can
be brought in very close contact to the rounded tubing.69

Additionally, the use of nanoparticles with larger magnetization
can lead to further improvement in the limit of detection since
they will be better aligned in the same magnetic field compared
to ferrofluids used in this work. In turn, this will lead to the
enhancement of the stray field, which improves the limit of

Figure 4. (A) Fourier transformation of the time-dependent PHE readout signal taken from 100 nL droplet sequences prepared at the same flow
ratio of ferrofluid to oil of 1:1 and varied flow rate from 1 to 20 mL/h. (B) Close-up of the response signal appearance of one droplet for different
droplet volumes. (C) Stray field calculation of two droplets with the volume of 70 and 100 nL. The droplets are biased in the geomagnetic field.
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detection with respect to the amount of magnetic material per
droplet. However, care will need to be taken so that these
particles do not agglomerate and do not create clusters. Finally,
the high sensitivity of the developed platform shows high
potential to boost early detection of cancer by functionaliza-
tion of early cancer markers or antibodies utilizing, e.g.,
nanoporous iron oxide nanocubes.70

■ EXPERIMENTAL SECTION
Fabrication and Characterization of PHE Sensors.

Al2O3(60 nm)/Ta(5 nm)/permalloy(200 nm)/Ta(5 nm)
films are sputtered on (100)-oriented Si wafers in an ion
beam-sputtering (IBS) system (Nanoquest I, Intlvac). A
photo-lithography process is used for patterning the extended
film into an ellipse with the dimensions of 5 mm in length and
0.625 mm in width (Figure S1). Gold electrical contacts with a
thickness of 300 nm are deposited and patterned using a lift-off
strategy.71 Detailed magnetic and electronic noise character-
izations were performed on the fabricated PHE sensors
(Figures S2 and S3).
Droplet Fabrication and Delivery. Microfluidic droplets

were created using T-junctions connected to FEP-based
tubings with an inner diameter of 500 μm and outer diameter
of 1.6 mm (Dolomite Microfluidics, United Kingdom). While
HFE oil was utilized as the permanent phase, aqueous
ferrofluid was used as the droplet phase (Supplementary
Video S1). The respective liquids are pushed through the
tubing by syringes (VWR International, Germany) using a
syringe-based pump (nemeSYS 290 N, cetoni GmbH,
Germany). Typical flow rates were chosen between 0.5 and
2 mL/h. For high flow rate experiments, the flow rate was
increased up to 20 mL/h. The droplet-containing tubing was
aligned over the PHE sensor using an adapter guiding the
tubing in a semicircle over the sensor region (Supplementary
Video S2). Furthermore, the tubing was mechanically thinned
at the region where it touched the sensor surface to reduce the
distance between droplets and the sensor. Prior to every liquid
exchange in the syringes, they were carefully cleaned using
acetone, isopropanol, and DI water. Initially, ferrofluid stock
solution based on ferromagnetic nanoparticles (EMG700,
Ferrotec, USA) was diluted with DI water in a ratio of 1:4.
EMG700 contains colloidal nanoparticles with a diameter of
about 10 nm, designed in a way to avoid any cluster formation
using an anionic surfactant. Assuming a droplet size of 100 nL,
each droplet contained 25 nL of the ferrofluid solution or 5 μg
of pure nanoparticle mass. Smaller amounts of nanoparticle
mass for each droplet were achieved by further dilution of the
stock solution.
Data Capture and Analysis. PHE sensors were connected

to a resistance tensormeter,72−75 allowing a direct four-probe
measurement with direct data readout. Transverse resistance of
the PHE sensor was collected at a drive voltage amplitude of
15 V, resulting in a current amplitude of 60 mA through the
sensor, connected in series with a resistor of about 200 ohms.
For tests at low particle concentrations, the planar Hall voltage
generated by the sensor was stepped 20× using a transformer.
Stray Field Calculations. We calculate the spatial

distribution of a magnetic field outside the droplet filled with
magnetic nanoparticles. Due to the small size of magnetic
nanoparticles and their random distribution inside droplets, we
assume that (i) the droplet is homogeneously filled with
nanoparticles and (ii) that it could be represented as a magnet
of the appropriate shape and dimensions. We numerically

calculate the spatial distribution of the magnetic field generated
by a droplet considering that the droplet is homogeneously
magnetized along the motion direction with a saturation
magnetization scaled accordingly to the particle concentration
and magnetic moment alignment.
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(13) Andreś Vergeś, M.; Costo, R.; Roca, A. G.; Marco, J. F.; Goya,
G. F.; Serna, C. J.; Morales, M. P. Uniform and Water Stable
Magnetite Nanoparticles with Diameters around the Monodomain−
Multidomain Limit. J. Phys. D: Appl. Phys. 2008, 41, 134003.
(14) Kang, T.; Li, F.; Baik, S.; Shao, W.; Ling, D.; Hyeon, T. Surface
Design of Magnetic Nanoparticles for Stimuli-Responsive Cancer
Imaging and Therapy. Biomaterials 2017, 136, 98−114.
(15) Vegerhof, A.; Motei, M.; Rudinzky, A.; Malka, D.; Popovtzer,
R.; Zalevsky, Z. Thermal Therapy with Magnetic Nanoparticles for
Cell Destruction. Biomed. Opt. Express 2016, 7, 4581.
(16) Tay, Z. W.; Chandrasekharan, P.; Chiu-Lam, A.; Hensley, D.
W.; Dhavalikar, R.; Zhou, X. Y.; Yu, E. Y.; Goodwill, P. W.; Zheng, B.;
Rinaldi, C.; Conolly, S. M. Magnetic Particle Imaging-Guided Heating
in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic
Hyperthermia Therapy. ACS Nano 2018, 12, 3699−3713.
(17) Wust, P.; Gneveckow, U.; Wust, P.; Gneveckow, U.; Johannsen,
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