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Abstract

To maintain the homeostatic environment required for proper function of CNS neurons the 
endothelial cells of CNS microvessels tightly regulate the movement of ions and molecules 
between the blood and the CNS. The unique properties of these blood vascular endothelial 
cells are termed blood-brain barrier (BBB) and extend to regulating immune cell trafficking 
into the immune privileged CNS during health and disease. In general, extravasation of 
circulating immune cells is a multi-step process regulated by the sequential interaction of 
adhesion and signalling molecules between the endothelial cells and the immune cells. 
Accounting for the unique barrier properties of CNS microvessels, immune cell migration 
across the BBB is distinct and characterized by several adaptations. Here we describe 
the mechanisms that regulate immune cell trafficking across the BBB during immune 
surveillance and neuroinflammation, with a focus on the current state-of-the-art in vitro and 
in vivo imaging observations.

Multi-step immune cell migration across the 
vascular wall: an introduction

A glossary of immunology terms is presented in Table 1 
for better understanding of this review.

Extravasation of circulating immune cells across the 
vascular wall is a multi-step process characterized by 
the sequential interaction of adhesion and signalling 
molecules on the vascular endothelial and immune 
cells. Pioneering in vivo and in vitro live cell imaging 
studies of the Butcher and Springer laboratories have 
already established in the early 1990s that immune cells 
as diverse as naïve lymphocytes and neutrophils use a 
multi-step extravasation process to leave the blood stream 
specifically in postcapillary venules reaching lymph nodes 
and inflamed tissues, respectively (1, 2). Live cell imaging 
has allowed to visualize that in postcapillary venules 

immune cells marginate and after an initial tether or 
capture, roll along the endothelial cell surface, a process 
mediated by selectins and their respective carbohydrate 
ligands (1). Rolling reduces the speed of the immune cells 
allowing for their subsequent recognition of chemokines 
immobilized on proteoglycans on the surface of 
endothelial cells with their G-protein-coupled receptors 
(GPCRs) (reviewed in (3)). GPCR activation triggers 
inside-out-activation of immune cell integrins, inducing 
profound conformational changes that ultimately result 
in a transition from low to a high affinity status of the 
individual integrins in addition to integrin clustering 
increasing integrin avidity (4). Activated integrins enable 
firm arrest of the immune cells on the luminal surface 
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of the endothelial cells by engagement of endothelial 
adhesion molecules from the immunoglobulin 
superfamily (IgCAMs). Subsequent polarization and 
crawling on the luminal side of the endothelium allows 
the immune cells to find the endothelial junctions, which 
allow for their diapedesis across the endothelial barrier 
(reviewed in (3)). Before reaching the tissue parenchyma, 
immune cells have to cross the endothelial basement 
membrane, a dense network of extracellular matrix 
proteins, which establishes an additional barrier for their 
passage (reviewed in (3)).

The CNS is an immune privileged organ where the 
endothelial, epithelial and glial brain barriers strictly 
control immune cell entry into the different compartments 
of the CNS (5). Major differences in cellular composition, 
vessel and barrier chacteristics between the peripheral and 
CNS vasculature are summarized in Table 2. Immune cells 
can reach the CNS via three different entry sites: via CNS 
parenchymal and leptomeningeal blood vessels and via 
the choroid plexus (6). Here we will focus on discussing 
our current knowledge on immune cell trafficking across 

CNS parenchymal and leptomeningeal microvessels, 
which establish the blood-brain barrier (BBB).

The blood-brain barrier

The BBB is a physical and functional barrier present at 
the level of the CNS microvasculature. Originally the 
unique biochemical characteristics of BBB endothelial 
cells including complex tight junctions (TJs) between 
the endothelial cells and polarized expression of specific 
transporters and efflux pumps were considered restricted 
to capillaries. However, recent studies have provided 
evidence that the unique physical and metabolic barrier 
characteristics extend to the endothelial cells of CNS 
postcapillary venules (7, 8). Therefore we and others have 
extended referring to this vascular segment as BBB (9), as 
these characteristics impact on immune cell trafficking 
into the CNS (7, 10, 11).

Structurally, the BBB is localized at the level of the 
highly specialized endothelial cells, which exert most of 

Table 1 Immunology glossary.

Terms Explanation

Antigen presenting cells (APCs ) Innate immune cells that actively process antigens and present them on MHC-II molecules to 
activate CD4+ T cells

CD4+ T helper (Th) cells Cell type of the adaptive immune system, participating and orchestrating immune responses. 
Upon recognition of their cognate antigen, presented by APCs on MHC-class II molecules, Th 
cells get activated and polarize into different Th subset, such as Th1, Th2, Th17 and others, 
according to the cytokines present in the surroundings

CD8+ T cells Cells of the adaptive immune system mainly involved in killing of virus-infected host cells
Chemokines Chemotactic cytokines mostly involved in immune cell trafficking by inducing chemotaxis of 

immune cells. Both inflammatory and homeostatic chemokines regulate immune cell 
trafficking across vascular walls 

Cytokines Small proteins that regulate many processes of the immune response. Proinflammatory 
cytokines enhance the ability of APCs to present antigen and induce expression of adhesion 
molecules and chemokines at the inflamed BBB 

Dendritic cells Cells of the innate immune system serving as professional antigen presenting cells
Effector/memory lymphocytes Activated lymphocytes after antigen recognition. These cells migrate into peripheral tissue in 

response to inflammatory stimuli
Immune surveillance Homeostatic immune cell trafficking process utilized by the immune system to monitor for the 

presence of infections in the entire body
Major histocompatibility complex 

class II (MHC-class II)
Molecular complex expressed by professional APCs “presenting” peptide antigens to CD4+ T 

cells on their surface
Monocytes Cell type of the innate immune system involved once differentiated in phagocytosing and 

killing microbes in addition to antigen presentation and cytokine production. They can 
differentiate into macrophages and dendritic cells, enhancing their antigen presentation 
ability

Naïve lymphocytes Mature lymphocytes that did not yet encounter their cognate antigen and constantly 
recirculate to secondary lymphoid organs to get exposed to antigens presented by APCs

Neutrophils Cell type of the innate immune system involved in phagocytosing and killing microbes. Usually 
they are the first cells recruited into an inflamed tissue 

Th1 cells Effector CD4+ T cells specialized in fighting intracellular bacteria and viruses and involved in 
CNS autoimmunity. Their signature cytokine is IFN-γ 

Th17 cells Effector CD4+ T cells specialized in fighting extracellular bacteria and fungi and involved in CNS 
autoimmunity. Their signature cytokine is IL-17
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the physical and morphological barrier characteristics of 
the BBB. In contrast to peripheral vascular endothelial cells, 
BBB endothelial cells are characterized by the presence of 
not only adherens junctions (AJs) but also a molecularly 
unique and complex as well as continuous network of TJs 
(12). The transmembrane vascular endothelial cadherin 
(VE-cadherin) mediates homophilic adhesion at the 
level of BBB AJs exactly as in peripheral vascular beds. 
VE-cadherin expression and AJs formation is prerequisite 
for expression of the transmembrane TJ protein 
claudin-5 (13) and for the maturation, maintenance 
and regulation of BBB TJs (13, 14). In their complexity 
and continuity BBB TJs rather resemble TJs of epithelial 
cells than of other endothelial cells (15). Claudin-5 is 
the most abundant transmembrane TJ protein in BBB 
endothelial cells and plays a crucial role in maintaining 
the paracellular diffusion barrier. This is shown by studies 
in claudin-5-deficient mice, which die perinatally (16), 
and by knockdown of endothelial claudin-5, which 
leads to cognitive impairment (17) (summarized in (18)). 
Other transmembrane TJ proteins expressed in BBB 
endothelial cells are occludin and junctional adhesion 
molecules (JAMs). Although occludin is not necessary for 
TJ formation, occludin phosphorylation contributes to 
TJ function (19, 20, 21) (summarized in (10)). JAMs are 
immunoglobulin superfamily transmembrane proteins, 
with JAM-A and JAM-B being the most studied in BBB 
endothelial cells. JAM-A contributes to the establishment 
of cell polarity (22) and both JAM-A and JAM-B have been 
described to mediate leukocyte trafficking across the BBB 
(23, 24, 25, 26, 27) (summarized in (10)). Tricellular contact 
points between BBB endothelial cells show localization of 
tricellulin, which otherwise has only been described in 
epithelial tricellular junctions. Although in every vascular 
bed endothelial cells form tricellular contacts, only at the 
BBB and the blood-retinal barrier (28, 29) endothelial cells 
express tricellulin, further supporting the unique barrier 
characteristics of BBB endothelial cells (summarized in 
(10)). The unique and complex TJ architecture of the 
BBB endothelial cells was originally thought to prohibit 
paracellular immune cell diapedesis as it occurs in other 
vascular beds (3). Early studies have provided evidence 
that in neuroinflammatory conditions immune cells cross 
the BBB or the blood-retinal barrier (BRB) preferentially 
through pores via the endothelial cell body (transcellular 
diapedesis), rather than through the brain barriers 
junctions (30, 31, 32).

The complex network of AJs and TJs, together with 
the low pinocytotic activity, the lack of fenestrae and the 
expression of specific sets of efflux pumps and nutrient Ta
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transporters, restrict uncontrolled paracellular and 
transcellular diffusion of hydrophilic molecules across the 
BBB endothelium (15).

The unique barrier characteristics of BBB endothelial 
cells are not intrinsic but rely on the cross-talk with cellular 
and acellular elements at the level of CNS microvessels, 
commonly referred to as the neurovascular unit (NVU) 
(15). On their abluminal side, high numbers of pericytes 
are embedded in the endothelial basement membrane 
hereby forming a continuous, non-overlapping chain-like 
network (33). Brain microvessels have a higher pericyte 
coverage than peripheral microvessels. The ratio of 
pericytes to endothelial cells of the BBB ranges between 
1:1 and 1:3, covering up to 50% of the endothelial 
abluminal surface (34, 35). In peripheral vascular beds the 
pericyte: endothelial ration was reported 1:100 (skeletal 
muscle) with an estimated abluminal endothelial coverage 
between 10 and 25% (36, 37). Pericytes form multiple 
synapse-like “peg-socket” contacts with the neighbouring 
endothelial cells suggesting a tight functional coupling 
of the high number of CNS pericytes with the BBB 
endothelium. Pericytes have indeed been shown to inhibit 
vesicular activity of BBB endothelial cells and thus limit 
BBB transcellular permeability (38). This may prohibit 
availability of vesicular stores of chemokines or other 
diffusible trafficking cues available in peripheral vascular 
beds (39) and thus contribute to the unique mechanisms 
involved in immune cell extravasation across the BBB.

Unlike microvessels in other tissues, parenchymal CNS 
microvessels are ensheathed by a second barrier, referred 
to as the glia limitans (Fig. 1). It is composed of polarized 
astrocytes, which enclose with their foot processes the 
abluminal aspect of parenchymal CNS microvessels and 
deposit a second basement membrane, the parenchymal 
basement membrane, thus ultimately shielding the CNS 
parenchyma from the vascular space (5). Astrocytes 
contribute to BBB maturation and maintenance via 
sonic hedgehog and Wnt signaling pathways (40). At the 
surface of the brain and spinal cord namely at the level of 
the leptomeninges, below the pia mater, the glia limitans 
perivascularis continues as glia limitans superficialis and 
thus covers the entire surface of the brain and spinal cord 
parenchyma (41) (Fig. 1). Hence, it is the glia limitans 
that establishes an additional border towards the CNS 
parenchyma, where CNS-resident cells such as microglia, 
oligodendrocytes and neurons are localized. At the level of 
the CNS capillaries, the endothelial basement membrane 
and the glia limitans perivascularis are in intimate 
association while at the level of postcapillary venules a 
separation between the endothelial and parenchymal 

basement membrane can be visualized especially in 
neuroinflammation (Fig. 1). This perivascular space is 
considered to connect to cerebrospinal fluid (CSF)-filled 
Virchow–Robin spaces, which harbour conventional 
antigen-presenting cells such as dendritic cells (42).

It is important to note that in addition to the 
BBB established by parenchymal CNS microvascular 
endothelial cells, a functional BBB can also be found at 
the level of the venules in the subpial and subarachnoid 
space (SAS) (43), despite the fact that these venules lack 
direct ensheathment with astrocyte endfeet. Indeed, 
the CSF-filled SAS is bordered by the arachnoid barrier 
towards the dura mater and the skull and by the glia 
limitans superficialis towards the CNS parenchyma  
(Fig. 1). Therefore, blood vessels in the SAS are not 
ensheathed by a second basement membrane and rather 
form a direct barrier between the blood and the CFS in 
the SAS. Nevertheless, these vessels retain BBB features 
and represent an important entry point for immune 
cells into the CNS (43) (reviewed in (9)). In addition, 
BBB endothelial cells in the SAS and in CNS parenchyma 
differ in the expression of key adhesion molecules, with 
important implications for immune cell trafficking into 
these two compartments. Resembling peripheral vascular 
endothelial cells, leptomeningeal endothelial cells 
constitutively express and store P-selectin in their Weibel-
Palade bodies, which upon an inflammatory stimulus 
can be readily exposed on their surface and contribute 
to immune cell recruitment (44). In contrast, CNS 
parenchymal endothelial cells lack constitutive expression 
of P-selectin, which requires de novo transcription upon 
an inflammatory stimulus, underscoring the active role 
of the BBB in controlling immune cell trafficking into 
the CNS (45). Microvessels in the most outer layer of the 
meninges, the dura mater, do not form a BBB and are not 
addressed here as they are also separated from the CNS 
by the arachnoid barrier forming a meningeal blood-CSF 
barrier (5).

Methodological approaches to investigate 
immune cell trafficking across the BBB

In vitro and in vivo imaging approaches aiming to investigate 
immune cell trafficking across the BBB are confronted 
(i) with the challenges of the unique features of BBB 
endothelial cells, relying on continuous crosstalk with the 
elements of the NVU and (ii) the complex CNS anatomy 
and thus limited accessibility for imaging. Meaningful 
modelling of immune cell trafficking across the BBB 
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in vitro requires reliable culture models that truthfully 
maintain BBB characteristics. Higher numbers of T cells 
are seen to cross a monolayer of immortalized mouse 
brain endothelioma bEnd5 cells, which fail to establish 
mature TJs, when compared to a monolayer of primary 
mouse brain microvascular endothelial cells, which retain 
excellent BBB features during 1 week in culture (46). In 
the presence of shear flow this in vitro BBB model allows to 
investigate extended T-cell crawling against the direction 
of flow, searching for rare sites permissive for diapedesis 
(47), a unique T cell behaviour on the BBB observed by 

in vivo imaging studies (48, 49). Thus, identification of 
the molecular mechanisms mediating the multi-step 
migration of immune cells across the BBB in vitro requires 
stringent endothelial barrier models best to be combined 
with sophisticated microfluidics and live cell imaging.

On the other hand, in vivo imaging approaches 
require complicated surgery preparations for cranial 
or spinal cord windows allowing to access the brain 
grey matter and spinal cord white matter tissue for the 
available intravital microscopy techniques (50, 51, 52). 
Depending on the intravital microscopy technology used, 

Figure 1
Leptomeningeal and parenchymal blood-brain barrier. The meninges at the surface of the brain (left) are composed by three layers, namely the dura 
mater, the arachnoid mater and the pia mater. In the dura mater we find dural arteries (DA) and veins (DV), as well as dural lymphatic vessels (DL). Dural 
blood vessels do not form a blood-brain barrier. The cells of the arachnoid mater form a blood-cerebrospinal fluid barrier (BCSFB) between the dura 
mater and the cerebrospinal fluid (CSF)-filled subarachnoid space (SAS). In humans the arachnoid mater is composed of several layers of arachnoid cells. 
The SAS harbors antigen-presenting cells (APCs), i.e. subarachnoid macrophages. Blood vessels in the SAS are ensheathed by a layer of pia mater, further 
connected to the arachnoid mater by trabeculae spanning the SAS. The center of the trabeculae is composed of a collagen core that is covered by cells of 
the pia mater. A thin layer of pia mater also covers the arteries that dive into the brain. The glia limitans is composed of the parenchymal basement 
membrane and astrocyte foot-processes and covers as glia limitans superficialis the entire surface of the CNS parenchyma and accompanies as glia 
limitans perivascularis the blood vessels in the CNS. Venules in the SAS and subpial space form a BBB albeit they lack ensheathment by astrocyte endfeet. 
The arachnoid and pia maters are referred to as leptomeninges. The anatomical details have been summarized in (5). The BBB at the level of CNS 
parenchymal vessels (right inset) is composed by highly specialized endothelial cells, held together by molecularly unique and complex tight junction 
strands. Pericytes are embedded in the endothelial basement membrane, while the glia limitans further ensheaths the CNS microvasculature. At the level 
of the capillaries, the endothelial basement membrane and glia limitans are fused. At the postcapillary venules, where immune cell trafficking takes 
place, the two basement membranes are separated by the CSF-filled perivascular space, which harbors rare antigen-presenting cells. Drawings of the 
individual cell types were adapted from Servier Medical Art (http://smart.servier.com/), licensed under a Creative Common Attribution 3.0 Generic 
License.
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Figure 2
Multi-step T-cell extravasation across the BBB during heath and neuroinflammation. T-cell extravasation across subarachnoid venules during immune 
surveillance (A) or across BBB postcapillary venules during inflammation (B) is depicted. Leptomeningeal endothelial cells store P-selectin in Weibel-
Palade bodies, however, in the absence of inflammation α4β1-mediated capture is the most observed first interaction. After GPCR-mediated shear-
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imaging penetration is limited to the leptomeningeal or 
subpial spaces. The current lack of fluorescent reporter 
mice allowing to precisely identify the arachnoid barrier 
and glia limitans impede precise localization of superficial 
CNS microvessels to the subpial or SAS, especially as in 
the mouse the SAS spans only about 30–50 μm in healthy 
conditions. When performing two-photon intravital 
microscopy (2P-IVM), second harmonic generation 
signals generated by collagen type I in the dura mater 
and in the subpial space might provide some orientation 
(summarized in (10)). The lack of precise landmarks for 
imaging the brain barriers while following immune 
cell trafficking across the BBB in vivo presently hampers 
delineation of the different mechanisms mediating 
immune cell trafficking across the BBB in the SAS versus 
the CNS parenchyma.

Immune cell migration across the BBB 
during immune surveillance

The BBB allows for immune cell trafficking into the CNS 
in the absence of neuroinflammation but strictly limits 
CNS entry to immune cell subsets required for immune 
surveillance and detected in the CSF (53, 54) (Fig. 2A). 
The molecular mechanisms involved in the multi-step 
immune cell trafficking across the BBB are summarized in 
Table 3. The few studies that have investigated immune 
cell migration across the BBB during immune surveillance 
by intravital microscopy have mostly focused on effector/
memory CD4+ T cells in the context of experimental 
autoimmune encephalomyelitis (EAE), a CD4+ T-cell 
mediated animal model of multiple sclerosis (48, 55, 56). 
EAE is an autoimmune disease of the CNS, which can be 
induced by injection of CNS myelin antigens emulsified in 
complete Freund’s adjuvant (57), or by adoptive transfer 
of CNS autoantigen-specific CD4+ T cells into syngeneic 
naive recipients of susceptible rodent strains (58), with the 
former often referred as active EAE (aEAE) and the latter as 

transfer EAE (tEAE). The interaction of encephalitogenic 
CD4+ Th1 cells with the spinal cord microvasculature 
was found to be unique due to the lack of rolling and 
a prominent role of α4 integrin - vascular cell adhesion 
protein-1 (VCAM-1) interaction in mediating capture and 
sustained arrest of these T cells to spinal cord venules 
(55) (Fig. 2). Th1 cell diapedesis across the non-inflamed 
spinal cord postcapillary venules is mediated by leukocyte 
function-associated antigen-1 (LFA-1, αLβ2 integrin) and 
its ligand intercellular adhesion molecule 1 (ICAM-1) 
(59) (Fig. 2A). GPCR signaling is prerequisite for sustained 
T-cell adhesion on the BBB (55); however, the chemokines 
or lipid mediators involved in this step remain to be 
determined. Mouse and human BBB endothelial cells 
constitutively express CCL19 (60, 61), which binds CCR7 
and was therefore suggested to mediate the migration of 
circulating CCR7 expressing central memory T cells across 
the BBB as 90% of T cells in the CSF express CCR7 (62). 
Direct evidence for endothelial CCL19 in mediating T-cell 
trafficking to the CNS in the absence of neuroinflammation 
is however lacking.

The migration of activated CD4+ T cells across the BBB 
was shown in rodent animal models to be independent 
of antigen recognition on the CNS endothelial cells (55, 
48, 51, 63, 64, 65). In contrast, antigen recognition on 
perivascular or leptomeningeal APCs is necessary for 
subsequent T-cell migration across the glia limitans 
and infiltration into the CNS parenchyma (48, 66, 67)  
(Fig. 2). CD4+ T cells localized in the SAS can crawl along 
not further defined scaffolds and be eventually washed 
away by the movement of the CSF to reach other CSF 
compartments in the CNS (5, 56). Interestingly, intrinsic 
characteristics of the leptomeningeal BBB predispose the 
leptomeningeal compartment as preferred site for T-cell 
immunosurveillance. Indeed, diapedesis of fluorescently 
labelled activated CD4+ T cells across parenchymal BBB 
endothelial cells was only observed 4–6 hours after 
injection (59), while accumulation in leptomeningeal 
spaces was already observed 2 h after injection (68).

Figure 2 Continued
resistant arrest, T cells crawl against the direction of the flow and cross the BBB endothelium preferentially via the paracellular pathway. Pial cells are 
reported to partially cover the venular wall in the SAS (highlighted by the question mark), but do not seem to establish a barrier for T cell extravasation. 
In the absence of CNS antigens presented by subarachnoid macrophages and dendric cells on MHC-II molecules, T cells will not cross the glia limitans 
and may rather be flushed away with the CSF. During inflammation, leptomeningeal but also parenchymal BBB endothelial cells (B) allow for activated 
T-cell rolling, mediated by P-selectin which is de novo expressed as it is not stored in Weibel-Palade bodies. Inflammatory chemokines produced by 
astrocytes are transported from the abluminal to the luminal side of the BBB by ACKR1. After their GPCR-dependent arrest, T cells crawl on endothelial 
ICAM-1 and ICAM-2 against the direction of the flow with increased levels of endothelial ICAM-1 leading to increased transcellular T cell diapedesis. Once 
T cells have crossed the BBB endothelium (1), CNS-antigen-specific T cells may recognize their cognate antigens on perivascular APCs (2) and become 
reactivated behind the BBB. Matrix metalloproteinases produced by infiltrating and perivascular-activated myeloid cells as well as astrocytes cleave the 
astrocytic endfeet from the parenchymal basement membrane, allowing for T-cell passage, a process guided by proinflammatory chemokines produced 
by astrocytes. Once in the CNS parenchyma, T cells induce CNS damage and manifestation of clinical disease symptoms (3). Drawings of the individual 
cell types were adapted from Servier Medical Art (http://smart.servier.com/), licensed under a Creative Common Attribution 3.0 Generic License.
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Table 3 Endothelial adhesion and signaling molecules involved in multi-step immune cell trafficking across the blood-brain 
barrier.

Interaction step/molecule Ligand and immune cell subset Observation References

Capture
 VCAM-1 α4β1-integrin+ encephalitogenic 

T cells
In vivo imaging of mouse spinal cord microvessels in the 
absence of neuroinflammation 

(55)

Rolling
 E/P-selectin PSGL-1+ encephalitogenic T 

cells
In vivo imaging of inflamed superficial mouse brain and 
spinal cord microvessels during EAE 

(73)
(71)

 E/P-selectin PSGL-1+ CD8 T cells from MS 
patients

In vivo imaging of superficial mouse brain microvessels 
in neuroinflammation

(70)

 P-selectin and 
α4-integrin

Endogenous leukocytes In vivo imaging of superficial mouse brain microvessels 
in neuroinflammation

(143)

Integrin activation
 ACKR1 CNS infiltrating cells ACKR1 shuttles inflammatory chemokines from the CNS 

to the luminal side of the BBB - mice lacking vascular 
ACKR1 develop ameliorated EAE 

(74)

Arrest and adhesion
 VCAM-1 Rodent encephalitogenic T cells 

and human T cells · α4β1-
integrin (VLA-4) 

In vivo imaging of T-cell interaction with rat and mouse 
spinal cord microvessels in the absence and presence 
of neuroinflammation; in vitro imaging of T-cell 
interaction with mouse models of the BBB under 
physiological flow

(47, 55, 144)

α4-integrin on CD8 T cells In vitro adhesion and transmigration assays; CD8 T cell 
mediated encephalitis is inhibitid by α4-integrin 
function blocking antibodies 

(27, 145)

 ICAM-1 Activated rodent CD4 and CD8 
T cells

In vitro imaging of T cell and neutrophil interaction with 
mouse models of the BBB under physiological flow 

(94, 106)

 ICAM-2 Activated rodent CD4 and CD8 
T cells

In vitro imaging of T cell and neutrophil interaction with 
mouse models of the BBB under physiological flow

(47, 94, 106)

α4β1-integrin expressing DCs In vivo imaging of mouse spinal cord microvessels and 
in vivo homing studies in the context of 
neurinflammation

(124, 125, 
126)

Polarization
 ICAM-1 In vitro imaging of T cell interaction with mouse models 

of the BBB under physiological flow
(47)

 ICAM-2 In vitro imaging of T cell interaction with mouse models 
of the BBB under physiological flow

(47)

Extended crawling against the direction of blood flow
 ICAM-1 In vitro imaging of T cell interaction with mouse models 

of the BBB under physiological flow 
(47)

 ICAM-2 (47)
 Ninjurin? Encpehalitogenic T cells · 

ninjurin
In vivo imaging of encephalitogenic T cells interacting 
with the rat spinal cord microvasculature at onset  
of EAE

(146)

Encpehalitogenic T cells · 
a4b1-integrin VLA-4 

In vivo imaging of encephalitogenic T cells interacting 
with the rat spinal cord microvasculature at onset of 
EAE – individual study showing a role for a4-integrins in 
T cell crawling

(146)

Diapedesis
 CD99 Probably CD99 on immune cells Blocking CD99 affects immune cell migration across but 

not adhesion to human BBB models under static 
conditions; CD99 blockade ameliorates EAE in the mouse

(93, 147)

 GPCR ligands Pertussis toxin sensitive GPCRs 
on T cells

Inhibition of Gai signalling in T cells blocks diapedesis 
but not prior polarization or crawling on in vitro BBB 
models under flow 

(94)

 Caveolin-1 Encephalitogenic Th1 cells Lack of endothelial caveolin 1 reduces transcellular 
diapedesis of Th1 cells into the CNS in EAE

(90)

 CXCL12 
 

CXCR4+ T cells, B cells and 
monocytes 

Function blocking of CXCR4 interferes with the 
diapedesis of T cells, B cells and monocytes across a 
rodent model of the BBB under physiological flow 

(119) 
 

(Continued)
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Immune cell trafficking across the BBB 
in neuroinflammation

During neuroinflammation, the BBB endothelium 
undergoes changes including increased expression of 
adhesion molecules, proinflammatory cytokines and 
chemokines combined with reduced expression of 
junctional molecules, setting the stage for increased 
recruitment of circulating leukocytes across the BBB 
(summarized in (9, 37, 40)).

CD4+ and CD8+ T cells

Once an inflammatory stimulus perturbs the CNS 
parenchymal microvasculature, upregulation of 
P-selectin allows for T-cell rolling, a process mediated 
by the interaction between P-selectin glycoprotein 
ligand 1 (PSGL-1) on the T cells and E/P-selectin on the 
endothelial cells (69, 70, 71) (Fig. 2B). During rolling,  

T cells reduce their speed, from ~1000 μm/s to 5–10 μm/s 
(72, 73). Paradoxically, despite their essential role in T-cell 
rolling on the BBB, absence of PSGL-1 and/or E/P-selectin 
in mice fails to reduce T-cell entry into the CNS and thus 
amelioration of EAE, suggesting that T-cell rolling is not 
required for T-cell migration across the inflamed BBB (71). 
In fact intravital microscopy studies have shown that a 
low number of T cells can eventually arrest in inflamed 
spinal cord vessels of E/P-selectin-deficient mice (71), 
subsequently allowing for their diapedesis across the BBB 
and initiation of EAE.

T cells do require GPCR signalling to firmly arrest 
on the BBB (73). However, the endothelial chemokines 
or lipid mediators triggering T cell arrest on the BBB are 
a matter of debate. In this context it is interesting to 
note that the atypical chemokine receptor 1 (ACKR1) 
is upregulated on the BBB during EAE and in MS (74). 
ACKR1 shuttles inflammatory chemokines produced for 
example, by astrocytes in neuroinflammatory conditions 

Interaction step/molecule Ligand and immune cell subset Observation References

Migration across the BBB – precise step not defined
 Laminin411 Mouse Th17 cells and human 

CD8 T cells · MCAM
Anti-MCAM antibody blocks mouse Th17 cell 
recruitment to the CNS and ameliorates EAE · anti 
MCAM antibody blocks CD8 T cell migration across the 
BBB in vitro

(148, 149)

 ALCAM Monocytes, B cells and T cells · 
ALCAM

ALCAM may contribute to monocyte and possibly B cell 
and T cell migration across the BBB based on in vitro 
studies

(118, 150)
(100, 121)

aVb3+ Th17 cells Potential role in extracellular matrix interaction for CNS 
infiltration

(82)

 JAM-A CD14+CD16+ JAM-A+ 
monocytes

Antibody blocking of JAM-A selectively blocked 
migration of CD14+CD16+monocytes but not of T cells 
from HIV-infected people across a human in vitro 
model of the BBB

(121)

 JAM-B CNS-antigen-specific CD8 T cells Blocking JAM-B reduces CNS infiltation of CD8 T cells 
and ameliorates CD8 T cell mediated 
neuroinflammation

(27)

 JAML Monocyte and CD8 T cells Function blocking of JAML reduced migration of 
monocytes and CD8 T cells across a human in vitro BBB 
model

(151)

 ICAM-1 B-cells Migration of human B cells across a human BBB model 
is reduced upon blocking endothelial ICAM-1 

(99)

 Ninjurin Monocytes Peptide-mediated blocking of nijurin reduced adhesion 
and migration of monocytes, but not T and B cells 
across a human in vitro model of the BBB

(117)

 CCL19 CCR7 on central memory T cells 
and activated CD8 T cells or 
monocytes

CCL19 is expressed at the BBB and could mediate 
integrin activation on rolling immune cells or their 
diapedesis

(60, 61, 123)

 β1-integrin β1-integrin expressing T cells β1-integrin deficient T cells cannotenter the CNS during 
neuroinflammation

(127)

 P-glycoprotein Silencing of P-glycoprotein activity is shown to 
selectively reduce the migration of CD8+ T cells across 
a rodent in vitro model of the BBB

(8)

This table provides examples and is not exhaustive.

Table 3 Continued.
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from the abluminal to the luminal side of the BBB (Fig. 
2B) and lack of vascular ACKR1 ameliorates clinical 
signs of EAE in C57BL/6 mice (74). ACKR1-mediated 
chemokine shuttling may thus lead to the presence of a 
variety of CNS produced proinflammatory chemokines on 
the luminal side of the BBB.

GPCR signaling leads to inside-out-activation of 
integrins mediating the firm arrest of T cells on the 
luminal surface of the inflamed BBB endothelial cells. This 
crucial step is mediated by the integrins LFA-1 and very 
late antigen-4 (VLA-4, α4β1 integrin) and their endothelial 
ligands, ICAM-1 and VCAM-1, respectively (47, 75, 76, 77, 
78) (Fig. 2B). EAE studies have ruled out the involvement 
of integrin α4β7 in T-cell arrest on the BBB (79, 80, 81), 
while recent evidence has suggested a specific role for αvβ3 
integrin in Th17 cell-mediated EAE pathology in mice 
(82). The crucial role played by α4β1/VCAM-1 interaction 
in T-cell arrest on the BBB is highlighted by the fact that 
blocking α4-integrins has been translated into the most 
effective treatment for relapsing-remitting MS with 
the humanized monoclonal anti-α4 integrin antibody 
natalizumab. In addition to VCAM-1, another endothelial 
ligand for α4β1 integrin, namely JAM-B has been shown 
to be involved in CD8+ (27), but not CD4+ (24) T-cell 
migration across the BBB in mouse models.

After arrest, T cells polarize and start to crawl in 
search for sites permissive for diapedesis across the 
BBB endothelium (Fig. 2B). In vitro (47) and in vivo (48) 
rodent studies have shown that barrier properties of the 
BBB translate to post-arrest extended crawling of CD4+ 
T cells on BBB endothelial cells, preferentially against 
the direction of the blood flow, searching for rare sites 
permissive for diapedesis (47, 83). It has been shown before 
that activated T cells but not neutrophils crawl against 
the direction of the flow on ICAM-1-coated surfaces (84). 
This underscores that in addition to molecular cues, shear 
stress impacts on directionality of T cell crawling. In 
fact, lack of endothelial ICAM-1 and ICAM-2 on a mouse 
model of the BBB, abrogates Th1 cell polarization and 
crawling (47, 83) supporting the notion that endothelial 
ICAM-1 and ICAM-2 are essential for mediating the Th1 
cell crawling against the direction of flow on the BBB with 
no additional role of α4β1/VCAM-1 (47, 83). Side-by-side 
comparison of mouse encephalitogenic Th1 and Th17 
cell interaction with the BBB has shown that Th1 cells, in 
comparison to Th17 cells, arrest in higher numbers on the 
BBB in vitro and in vivo, however, both Th1 and Th17 cells 
rely on endothelial ICAM-1 and ICAM-2 for crawling on 
the BBB (49). Interestingly, genetic ablation of α4 integrins 

in mouse T cells blocks Th1 cell entry into the CNS 
during EAE, while Th17 cells can still accumulate in the 
brain but not the spinal cord using LFA-1 (85, 86). These 
observations suggest that Natalizumab rather blocks Th1 
and Th17 cell entry into the spinal cord but only Th1 cell 
entry into the brain in MS (9).

Barrier characteristics of the BBB endothelium not only 
result in extended crawling of CD4+ T cells but ultimately 
in differences in their diapedesis. In peripheral vascular 
beds upon their arrest T cells crawl for short distances and 
promptly cross the endothelium through the endothelial 
junctions, a process known as paracellular diapedesis 
(3). Paracellular immune cell diapedesis is envisioned in 
a zipper-like fashion where the immune cell transiently 
replaces the endothelial cell adhesive connections visible 
as remodeling of the endothelial cell junctions (87, 88).

In accordance to the presence of complex and 
continuous TJs, T-cell diapedesis across the inflamed 
BBB has rather been observed to occur via a transcellular 
pathway, where the T cells form a pore through the 
endothelium and leave the complex TJs morphologically 
intact (9, 32, 89). However, a recent study found that Th1 
but not Th17 cells rely on caveolin-1 for transcellular 
diapedesis in a mouse BBB in vitro model (90) suggesting 
that Th17 cells can cross the BBB via a paracellular pathway. 
The molecular mechanisms directing paracellular versus 
transcellular T cell diapedesis across the BBB are not yet 
understood.

Live cell imaging studies exploring Th1-cell 
diapedesis across in vitro mouse models of the BBB under 
physiological flow have shown that low versus high cell 
surface levels of endothelial ICAM-1 direct Th1 cells 
to paracellular versus transcellular sites of diapedesis 
across the BBB, respectively (83). These findings are in 
accordance to the previous observations of the increased 
transcellular T-cell diapedesis across the BBB during 
neuroinflammation, when endothelial ICAM-1 levels are 
high. Paracellular T-cell diapedesis across the inflamed 
BBB in mice was proposed to be facilitated by claudin-5+ 
extracellular vesicles released from BBB endothelial 
cells that decorate the T cells, thus allowing to squeeze 
through BBB TJs in a zipper-like fashion (91). On the 
other hand BBB breakdown accompanied with impaired 
BBB junctional integrity does not correlate with increased 
paracellular T-cell diapedesis, underscoring that vascular 
permeability and cellular pathways of T-cell diapedesis 
across the BBB are regulated by different mechanisms. In 
fact, increased paracellular permeability of the BBB due 
to the lack of endothelial PECAM-1 (92) or mediated by 
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pro-inflammatory cytokine stimulation does not correlate 
with increased paracellular but rather transcellular Th1 
cell diapedesis across the mouse BBB under flow in vitro 
(83, 93). Irrespective of the cellular pathway of T-cell 
diapedesis across the BBB, inhibition of GPCR signalling 
in both, CD4+ and CD8+ T cells completely abrogates their 
diapedesis across the mouse BBB (94). These observations 
underscore that the BBB actively controls the cellular 
and molecular mechanisms of T-cell diapedesis and that 
intact cell-to-cell junctions are required to direct T cells to 
paracellular sites for diapedesis across the BBB.

T cells that have successfully crossed the BBB have 
not yet reached the CNS parenchyma proper but rather 
the CSF drained perivascular or subarachnoid space. To 
enter the CNS parenchyma the T cells must cross a second 
barrier, the glia limitans (41) (Fig. 2). Deposition of laminin 
α4 and α5 in the endothelial basement membrane allows 
it to be distinguished from the parenchymal basement 
membrane of the glia limitans, which is constituted 
by laminin α1 and α2 (95). Effector CD4+ T cells do not 
bind to laminin α1 and α2 (96), and their crossing of the 
glia limitans in neuroinflammation is rather mediated 
by matrix metalloproteinases (MMPs), specifically the 
gelatinases MMP-2 and MMP-9 (97). MMP-2 and MMP-9 
cleave β-dystroglycan, an extracellular matrix receptor of 
astrocyte endfeet (97) and modulate chemokine activities 
in the perivascular space and SAS (98), allowing for T 
cell crossing the glia limitans and entering the CNS 
parenchyma (Fig. 2B). In EAE clinical disease starts, when 
immune cells cross the glia limitans (97).

B-cells

Due to the difficulty of isolating and maintaining B cells 
in culture there are only few studies that have addressed 
B-cell migration across the BBB. Migration of human B 
cells across a human BBB model was found to be mediated 
by endothelial ICAM-1 but not endothelial VCAM-1 
(99). As blocking α4β1-integrins was found to decrease 
B-cell migration across the BBB, alternative α4β1-integrin 
ligands, that is, fibronectin of JAM-B may contribute 
to B-cell migration across the BBB (99). Additionally, 
blocking chemokines produced by these BBB endothelial 
cells such as CCL2 and CXCL8 resulted in reduced B-cell 
diapedesis. Moreover, a recent study demonstrated that 
the activated leukocyte cell adhesion molecule (ALCAM) 
participates in the migration of human B cells across the 
inflamed BBB, and blocking ALCAM ameliorated clinical 
signs of a B-cell-dependent EAE model, supporting its role 
in B cell entry into the CNS (100).

Innate immune cells

The immune privilege of the CNS extends to innate 
immunity. Indeed, inflammatory responses initiated by 
pathogen-associated molecular patterns (PAMPs) and 
danger-associated molecular patterns (DAMPs) caused 
by injection of bacterial products (101), chemokines, 
cytokines (102) or induced cell death in the murine 
CNS parenchyma (103, 104), respectively, do not 
elicit rapid infiltration of neutrophils or monocytes as 
observed during a response to such stimuli in peripheral 
organs (summarized in (105)). This suggests that barrier 
characteristics of the BBB extend to an even stricter 
control of innate immune cell entry into the CNS.

Neutrophils

The migration of neutrophils across the BBB has been 
studied in the context of acute non-sterile and sterile 
inflammation such as bacterial meningitis and ischemic 
stroke. Mimicking bacterial infection by stimulation of 
an in vitro model of the mouse BBB with LPS we have 
found by means of in vitro live cell imaging that GCPR-
dependent activation of αLβ2 and αMβ2 integrins allows for 
neutrophil interaction with endothelial ICAM-1, resulting 
in neutrophil arrest and polarization, respectively (106). 
Neutrophil crawling and preferential paracellular over 
transcellular diapedesis across the primary mouse brain 
microvascular endothelial cells was dependent on ICAM-1 
and ICAM-2 and both β2 integrins. This seems to be in 
accordance to previous observations showing that upon 
αLβ2 (LFA-1)-mediated arrest neutrophils crawl using 
αMβ2 (Mac-1)- integrin on endothelial ICAM-1 to sites 
permissive for diapedesis in inflamed mouse cremaster 
microvessels (107). Interestingly, lack of ICAM-1 and 
ICAM-2 on mouse brain microvascular endothelial cells 
abrogated transcellular but not paracellular neutrophil 
diapedesis across the BBB, suggesting a role of β2 integrins 
in this diapedesis pathway (106). Employing a mouse in 
vitro BBB model and a microfluidic chamber we found 
that the ischemic BBB does not support neutrophil 
migration across the barrier (106). Neutrophils do 
however accumulate in the brain after ischemic stroke 
and are considered the main cause of reperfusion injury. 
The molecular mechanisms involved in their potential 
recruitment into the CNS after ischemic stroke are a 
matter of debate.

Generally, neutrophil rolling on the vascular wall 
has been described to be dependent on P-selectin (108); 
however, a mouse model of cerebral ischemia excluded 
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a role of the P-selectin ligand PSGL-1, in neutrophil 
accumulation in the CNS (109). Previous studies of ischemic 
stroke in ICAM-1-deficient mice, which still express 
soluble ICAM-1 splice variants, have proposed endothelial 
ICAM-1 to be involved in neutrophil interaction with the 
BBB (110, 111). In contrast, similar studies performed 
in ICAM-1null mice have not confirmed this observation 
(112). Additional studies have proposed a role for α4β1 
integrins in neutrophil recruitment to the CNS after stroke 
(113), however, inhibition of α4 integrins by natalizumab 
infusion failed to ameliorate acute ischemic stroke in 
humans in a Phase II2b trial (summarized in (105)) and 
blocking the endothelial α4β1-integrin ligand VCAM-1 
in experimental stroke models did not ameliorate brain 
damage (114). We and others have observed that after 
ischemic stroke in experimental mouse models but also 
in humans, neutrophils accumulate within the confines 
of the neurovascular unit and in the SAS (115, 116) rather 
than reaching the CNS parenchyma. This suggests that in 
addition to the BBB, the glia limitans provides a not yet 
considered barrier for neutrophil entry into the CNS.

Monocytes and dendritic cells

Monocyte migration across the BBB has been investigated 
in different contexts, ranging from CNS virus infections 
to EAE and MS. Different molecular mechanisms have 
been observed in monocyte migration across the BBB 
as compared to those for T cells and neutrophils. For 
instance, blocking ninjurin-1 reduced adhesion and 
migration of monocytes, but not T and B cells, across 
a human in vitro model of the BBB (117). Furthermore 
ALCAM, was identified to mediate rolling, adhesion and 
diapedesis of human CD14+ monocytes but not of human 
Th1 cells on a human BBB model (118). A comparative 
study analyzed the role of CXCL12 by blockage of its 
receptor CXCR4 in human CD4+, CD8+, CD19+ B cells 
and CD14+ monocytes migration under flow across the 
human brain microvasculature. Surprisingly, monocyte 
but not T-cell migration across the BBB was significantly 
reduced by blockage of CXCR4 (119). In addition, 
monocytes may directly activate the BBB endothelium, 
as co-culture of monocytes with rat brain endothelium 
triggered the release of tissue-type plasminogen activator 
from the brain endothelial cells, leading to loss of 
junctional occludin and increased monocytes diapedesis 
across the BBB endothelium (120). Interestingly, CD14+ 
CD16+ monocytes isolated from HIV-infected patients 
have increased expression of JAM-A and ALCAM, and 

both molecules participate in CD14+ CD16+ monocyte 
migration across the BBB (121), as well as CXCR7 (122). 
On the other hand, Zika virus-infected monocytes depend 
on CCR7 and receptor for advanced glycation end (RAGE) 
for transmigration across the human BBB (123).

Few studies have investigated the migration of 
dendritic cells (DC) across the BBB. In vivo live cell 
imaging of the spinal cord microvasculature during EAE 
in mice demonstrated a prominent involvement of α4β1-
integrins in mediating DC arrest in inflamed spinal cord 
microvessels (124). A crucial role of α4β1-integrins for CNS 
entry was recently also confirmed for mouse plasmacytoid 
DCs (125) as well as monocyte-derived DCs (126). 
Interestingly, steady-state migration of conventional 
and plasmacytoid DCs was found to be independent of 
α4 integrins (126), suggesting α4-integrin-mediated DC 
migration across the BBB to be a mechanism restricted to 
neuroinflammatory conditions. On the other hand it was 
shown that myeloid cells do not rely on β1-integrins to 
infiltrate the CNS during EAE in mice (127), underscoring 
that myeloid cells may use pleiotropic mechanisms to 
cross the BBB.

Concluding remarks

The endothelial BBB strictly controls immune cell 
entry into the CNS in the absence and presence of 
neuroinflammation. CNS immune surveillance is ensured 
by restricting access of limited immune cells to the CSF 
drained compartments of the CNS bordered by the glia 
limitans. In conditions of neuroinflammation the barrier 
properties of the BBB are impaired and allow for increased 
but not entirely uncontrolled immune cell entry into 
the CNS. Changes in the perivascular space and SAS 
chemokine environment combined with impairment 
of the glia limitans eventually allows for immune cell 
infiltration into the CNS parenchyma, leading to defective 
CNS function and thus clinical signs of disease. A deeper 
understanding of the specific molecular mechanisms used 
by the different immune cell subsets to cross the BBB would 
allow for improving therapeutic targeting of immune cell 
subsets potentially harmful for the CNS while leaving 
CNS immune surveillance largely unaffected. Also, as 
outlined in this review, the vast majority of the studies 
on immune cell trafficking across the BBB have focused 
on inflammatory or disease conditions, while knowledge 
on immune cell entry into the CNS during homeostasis is 
still scarce and requires further investigations.
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