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ABSTRACT: The current study determined the natural angiogenic molecules using an unbiased metabolomics approach. A chick
chorioallantoic membrane (CAM) model was used to examine pro- and antiangiogenic molecules, followed by gas
chromatography−mass spectrometry (GCMS) analysis. Vessel formation was analyzed quantitatively using the angiogenic index
(p < 0.05). At embryonic day one, a white streak or circle area was observed when vessel formation begins. GCMS analysis and
database search demonstrated that angiogenesis may initiate when oleic, cholesterol, and linoleic acids increased in the area of
angiogenic reactions. The gain of function study was conducted by the injection of cholesterol and oleic acid into a chick embryo to
determine the role of each lipid in angiogenesis. We propose that oleic acid, cholesterol, and linoleic acid are natural molecules that
set the platform for the initiation stage of angiogenesis before other proteins including the vascular endothelial growth factor,
angiopoietin, angiotensin, and erythropoietin join as the angiome in sprout extension and vessel maturation.

■ INTRODUCTION
Angiogenesis involves the assembly of angioblasts, vessel
sprouting, and pericyte conscripting, as well as the formation
of branches, tubes, and capillaries by the endothelial smooth
muscle cells from the current vessel network.1−4 The vascular
network formed by the proangiogenic factors functions in the
transportation of oxygen and nutrients to various tissues where
they are required for growth and proper development.
Angiogenesis is controlled by the balance between anti- or
proangiogenic activity, resulting from soluble and membrane-
bound factors, including neutrophils, stem cell factors,
semaphorins, ephrins, matrix metalloproteinase, endostatin,
proteases, cytokines, and chemokines. Uncontrolled angio-
genesis has been implicated in pathophysiological conditions
including cancer, inflammation, diabetes, and neurodegenera-
tion.5−7

Numerous stages of sprout extension and vessel maturation
have been studied extensively; however, the exact molecular
mechanisms that initiate the angiogenic reactions remain
elusive.2,8−13 Previously, we demonstrated that natural products
containing a conjugated double bond, including anthocyanin
extracts from Hibiscus sabdariffa, may control proper angio-
genesis.14 The results provided evidence that anthocyanin is an
antiangiogenic modulator that can be used to treat uncontrolled
neovascular-related diseases, possibly binding to vascular
endothelial growth factor receptor 2 (VEGFR2).
In this study, we hypothesized that specific natural molecules

present in chick embryo are implicated in angiogenic initiation,
either to upregulate or downregulate the process. To test the
hypothesis, we examined the natural molecules as a promoter or
inhibitor using chick chorioallantoic membrane (CAM) models
with an unbiased metabolomics approach by gas chromatog-
raphy−mass spectrometry (GCMS) and vessel morphology
analysis. Our experiments demonstrated that oleic acid, linoleic

acid, and cholesterol could be involved in the initial step of vessel
formation.

■ RESULTS AND DISCUSSION

White Lipid Complex as the Angiogenesis Initiators.
When a fertilized chick embryo is incubated, the first sign was
observed that a white lipid complex area was formed as the
angiogenesis initiation signature (Figure 1).15 The white streak
or circular area was analyzed further in chick embryo incubation
day 1 (ED = 1). The white lipid complex was collected from 8,
16, and 24 h for kinetic analysis, and time-dependent changes
were observed. The white area becomes evident by time (8, 16,
and 24 h), and the area becomes smaller and distinct. Pixels of
each area were analyzed using 3D analysis in ImageJ software.
Next, we examined the metabolome of the chicken embryo on

day 1 (ED 1). After 24 h of incubation, the white rounded
section was distinguished, as shown by the arrow (Figure 2).
Molecules in two distinct areas of A and B were extracted using a
solvent mixture consisting of chloroform, methanol, and water
(or phosphate-buffered saline, PBS). The hydrophobic mole-
cules extracted using the organic solvent were analyzed by
GCMS.
To compare the white lipid complex with the vessel area, we

further examined the metabolome of the chicken embryo at day
7 (ED 7). After 7 days of incubation, blood vessel formation was
distinguished, as shown by area A (Figure 3). Three distinct
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areas of A (vessel area), B (vessel starting point), and C
(nonvessel area) were extracted using a solvent mixture
(chloroform, methanol, and PBS). The hydrophobic molecules
were analyzed by GCMS and compared to molecules from day
1.16−18

GCMS Analysis of Angiogenic Molecules. The unknown
molecules from Figures 2 and 3 were analyzed using GCMS
(Figure 4). We observed two distinct peaks at 22 and 25 min
from the white area (Figure 2A), indicating twomolecules of the
highest concentrations (10−12-fold) at embryonic day 1 in the
vessel area. Unknown molecules in the nonvessel area at
embryonic day 1 were also analyzed by GCMS. The result shows
that 12 molecules exist between 8 and 30 min of retention time
(Figure 5).

The two distinct peaks at 22 and 25 min in the white area, as
the angiogenesis initiation signature, were further analyzed by
the mass to charge ratio (m/z) and relative abundance (Figure
6). The fragmentation pattern of the major peaks at 22 min is
assigned as follows: C3 = 71, C4 = 86, C7′ = 97, C7 = 129, C19−
CH3OH = 264, and the molecular ion peak M+ = 282 (Figure
6A).
The major peaks with m/z and the relative abundance at 22

min were identified by the database search as oleic acid
compared to the positive control (Figure 6B). m/z values of all
fragments were compared to the authentic sample of oleic acid
and the known spectrum of oleic acid from the database.19−22

The next major peak at 25min in the vessel area was identified
as cholesterol using GCMS analysis (Figure 7). The major peaks

Figure 1.White lipid complex area as the angiogenesis initiation signature. The white streak or circular area was observed in chick embryo incubation
day 1 (ED = 1). The white area was expanded for analysis for 8, 16, and 24 h, and pixels of each area were analyzed using the 3D tool in ImageJ software.

Figure 2. Unbiased metabolomics analysis of chicken embryo on day 1
(ED 1). After 24 h of incubation, the white rounded section was
distinguished, as shown by the arrow. Organic molecules were extracted
from two distinct areas of A and B using chloroform, methanol, and
PBS. The hydrophobic molecules from areas A and B were analyzed by
GCMS.

Figure 3. Unbiased metabolomics analysis of chicken embryo at day 7
(ED 7). After 7 days of incubation, blood vessel formation was
distinguished, as shown by area A. Organic molecules were extracted
from three distinct areas of A (vessel area), B (vessel starting area), and
C (nonvessel area) and were extracted using chloroform, methanol, and
PBS. The hydrophobic molecules from areas A, B, and C were analyzed
by GCMS.
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are fragments of cholesterol that include C4 = 55, C7 = 97, C11 =
145, C16 = 231, 241, C19 = 275, M+−OH = 369, and the
molecular ion as M+ (C27) = 386 (Figure 7A). The identity of
the major angiogenic molecule was validated by the comparison
to the positive control (Figure 7B). m/z values of all fragments
were compared to the authentic sample of cholesterol and the
known spectrum of cholesterol from the database.23,24

Interestingly, we observed one more molecule at the 25 min
peak from the vessel area, andGCMS analysis demonstrated it as
linoleic acid (Figure 8). The major peaks include C4′ = 55, C3 =

72, C4 = 87, C7′ = 94, C7′ = 97, C7 = 135, C11′ = 150, M+−CO2 =
236, and the molecular ion peak M+ = 280 (Figure 8A). The
database search identified the unknownmolecule as linoleic acid
compared to the positive control (Figure 8B). m/z values of all
fragments were compared to the known spectrum of linoleic acid
from the database.20,25−27 GCMS analysis of the vessel area from
Figure 3 also demonstrated that oleic acid, linoleic acid, and
cholesterol are the major angiogenesis signature molecules.
Next, we examined potential angiogenic molecules using a

gain-of-function approach by the addition of cholesterol and

Figure 4. GCMS chromatogram of the vessel area at chick embryonic day 1. One gram of white area was collected and extracted using an organic
solvent mixture.Molecules in the white area were analyzed using GCMS to identify molecular weight and fragmentation patterns. Two distinct peaks at
22 and 25min were further analyzed for the secondmass spectrum form/z values for the molecular ion peak (M+) and the tallest base peak. The X-axis
represents retention time (minutes), and the Y-axis shows relative abundance.

Figure 5.GCMS chromatogram of the nonvessel area at chick embryo day 1. One gram of the white area was collected and extracted using an organic
solvent mixture. Molecules in the nonvessel area were analyzed using GCMS to identify molecular weight and fragmentation patterns. Twelve peaks
between 5 and 30 min were further analyzed for the second mass spectrum form/z values. The X-axis represents retention time (minutes), and the Y-
axis shows relative abundance.
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oleic acid into the chick embryo. Accelerated vessel formation
was observed by the injection of cholesterol+ (55 mg) and

cholesterol++ (110mg) in a dose-dependent manner, compared
to the negative control (solvent only) (Figure 9). Cholesterol

Figure 6. GCMS analysis of the vessel area at 22 min. (A) Molecules in the white circular area at 22 min were analyzed by their molecular weight and
fragmentation pattern. The fragmentation pattern of the major peaks is assigned as follows: C3 = 71, C4 = 86, C7′ = 97, C7 = 129, and molecular ionM+

(C18) = 282. (B) Database search identified the unknown molecule as oleic acid, as the positive control.m/z values of all fragments were compared to
an authentic sample of oleic acid (not shown) and the known spectrum of oleic acid from the database.

Figure 7. GCMS analysis of the vessel area at 25 min. (A) Molecules in the white circular area at 25 min were analyzed by their molecular weight and
fragmentation pattern. Fragmentation pattern of the major peaks are assigned as follows: C4 = 55, C7 = 97, C11 = 145, C16 = 231, 241, C19 = 275, M +
−OH = 369, and molecular ion as M+ (C27) = 386. (B) Database search identified the unknown molecule as cholesterol, as a positive control. m/z
values of all fragments were compared to an authentic sample of cholesterol (not shown) and the known spectrum of cholesterol from the database.
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was injected on the CAM after preincubation day 2, and vessel
formation was analyzed postinjection of cholesterol day 1.
The kinetic study for gain of function was conducted by the

injection of cholesterol at different concentrations and examined
at various time points. Two optimized concentrations of
cholesterol (55 and 110 mg) were injected after preincubation

day 2, and chick embryo was analyzed postinjection of
cholesterol day 4, showing time-dependent vessel growth after
the addition of cholesterol (Figure 10). However, postinjection
of cholesterol day 1 showed the more drastic changes in vessel
growth than postinjection of cholesterol day 4, indicating that
the effect of cholesterol on angiogenesis is significant (p < 0.001)

Figure 8. GCMS analysis of the vessel area at 25 min. (A) Molecules in the white circular area at 25 min were analyzed by their molecular weight and
fragmentation pattern. The fragmentation pattern of the major peaks is assigned as follows: C4′ = 55, C3 = 72, C4 = 87, C7′ = 94, C7′ = 97, C7 = 135, C11′ =
150, M+−CO2 = 236, and molecular ion peak M+ = 280. (B) Database search identified the unknown molecule as linoleic acid, shown as a positive
control.m/z values of all fragments were compared to an authentic sample of linoleic acid and the known spectrum of linoleic acid from the database.

Figure 9. Cholesterol addition experiment. The gain-of-function study
was conducted by the addition of cholesterol+ (55 mg), cholesterol++
(110 mg), and the control (solvent only). Cholesterol was added after
preincubation, day 2, and chick embryo was analyzed postinjection of
cholesterol, day 1. Scale bar = 10 mm.

Figure 10. Cholesterol addition experiment. The gain-of-function
study was conducted by the addition of cholesterol+ (55 mg),
cholesterol++ (110 mg), and the control (solvent only). Cholesterol
was added after preincubation, day 2, and chick embryo was analyzed
postinjection of cholesterol, day 4. Scale bar = 10 mm.
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at an early time point. The injection of oleic acid showed a
similar pattern of vessel growth as cholesterol addition (Figure
11).

Time-dependent and dose-dependent vessel growth were
analyzed quantitatively using bioinformatics tools, including
Angiogenesis Analyzer and AutoTube. To determine the
angiogenic morphology systematically, we measured 21
angiogenic indices using Angiogenic Analyzer macro (Gilles
Carpentier, http://image.bio.methods.free.fr/ImageJ/
Angiogenesis-Analyzer-for-ImageJ) on cholesterol-treated ver-
sus control chick embryos (CAM). The Angiogenic Analyzer
detects vessel networks and analyzes the vascular organization of
endothelial cells. To evaluate the proangiogenic effects of oleic
acid, cholesterol, and linoleic acid, the Analyzer obtains a
quantitative evaluation of the vessel network by extracting
characteristic information of the angiogenic images. Cholester-
ol/oleic acid-treated samples were analyzed using the raw image
and the edge/inverted image (Figure 11).
We determined the angiogenic parameters, including

extremities, nodes, junctions, master junction, master segments,
master segment length, meshes, total mesh area, number of
segments, isolated elements and branches, number of segments,
branches, number of isolated elements, total length, total branch
length, total segment length, total branch length, total isolated
branch length, branching interval, total segment length/
branches, mesh index, master segment length/master segments,
and mean mesh size (Supporting Information, Figures S1−S5,
Table S1). Quantitative analysis revealed that cholesterol++
(110mg) generated longer vessels andmore branches compared
to the control and less cholesterol+ (55 mg) addition (p <
0.001) (Figure 12). GCMS analysis showed that specific lipids
increased to generate the white circle area just before massive
angiogenic reactions, implying that the hydrophobic micro-
environment might be required for the initial vessel growth.
Abnormal vessel formations accelerate the progression of

specific angiogenic diseases in the retina including diabetic
retinopathy (DR) and age-related macular degeneration
(AMD).28−35 Adequate vessel growth and maintenance
represent the coordinated process of endothelial cell prolifer-
ation, matrix remodeling, and differentiation. Uncontrolled
angiogenic reactions are the major pathological components of

the late stage of wet AMD when abnormal blood vessels are
developed in the macula.36

The chick embryo model is a powerful tool to analyze the
angiogenic factors, including proteins, small molecules, and
cells.37−42 The CAM is an indicator of vessel morphology,
containing highly vascularized tissues with short kinetics as 21
days of phenotypic time points.43−47

Previously, our proteomic studies under stress conditions
identified the molecular changes in the retina and retinal
pigment epithelium (RPE). Our data demonstrated that certain
lipids were altered, including cardiolipin and cholesterol as
specific biomarkers of angiogenesis and apoptosis in the retina
and RPE under stress conditions.48

In addition, we determined themechanism underlying normal
and pathological angiogenesis, regulated by H. sabdariffa
extracts as natural antiangiogenic molecules, whereas vegetable
lipids may accelerate vessel growth. We suggested that
anthocyanin from the Hibiscus plant may bind to VEGFR2 to
inhibit angiogenesis. We compared antiangiogenic anthocyanin
to selected fatty acid mixtures as angiogenic stimulators. Fatty
acids, including oleic (18:1), linoleic (18:2, w6), linolenic (18:3,
w3), palmitic (16:0), and palmitoleic (16:1), upregulated vessel
length and branches by 20−50% compared to the negative
control.
The current study determines the angiogenesis initiators in

the chick embryo using a metabolomics approach including
mass spectrometry and vessel morphology analysis. Despite the
fact that the angiogenesis-related proteins including VEGF and
erythropoietin have been considered as proangiogenic factors,
the molecular function of small organic molecules remains
elusive. It is a reasonable hypothesis that specific lipids may play
certain roles in angiogenesis based on pro- and antiangiogenic
reactions including free fatty acids or cholesterol.

Fatty Acids as Angiogenic Stimulators. Fatty acids are
effective proangiogenic factors including eicosanoid that
regulates vascular endothelial cell proliferation, migration, and
capillary formation.49−54 Free fatty acids induce activation of
signal transduction pathways that mediate several biological
processes in addition to the role of the energy source of many
carbon−carbon bonds.55−58

The current experiments indicate that oleic acid, cholesterol,
and linoleic acid may act as potential molecular determinants
and initiators of angiogenesis for the proper balance of
acceleration and inhibition signaling that controls the vascular

Figure 11. Cholesterol or oleic acid addition experiment. Gain-of-
function study was conducted by the addition of cholesterol+ (55 mg),
cholesterol++ (110 mg), oleic acid + (45 mg), and oleic acid ++ (200
mg) compared to the negative control (solvent only). Cholesterol or
oleic acid were added after preincubation, day 2, and chick embryo was
analyzed postinjection, day 4. Vessel morphology was further analyzed
using bioinformatics tools including Angiogenesis Analyzer. Scale bar =
5 mm.

Figure 12. Angiogenic analysis by bioinformatics tools. Vessel
morphology, including vessel length and branches, was analyzed
quantitatively using the angiogenic index. The vessel length is longer in
cholesterol+ (twofold) and cholesterol++ (sixfold) compared to the
negative control (vehicle only) at preincubation, day 2 and post-
injection, day 1.
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microenvironment. The natural angiogenic molecules could be a
potential target for the treatment of uncontrolled angiogenic
diseases including DR and AMD.
Oleic acid is a C18 monounsaturated fatty acid with the double

bond at C9, activating G protein-coupled receptors including
ERK1/2 to induce cancer cell proliferation.59,60 Oleic acid exists
in normal serum (50 μmol/L), but with a higher concentration
(>0.025 mmol/L), oleic acid may induce tumor cell develop-
ment.61,62 Oleic acid induces proliferation, matrix metal-
loproteinase-9 (MMP-9) secretion, migration, and invasion.63

In terms of protein−metabolite interaction, oleic acid induces
AKT1 and AKT2 activation and an increase in NFκB-DNA
binding activity in cancer cells.60,64−66 Endothelial cell migration
in vessel growth requires oleic acid-specific proteins including
FFAR1, FFAR4, EGFR, AKT, and PI3K. Recently, it has been
reported that nitro-oleic acid enhances regional angiogenesis in
an abdominal wall defect murine model.67−69

Angiogenesis is regulated by cholesterol efflux from
endothelial cells to high-density lipoproteins via apoA-I binding
protein.70 Higher microvessel density was observed from the
high-cholesterol/high-fat diet to conclude that hypercholester-
olemia accelerates tumor growth and induces angiogenesis in
vivo.71−73

Conjugated linoleic acid has controversy as an antiangiogenic
or proangiogenic molecule based on the kinetics and dose-
dependent mechanisms in the various models.74−77 As an
accelerator of angiogenesis, linoleic acid can enhance the
plasminogen activator inhibitor 1 (PAI-1) and induce angio-
genesis by suppression of angiostatin. Linoleic acid does not
alter tumor cell growth in vitro; however, dietary linoleic acid
upregulates tumor growth in vivo.
Linoleic acid upregulates leukotriene B4 (LTB4), tumor

necrosis factor-α (TNF-α), and cytokine-induced neutrophil
chemotaxis (CINC-2αβ) and downregulates macrophage
inflammatory protein-1 (MIP-1) and macrophage chemo-
attractant protein-1 (MCP-1).78 Furthermore, linoleic acid
induces angiogenesis through specific mediators including
angiopoietin-2 (ANGPT-2) and VEGF. Linoleic acid with the
conjugated double bonds may have dual roles as an
antiangiogenic, antioxidative molecule (double bond oxidation)
and a proangiogenic molecule as a free fatty acid complex for
vessel growth and angiogenic protein recruiter under the
microenvironment. Our data imply that the initial reactions of
angiogenesis may demand specific unsaturated fatty acids and
cholesterol for their carbon building block and an energy source.

■ CONCLUSIONS

In this study, we hypothesized that the proangiogenic and
antiangiogenic molecules exist as the natural angiogenic
determinants, which regulate the development of blood vessel
networks. We identified the lipid complex as the angiogenesis
signature and vessel growth molecules through a metabolomics
approach. Mass spectrometry analysis identified oleic acid,
cholesterol, and linoleic acid as natural angiogenesis initiators
that control vessel growth in a time-dependent and dose-
dependent manner. Quantitative determination of angiogenesis
using 21 angiogenic indexes provided the evidence that the
uncovered lipids initiate angiogenesis and are a potential drug
target for treating uncontrolled angiogenesis-related diseases,
including DR and AMD.79−82

■ MATERIALS AND METHODS

In Vivo Experiments.We followed the NIH Guide and the
Association for Research in Vision and Ophthalmology
(ARVO) statement for in vivo experiments. Avian embryos are
not considered live animals under the Public Health Service
(PHS) policy. The use of chicken embryos at gestation day 12
and younger does not require an Animal Use Protocol
Application from the Institutional Animal Care and Use
Committee (IACUC). Chick embryos younger than embryonic
day 13 (ED13) are assumed unable to experience pain.
Therefore, ED13 and younger embryos were euthanized by
hypothermia, typically conducted by placing the eggs in a −20
°C freezer or <4 °C for 4 h. Embryonic death was confirmed by
decapitation, membrane disruption, or maceration. Chick
embryos between ED13−ED17 can experience pain and were
euthanized by cervical dislocation.

Chick Embryo Incubation. We used CAM assay to
investigate the vascular morphology and angiogenic molecules
using metabolomics approaches including mass spectrometry
analysis.83−85 Fertilized eggs of white Leghorn chickens were
purchased from Veterinary Research Institute Jos and incubated
for 1−21 days at 37.5 °C with 62−72% humidity in a laboratory
incubator with continuous rotation. Chick embryos were
incubated for each day (ED1−ED21) and harvested in Petri
dishes.
For lipid addition experiments, both dose-dependent effects

and time-dependent vessel growth were examined. Cholesterol
(55, 110 mg) or oleic acid (45, 200 mg) in PBS/dimethyl
sulfoxide was added after preincubation day 2 using a
microsyringe (200 μL capacity, Hamilton Company, Bonaduz,
Switzerland) through the hole (0.2 mm diameter) made with
forceps. Solvent toxicity was validated by the negative control
(vehicle only). After lipid addition, the chick embryo was sealed
with 3M transparent scotch tape and further incubated for 1−4
days followed by harvest and vessel analysis.

Lipid Extraction from Chick Embryo. One gram of each
sample was collected from the vessel area, vessel beginning area,
and nonvessel areas of the chick embryo and extracted using
organic solvents (methanol 2 mL, water or PBS 4 mL, and
chloroform 8 mL). The mixtures were mixed using a vortex until
the solution becomes homogenous. The samples were
centrifuged (3500g for 5 min). The lower phase was collected
into vials and evaporated to dryness at room temperature (27 ±
3 °C), and the samples were subsequently dissolved in hexane
and were used for biochemical analysis.86,87

GCMS Analysis. GCMS analysis was carried out using an
Agilent Technologies gas chromatograph (Agilent 7890A)
coupled to a mass spectrometer (Agilent 5975C) and fitted
with an autosampler (Agilent 7683B). Samples (0.2 μL) were
injected using a split ratio of 1:1 by the autosampler into the
inlet. The capillary column (DB-5MS 30 m × 0.322 mm × 0.25
μm) with a temperature limit of 325 °C was used, and
temperature programming was initiated at 60 °C for 1 min and
continued to increase by 10 °C/min to 280 °C for 21min, giving
rise to a total of 35 min run time. Helium gas of 99.99% purity
was used as the carrier gas at a flow rate of 1.1 mL/min at a
pressure of 5.154 psi. Finally, the identity of the samples was
obtained through the interpretation of the mass spectrum from
the database of the National Institute Standard and Technology
(NIST 2014 and NIST 2011).
The unknown component of the mass spectrum was

compared to the known compounds stored in the database of
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the instrument. The metabolome database (http://www.hmdb.
ca/spectra/ms/search) was searched manually for the con-
firmation of lipids presented by the NIST database, according to
their mass to charge ratio, fragmentation pattern, and relative
abundance.23,27,88,89

Angiogenic Analysis of the Chick Embryo CAM. Vessel
morphology was analyzed quantitatively using 21 angiogenic
parameters by bioinformatics tools that include Angiogenesis
Analyzer macro connected ImageJ software.90−94 Angiogenesis
Analyzer macro was installed in the toolsets (Gilles Carpentier,
http://image.bio.methods.free.fr/ImageJ/Angiogenesis-
Analyzer-for-ImageJ). Each image was converted into a 16-bit
image, and HUVEC phase contrast/Fluo images were analyzed
to show vessel morphology. Besides, the following software was
used for comparison, AutoTube (https://github.com/
autotubularity/autotube), AngioTool (http://angiotool.nci.
nih.gov), REAVER (https://github.com/bacorliss/public_
REAVER), VESSGEN 2D (https://software.nasa.gov/
software/ARC-17621-1), and Vessel Analysis (https://imagej.
net/Vessel_Analysis). The angiogenic analysis showed changes
in vessel morphology including vessel length, branches, and
extremities; nodes were identified as three neighbors; twig,
segment delimited by two junctions and a branch. A junction is
implicated only in-branch, and master junctions are delimiting
master segments. The master tree is composed of master
segments associated with master junctions delimiting the
meshes. Two close master junctions can be fused into a unique
master junction and the underlying segment.

■ STATISTICAL ANALYSIS
Stat View software was used for statistical analysis. Two-group
comparisons were analyzed by the two-tailed t-test, and multiple
comparisons were evaluated by ANOVA and Tukey or Dunnet
tests, as appropriate. Values are presented as the mean of three
technically independent experiments with a large number of
biological samples (n = 282). P < 0.05 is considered statistically
significant.
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Behcȩt Uveitis. Retina 2018, 38, 828−840.

(94) Jonathan, E.; Enfield, J.; Leahy,M. J. CorrelationMapping: Rapid
Method for Retrieving Microcirculation Morphology from Optical
Coherence Tomography Intensity Images.Dynamics and Fluctuations in
Biomedical Photonics VIII; BiOS, SPIE: San Francisco, 2011; p 78980M.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c02850
ACS Omega 2020, 5, 20575−20585

20585

https://dx.doi.org/10.1016/j.lfs.2013.09.024
https://dx.doi.org/10.1016/j.lfs.2013.09.024
https://dx.doi.org/10.1016/j.lfs.2013.09.024
https://dx.doi.org/10.1016/j.brainres.2008.01.096
https://dx.doi.org/10.1016/j.brainres.2008.01.096
https://dx.doi.org/10.1371/journal.pone.0165115
https://dx.doi.org/10.1371/journal.pone.0165115
https://dx.doi.org/10.1371/journal.pone.0165115
https://dx.doi.org/10.1016/j.preteyeres.2016.04.002
https://dx.doi.org/10.1016/j.preteyeres.2016.04.002
https://dx.doi.org/10.1016/j.exer.2018.09.012
https://dx.doi.org/10.1016/j.exer.2018.09.012
https://dx.doi.org/10.1016/j.exer.2018.09.012
https://dx.doi.org/10.2147/EB.S69185
https://dx.doi.org/10.2147/EB.S69185
https://dx.doi.org/10.2147/EB.S69185
https://dx.doi.org/10.3390/ijms13089959
https://dx.doi.org/10.3390/ijms13089959
https://dx.doi.org/10.3390/ijms13089959
https://dx.doi.org/10.1007/s00418-008-0536-2
https://dx.doi.org/10.1007/s00418-008-0536-2
https://dx.doi.org/10.1007/s00418-008-0536-2
https://dx.doi.org/10.3390/ijms13089959
https://dx.doi.org/10.3390/ijms13089959
https://dx.doi.org/10.3390/ijms13089959
https://dx.doi.org/10.1093/infdis/141.5.672
https://dx.doi.org/10.1093/infdis/141.5.672
https://dx.doi.org/10.1194/jlr.M007518
https://dx.doi.org/10.1194/jlr.M007518
https://dx.doi.org/10.1194/jlr.M007518
https://dx.doi.org/10.1159/000219679
https://dx.doi.org/10.1159/000219679
https://dx.doi.org/10.1371/journal.pone.0150085
https://dx.doi.org/10.1371/journal.pone.0150085
https://dx.doi.org/10.1007/s10115-010-0377-x
https://dx.doi.org/10.1007/s10115-010-0377-x
https://dx.doi.org/10.1007/s10456-018-9652-3
https://dx.doi.org/10.1007/s10456-018-9652-3
https://dx.doi.org/10.1097/IAE.0000000000001587
https://dx.doi.org/10.1097/IAE.0000000000001587
https://dx.doi.org/10.1097/IAE.0000000000001587
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c02850?ref=pdf

