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A B S T R A C T

The COVID-19 pandemic dramatically changed the way of living of billions of people in a very short time
frame. In this paper, we evaluate the impact on the Internet latency caused by the increased amount of human
activities that are carried out on-line. The study focuses on Italy, which experienced significant restrictions
imposed by local authorities, but results about Spain, France, Germany, Sweden, and the whole of Europe
are also included. The analysis of a large set of measurements shows that the impact on the network can
be significant, especially in terms of increased variability of latency. In Italy we observed that the standard
deviation of the average additional delay – the additional time with respect to the minimum delay of the paths
in the region – during lockdown is ∼ 3−4 times as much as the value before the pandemic. Similarly, in Italy,
packet loss is ∼ 2 − 3 times as much as before the pandemic. The impact is not negligible also for the other
countries and for the whole of Europe, but with different levels and distinct patterns.
1. Introduction

At the time of writing, the coronavirus disease (COVID-19) pan-
demic is still ongoing and billions of people are under some form of
lockdown. The restrictions faced by citizens are more or less stringent,
depending on the resolutions adopted by the different governments,
but in many cases non-essential activities have been shut down and a
large fraction of people is confined at their homes. Many activities that
are normally carried out in physical presence are now taking place on-
line. As a consequence, the amount of traffic on the Internet increased
significantly during the last months.

In this paper, we analyze the impact of the COVID-19 pandemic on
the latency of the Internet. Latency is one of the major properties of
the network and it is becoming every day more important, as several
Internet applications are particularly sensitive to its fluctuations. Ex-
amples include on-line videogames [1,2], video calls, VOIP [3], and IP
geolocation [4–6]. We analyzed a large set of measurements, collected
by means of the RIPE Atlas platform [7], to better understand the
effects on the network caused by this major change in the way we live.

The analysis focuses on Italy which, in April 2020, has been under
lockdown for more than a month, experiencing some of the strictest
limitations enforced by authorities: all schools, universities, and non-
essential shops are physically closed, and people are authorized to leave
their homes only for undeferrable necessities. Distance learning and
remote working were applied whenever possible, with a significant
increase in usage of virtual-meeting and video-conference applica-
tions [8,9]. Table 1 summarizes the most important events which could
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have had an impact on the Italian Internet latency. As can be noticed,
limitations to citizens have been introduced progressively. For this
reason, the changes caused by the Italian lockdown are studied, in the
remaining of this paper, by comparing the situation of the network
in the February 11–17 week with the March 10–16 week. The former
represents the ‘‘normal’’ status of the network, as it is antecedent to all
restrictive measures; the latter, on the contrary, comes just after the
most restrictive limitations. The period in between corresponds to a
transitory phase, where partial lockdowns start to impact the network
performance. Hereafter, we will use W1 to indicate the baseline week,
and W2 for the week just after the major lockdown event.

Besides Italy, we include a brief analysis also concerning Spain,
France, Germany, Sweden, and the whole of Europe. Spain, France, and
Germany have been characterized by restrictions similar to the Italian
ones. Sweden instead decided not to impose a mandatory national
lockdown. For Spain, France, and Germany W2 is shifted according
to their major lockdown event (shown in Table 1). For the entire
Europe the situation is more heterogeneous, as some countries were
less hit by COVID-19 and thus adopted milder restrictions. For Sweden
and Europe, W2 corresponds to the March 20–26 week, the last of
our observation period which goes, overall, from February 11 through
March 26. Results show that the impact is not always the same across
the considered countries and on a European scale.

The contribution of this paper can be summarized as follows:
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Table 1
Events that could have had an impact on the latency in the European Internet (year 2020).
Date Event

February 22 Some Italian municipalities involved in the COVID-19 outbreak are quarantined
(∼ 50 thousand people)

March 1 A larger number of Italian municipalities are quarantined (the so called ‘‘red zone’’),
while in others (the ‘‘yellow zone’’) schools, cinemas, sport events, and other
gatherings are suspended

March 4 Schools and universities are shutdown nationwide

March 7 Several northern Italian regions are put on lockdown (approximately 16 million
people)

March 9 Whole of Italy is put on lockdown

March 14 Spain is put on lockdown

March 16 France is put on lockdown

March 22 Germany is put on lockdown
• Some statistics have been recently released by Internet Service
Providers (ISPs), and other players of the Internet ecosystem,
about the increased amount of traffic they have been exposed
to because of the COVID-19 pandemic. However, a picture that
leaves aside the very specific points of view of the single operators
is still missing. This study provides a more global view, not
polarized by the single operator’s perspective. In addition, most of
the statistics released by operators concern the amount of traffic,
with limited (or absence of) information about latency.

• The amount of measurements analyzed is large, thus providing
solid foundations for the included statistics. Moreover, besides the
sheer number, we decompose the impact on delay according to
the most relevant factors, including the time of the day, the type
of target (belonging to a content delivery network or not), and the
version of the Internet Protocol. In addition to ICMP-based delay,
we provide information also on packet loss and path changes,
as they are, more or less, related with Internet latency, and on
HTTP-based latency.

• Besides Italy, results also concerning Spain, France, Germany,
Sweden, and the whole of Europe are included. Since measure-
ments have been collected using a single platform, results ob-
tained for the different countries can be compared without the
possible bias introduced by the adoption of multiple and hetero-
geneous systems.

Results show that, in Italy, lockdown impacted the latency of the
etwork, especially in terms of increased variability. Effects are more
vident during the evening, suggesting that latency is more negatively
ffected by the increased traffic due to recreational activities rather
han remote working or distance learning. For the other European
ountries included in the study, the impact is milder in Germany and
rance, and similar to the Italian one in Spain and Sweden.

The remaining of the paper is organized as follows: in Section 2,
e summarize the most significant work concerning the detection and
nalysis of large anomalies occurred in the Internet; Section 3 describes
he data collection phase; in Section 4, the method we followed to
ompute the performance indexes is explained; the main characteristics
f the datasets are illustrated in Section 5, together with a preliminary
nalysis; Section 6 contains the results on the Italian Internet latency
rom different perspectives (type of measurements, hour of the day,
Pv4 vs IPv6, etc.), whereas Section 7 shows the results concerning the
bove-mentioned countries and the whole of Europe (with less details
ompared to Italy); Section 8 concludes the paper.

. Related work

There is an extensive body of literature about anomalies on the
nternet. However, the focus is, usually, on the design of techniques
imed at detecting the occurrence of an anomaly (for instance [10–
2

3]). In this paper, we do not try to define another detection technique,
as the impact of the COVID-19 pandemic on the network is evident. We
strive to provide a view of the effects of the pandemic at a large-scale,
including a quantitative evaluation of its main characteristics as seen
from the perspective of latency.

When natural events assume catastrophic proportions, their effects
might be observed also on the performance and reliability of the
Internet. During the last 20 years, several studies have focused on the
impact on the Internet of a few catastrophic natural events, such as
earthquakes and hurricanes. In [14], authors studied the effects of the
Taiwan 2006 earthquake on the Asian Internet, from the viewpoint of
interdomain routing and traffic in research and educational networks.
The earthquake damaged submarine fiber cables causing the failure of
multiple links and unavailability of several routes. The paper shows
that through automatic rerouting performed by the BGP protocol and
traffic engineering via backup or redundant paths, the connectivity
could be restored within a matter of hours, even if with some loss of
performance. Other studies reported more significant damage and in-
stability for longer periods [15]. Cho et al. conducted a similar study on
the Japan 2011 earthquake and subsequent tsunami in [16]. The study
analyzes the impact on the Internet as seen by a local ISP, analyzing
both traffic and routing. Due to link failures, the Internet experienced
traffic drops and subsequent peaks mainly due to the reconfiguration
of content distribution networks. However, thanks to planned backup
and redundancy, the Internet proved to be resilient to such an event,
and was affected only locally and with minimal damage. Another study
analyzed the latency variations due to the same event [17], as seen
from PingER monitors [18]. The study shows that, after the earthquake,
latencies from some monitors experienced a significant increase for
a limited amount of time. These studies point out the importance of
maintaining redundant Internet routes, even if at a cost, as they can be
extremely useful when disruptive events occur.

Similar work was conducted on the effects caused by severe weather
conditions, such as the 2012 hurricane Sandy. In [19], authors used
ping to test the reachability of edge networks, to discover that the
number of outages in the areas affected by the hurricane Sandy signifi-
cantly increased during and after the hurricane. From the interdomain
routing point of view, Aben shows that a significant portion of traf-
fic was rerouted around the affected area, again demonstrating the
Internet resilience and the importance of a redundant structure [20].
Similar outages can be observed also at a smaller scale, as pointed
out in [21]. The study uses ping to show that reachability issues can
occur at residential hosts in case of moderately bad weather conditions
(e.g. thunderstorms). However, unlike large-scale outages, on the small
scale the degree of redundancy is generally not sufficient to cope with
these events.

The vast majority of the studies concerning the impact of natural
events on the Internet found in scientific literature tackle the problem
from a reachability, routing, or traffic point of view. Very few analyzed

the experienced latency increase in such events as we do for the
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COVID-19 pandemic. However, we believe that studying latency is of
paramount importance, as it can give an indication of the perceived
quality of service by end users. In addition, none of the previously
studied events reached the size of the COVID-19 pandemic, in both
space and time. At the time of writing, the COVID-19 pandemic has
been impacting the lives of billions of people all around the globe for
several months, while in the other analyzed natural events the impact
of the Internet was limited in time or circumscribed to a relatively small
geographic area.

Since the COVID-19 pandemic started only few months ago, there is
still little scientific literature focusing on its impact on the performance
of the Internet. However, several network operators, content providers,
and Internet eXchange Points (IXPs), released reports about the in-
creased usage of their infrastructure, which we review in the following.
Cloudfare reported statistics about the traffic increase towards their
servers placed in Seattle, Northern Italy and South Korea [22]. In
particular, Cloudfare reports an increase of 30% of the overall traffic in
Northern Italy and a reduction of the traffic coming from fitness track-
ers perhaps reflecting the scarce mobility induced by social distancing.
Similarly, Fastly reported traffic and download speeds towards their
servers [23]. Various countries were considered, including Italy, which
had a 109.3% increase in terms of traffic and a 35.4% decrease in terms
of download speed on average. DE-CIX, one of the world’s biggest IXPs,
reported a new traffic world record of 9.1 Tbps [24], as well as a 50%
increase in video conferencing traffic and 25% of social media traffic.
Finally, the Organisation for Economic Co-operation and Development
(OECD) released a report that aggregates the various traffic increase
information reported by Internet operators in a single document [25].
Such report highlights some important numbers, among which: (i) an
increase up to 60% of traffic reported in many IXPs and ISPs; (ii)
an increase up to 24 times higher of the volumes of traffic for video
conferencing platforms.

All these reports focus on the increase of Internet traffic and not
on latency. We believe that latency is extremely important as, with-
out information about capacities, traffic itself cannot be used for an
estimation of the perceived performance of the Internet by end users.
Moreover, as already mentioned, all the currently available studies are
limited to the boundaries of the organizations that provided them.

One of the few papers focusing on this topic, from a scientific
perspective, is the one by Favale et al. [26], where the impact of the
COVID-19 pandemic is observed from the campus network of an Italian
University. Favale et al. highlight a 10 time decrease in incoming traffic
and an increase of 2.5 times in outgoing traffic, as a consequence
of remote learning activities. Moreover, using passive measurements
collected using Tstat [27] and application logs, they studied the fruition
and performance of their in-house distance learning system.

3. Collection of data

The raw latency data used for this study was collected by RIPE
Atlas [7]. We then filtered and enriched such data as detailed in
the following subsections. RIPE Atlas is a globally distributed Internet
measurement platform that produces more than 10 000 measurements
per second [28]. Among the open platforms aimed at measuring the
Internet, RIPE Atlas is the one with the largest number of vantage
points [29], and it has a massive presence in Europe.

RIPE Atlas automatically carries out Anchoring Measurements (AMs),
here the set of targets is pre-defined. In particular, a large set of
evices called probes periodically perform measurements towards other
evices called anchors. Anchors are usually hosted in IXPs, in the oper-
tion centers of ISPs, or in data centers. Hence, they enable monitoring
f the core infrastructure of the Internet. The results produced by AMs
ave been extensively used for both research (see, for instance, [30–
4]) and operational purposes (for example DNSMON [35], a service
imed at monitoring the worldwide core DNS infrastructure). Addi-
ionally, RIPE Atlas allows its users to collect measurements towards
3

arbitrary targets. Results of User-Defined Measurements (UDMs) are
stored in a database from where they are accessible to the public (access
is not restricted to the experimenters who triggered them).

RIPE Atlas, for its measurements, relies on classical network tools.
The latency from an Atlas node to a target is estimated by means of the
ping tool which, as known, makes use of ICMP echo requests and echo
replies. For AMs, ping is launched to collect three Round Trip Time
(RTT) values. For UDMs, the default number of collected RTT values is
again three, but this number can also be changed by the experimenter.

Our analysis of the impact of COVID-19 pandemic relies on the
results generated by both AMs and UDMs.

3.1. AM-derived dataset

Starting from the dates of the events reported in Table 1, we
considered all AMs comprised in the interval from the 11th of February
to the 26th of March 2020. The set of probes and anchors involved
in the measurements is stable, with little variations caused by the
possible temporary unavailability of probes. Since AMs are performed
periodically and for the entire period of study, they provide information
on the Internet latency from a stable point of view. However, to be sure
to eliminate measurements occurring in a short time frame and thus not
covering appropriately the observation period, we further filtered the
selection to contain only the measurements concerning source–target
pairs that produced successful results in at least 40 different days (90%
of the total time frame).

The position of source and target nodes is fundamental to analyze
the impact on a country-level basis. For AMs, the position of both
source and target nodes is well-known, as such information is provided
for each node participating in the platform. We use such information to
select a subset of the ping measurements having both source and target
in Europe.

From now on we will refer to such a subset as the AM-derived
dataset (AMD). AMD is composed of more than 11.7 billion RTT values
generated by 303 603 source–target pairs during the monitored time
period.

3.2. UDM-derived dataset

Users of the RIPE Atlas platform can define their own latency
measurements according to their needs and interests. They can select
the set of targets to be probed, define the periodicity of probing, and
set the time-span of their measurement activities. In UDMs, targets fre-
quently include the servers of major Internet companies, DNS servers,
or privately owned network resources. As a consequence, the set of
targets involved in UDMs is heterogeneous. Sources are always a subset
of RIPE Atlas nodes, but the subset can be different from user to user.

For our analysis, we are interested in a subset of UDMs where
measurement activities were possibly scheduled before the COVID-19
outbreak in Europe and repeated periodically throughout the obser-
vation period. To obtain such a subset, we adopted the following
strategies. First, we extracted only periodic latency measurements,
i.e. configured to be automatically repeated after a certain amount of
time. Second, we discarded the measurements configured to collect
less than three latency values per ping execution. Third, similarly
to AMD, we filtered the selection to contain only the measurements
concerning source–target pairs that produced successful results in at
least 40 different days. Fourth, we restricted measurements to the ones
targeting IP addresses in Europe. It is important to notice that in UDMs
only the location of the source nodes is well-known, as it is provided
by RIPE Atlas. Hence, for this step, we estimated the position of the
targets by using RIPE IPmap [36]. RIPE IPmap uses active geolocation,
and it has been reported to be 100% accurate at continent level, 99.58%
at country level [37], and 80.3% at city level [38]. Additionally, we
used MaxMind GeoLite2 [39] as a fallback tool, in case of failed IP
geolocation with RIPE IPmap. Measurements where the target was not
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Fig. 1. Main characteristics of the Italian and European paths.
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uccessfully geolocated using these two tools were discarded. Finally,
n some cases, we had to limit the amount of extracted information
ue to the almost unmanageable volume of data in the repository.
n particular, when the number of targets in the geographic area of
nterest was too large, we randomly selected 10 000 targets and the
nalysis was restricted to them. Even when we had to limit the number
f targets, the number of sources from which measurements were
tarted was not subject to any limitation.

From now on we will refer to the dataset built according to the
bove-described procedure as the UDM-derived dataset (UDMD).
DMD is composed of more than 1 billion RTT values generated by
71 292 source–target pairs during the observation time period.

. Method

Let 𝑑 be the delay of a given Internet path. It can be roughly
xpressed as 𝑑 = 𝑑𝑡𝑟𝑎 + 𝑑𝑝𝑟𝑜 + 𝑑𝑞𝑢𝑒, where 𝑑𝑡𝑟𝑎 is the transmission delay,
𝑝𝑟𝑜 is the propagation delay, and 𝑑𝑞𝑢𝑒 is the time spent because of
ueues and processing at intermediate routers and target host. In a
ide-area scenario like the one considered, 𝑑𝑝𝑟𝑜 amounts to a significant

raction of the overall delay, as signals travel at approximately 200
m/ms in fiber. Moreover, the only component that is going to be
ffected by increased traffic is 𝑑𝑞𝑢𝑒. To isolate 𝑑𝑞𝑢𝑒 from the other terms,
he 𝑑𝑡𝑟𝑎 + 𝑑𝑝𝑟𝑜 component can be estimated as the minimum delay
bserved in a set of latency measurements collected on a given path.
he larger the number of collected samples, the better the quality of
he estimate: intuitively, the collection of more samples increases the
robability of finding lightly loaded network conditions. This approach
s not novel and it has been followed in other studies to characterize
atency variations on a large scale. In [40], for each host-pair the
ifference between the maximum and minimum RTT observed in a
ime bin was calculated. Then, the evolution of the obtained difference
alues was used to investigate on transient congestion. The use of
he minimum observed RTT as an approximation of the fixed delay
ssociated with a path was adopted also in [41], to study the variability
n TCP connections.

Delay variation metrics are discussed in RFC 5481 [42], where one
f the most widely implemented formulations is based on the use of
he packet with the minimum delay in the sample as the reference
acket. In particular, Packet Delay Variation is defined in RFC 5481 as
he one-way delay of the considered packet minus the one-way delay
f the packet with the lowest value for delay over the current test
nterval. Using the minimum delay as the basis for delay variation is
he preferred method also according to the ITU-T Y.1540 Recommenda-
ion [43] (albeit when considering 2-point packet delays, i.e. one-way
elays computed by means of the absolute arrival time at destination
inus the departure time at the source host).

Starting from the above considerations, we defined the following
4

ethod. Each source node, say 𝑎, measures the RTT towards a target,
say 𝑏, using the ping command at time 𝑡, which produces a list of delay
values 𝐷𝑎𝑏

𝑡 = {𝑅𝑇𝑇1, 𝑅𝑇𝑇2,… , 𝑅𝑇𝑇𝑛}. Let us also define

𝑑𝑎𝑏𝑚𝑖𝑛,𝑡 = min𝐷𝑎𝑏
𝑡

𝑑𝑎𝑏𝑎𝑣𝑔,𝑡 = avg 𝐷𝑎𝑏
𝑡

𝑎𝑏
𝑚𝑎𝑥,𝑡 = max𝐷𝑎𝑏

𝑡

as the minimum, average, and maximum value found in the execution
of the ping command at time 𝑡 from 𝑎 to 𝑏. First, we found the global
minimum value observed for each source–target pair as

𝑚𝑎𝑏 = min
⋃

𝑡∈𝑂
𝐷𝑎𝑏

𝑡

where 𝑂 is the entire period of observation. Since the observation
period we considered is relatively long, it is possible that some path
changes occurred, i.e. that the set of traversed routers was not always
the same. This is not a problem, provided that some of the above
concepts are reformulated appropriately. In a scenario where path
changes occur, 𝑚𝑎𝑏 is an estimate of the transmission and propagation
delay of the best path between 𝑎 and 𝑏, among all the paths followed
during the observation period.

Then, we used 𝑚 as a baseline to estimate the additional time
experienced for every single pair of nodes. In particular, we computed

𝑞𝑎𝑏𝑚𝑖𝑛,𝑡 = 𝑑𝑎𝑏𝑚𝑖𝑛,𝑡 − 𝑚𝑎𝑏

𝑞𝑎𝑏𝑎𝑣𝑔,𝑡 = 𝑑𝑎𝑏𝑎𝑣𝑔,𝑡 − 𝑚𝑎𝑏

𝑎𝑏
𝑚𝑎𝑥,𝑡 = 𝑑𝑎𝑏𝑚𝑎𝑥,𝑡 − 𝑚𝑎𝑏

or each couple 𝑎𝑏 of nodes, and for each 𝑡 ∈ 𝑂. The values of 𝑞𝑚𝑖𝑛,𝑡,
𝑎𝑣𝑔,𝑡, and 𝑞𝑚𝑎𝑥,𝑡 of all source–target pairs in the region of interest were
hen grouped in buckets with a duration of 30 min and averaged. This
ast step originates from our interest in evaluating the impact of the
hanged style of life on a large scale, for instance at the country level.
ore formally, let us call 𝑟𝑚𝑖𝑛,𝑘, 𝑟𝑎𝑣𝑔,𝑘, and 𝑟𝑚𝑎𝑥,𝑘 the average values

btained in the 𝑘th bucket 𝑇𝑘:

𝑟𝑚𝑖𝑛,𝑘 = avg 𝑞𝑎𝑏𝑚𝑖𝑛,𝑡
𝑟𝑎𝑣𝑔,𝑘 = avg 𝑞𝑎𝑏𝑎𝑣𝑔,𝑡
𝑟𝑚𝑎𝑥,𝑘 = avg 𝑞𝑎𝑏𝑚𝑎𝑥,𝑡
with 𝑡 ∈ 𝑇𝑘 and across all 𝑎𝑏 pairs located in the region of interest.
In practice, 𝑟 represents the average additional time with respect to
the best path ever followed during the whole observation period. Note
that the average is computed for all measurements occurred in that
specific bucket and across all source–target pairs located in the region
of interest (e.g. all source–target pairs in Italy); as a consequence, the
value of 𝑟 is generally greater than zero. To have 𝑟𝑚𝑖𝑛,𝑘 equal to zero,
all considered 𝑎𝑏 couples should experience, almost simultaneously,
their best RTT (𝑚𝑎𝑏) during the 𝑘th bucket, which is unlikely. The
smallest observed delay found for a source–target pair (𝑚) provides an
indication of the ‘‘uncompressible’’ component of the delay for such
pair and, as such, can be excluded in a study aimed at evaluating the

impact of the pandemic.
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5. Characterization of the dataset and preliminary data analysis

In this section, we provide a picture of the datasets in terms of
geographical extension and overall RTT dynamics. Fig. 1(a) shows
the distribution of distances of source–target pairs in Italy, for both
AMD and UDMD. In detail, the distances between hosts are computed
as Great Circle Distances (GCDs), i.e. the length of the shortest path
on the surface of the Earth. Actual distances traveled by packets are
generally larger than the corresponding GCDs because of circuitous-
ness of Internet routes (deviations from shortest physical paths can
be significant [44]). Distances span a couple orders of magnitude,
from few kilometers, when source and target are in the same city
or metropolitan region, to almost one thousand kilometers. Fig. 1(b)
shows the distribution of distances of European source–target pairs
limited to 500 targets (but using all sources). For the European data,
we had to limit the number of source–target pairs, because to compute
the distance both source and target have to be located at city level, and
active geolocation is expensive. For both Italian and European data, the
distances reported in Figs. 1(a) and 1(b) are the ones for which we have
been able to compute the position of the involved nodes at city level
(approximately 83%–98% of the considered couples). We believe that
the distributions shown in Fig. 1 are reasonably close to the ones of the
complete datasets.

The distributions of minimum RTT value observed for each source–
target pair (i.e. 𝑚) located in Italy and in the whole of Europe are shown
in Fig. 1(c) and 1(d), respectively. The wide range of values, from
few milliseconds up to ∼ 40 ms in Italy, and up to ∼ 80 ms in Europe,
originates from the geographical extension of the considered areas.

Fig. 2(a) shows the raw RTT values collected in Italy, AMs, before
any processing. More in detail, the scatterplot has been produced using
just 1:1000 of the values to make the image readable. The largest
values tend to be slightly higher after lockdown events. However, a
trend does not clearly emerge from raw values, probably because of
the large amount of values and because they are related to paths with
very different lengths. The red curve that is also shown in Fig. 2(a)
is the moving average of raw AMs values, computed using a window
with a duration of five minutes. In this case, increased variability can
be observed in the right-hand side of the figure because of lockdown.
The period of fluctuations suggests that daily activities may play a role
and for this reason they are further analyzed in Section 6.3. Fig. 2(b)
shows the absolute values, again for the Italian AMs, but now grouped
according to the method defined in Section 4. The 𝑑𝑚𝑖𝑛 values have
been grouped in buckets and averaged, similarly to 𝑟𝑚𝑖𝑛, but without
subtracting 𝑚. Let us call such values 𝑠𝑚𝑖𝑛. The curve is approximately
the same shown in Fig. 2(a), but with less spikes as the size of buckets
is 30 min. Fig. 2(c) shows the same 𝑠𝑚𝑖𝑛 curve, but now together with
𝑟𝑚𝑖𝑛. The scale is different to have a better view of the phenomenon. The
𝑟𝑚𝑖𝑛 curve is very similar to the other one, but translated downwards, as
now the 𝑚 value found for each pair is subtracted. Fig. 2(d) shows the
95th percentile of 𝑞𝑚𝑖𝑛, again grouped in buckets of 30 min. It is thus
computed similarly to 𝑠𝑚𝑖𝑛, but now using the 95th percentile instead
of the average. Variability of delays is even more visible in this case.

We do not provide an analogous discussion about the European
dataset and/or UDMD for the sake of brevity.

In the remaining of this paper, we base the analysis mostly on
𝑟, as we are interested in evaluating the impact of the pandemic on
the variable component of latency (with the exception of Section 6.1
where we also include 𝑠). The phenomenon is principally observed in
its evolution along the line of time, as we wish to understand if, and to
what extent, the lockdown measures, enforced in Italy and in the other
considered European countries, had an impact on the network.
5

Fig. 2. Italian AMs, from raw data to aggregated values (scales on the 𝑦 axis are
different).

6. Impact of lockdown on the Italian Internet

We studied the impact of the COVID-19 pandemic on the latency of
the Italian Internet from different perspectives: when both source and
target are located in Italy or just one of the two, when considering the
time of the day and workweek/weekend, and when taking into account
the version of the Internet Protocol. We also studied the observed
latency when the target is part of a content provider network. Beside
ICMP-based latency, an evaluation of latency as seen at the HTTP
level is provided. Finally, a subsection also shows the path changes
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Fig. 3. 𝑑 and 𝑟 values in measurements with both source and target in Italy. The dashed vertical lines correspond to lockdown events. The two gray areas correspond to W1 and
W2.
occurred at the AS-level as they can be related to the phenomenon
under observation.

6.1. Overall results

We start our analysis from the measurements in AMD with both
source and target in Italy. We first analyze the values of 𝑠 measured
in Italy. We recall that 𝑠 is the average of the 𝑑 values in each bucket,
as defined in Section 5. Fig. 3(a) shows the evolution of 𝑠𝑚𝑖𝑛, 𝑠𝑎𝑣𝑔 ,
and 𝑠𝑚𝑎𝑥 for the whole observation period. We notice that all values
progressively increase over time. Since Italy experienced some partial
lockdown events before the most restrictive one, there is no step-like
increase, rather a continuous one. However, approximately from Febru-
ary 23, when schools were closed in Northern Italy, delays start to grow
and higher peaks can be observed. The largest increase can be observed
on March 10, which is the date of the complete Italian lockdown. The
increase appears to be quite significant, for example if we consider the
𝑠𝑚𝑖𝑛 line, the peaks during the lockdown are approximately 30% higher
than the ones before the lockdown.

Besides the generally increasing value of all the three curves cor-
responding to the three 𝑠 variations, the higher variability of latency
is also evident. To evaluate the increased variation we compared the
value of 𝑠𝑚𝑖𝑛 in W1 and W2. The average 𝑠𝑚𝑖𝑛 experiences a 7.6%
increase in W2, and the 𝑠𝑚𝑖𝑛 standard deviation experiences a 201.5%
increase. The measurements in UDMD show a similar pattern, but more
accentuated, as can be seen in Fig. 3(b). In fact, in W2, the average 𝑠𝑚𝑖𝑛
is 14.5% higher than in W1, and the 𝑠𝑚𝑖𝑛 standard deviation is 310.1%
higher. It has to be noticed that the 𝑠 values in UDMD show a little
drop around March 10, which lasts some hours. We investigated on
this aspect, and found that one of the targets of the measurements was
unreachable in that interval. The target involved multiple source–target
pairs, corresponding to approximately 1∕5 of the measurements, which
usually were providing relatively high absolute delays. In other words,
this is an artifact due to a temporary lack of measurements, which can
happen when measuring real world devices.
6

Similar patterns can be observed when analyzing the evolution of
𝑟𝑚𝑖𝑛, 𝑟𝑎𝑣𝑔 , and 𝑟𝑚𝑎𝑥 for both AMD and UDMD, which can be found in
Figs. 3(c) and 3(d). In this case however, the curves are translated
downwards, as expected. This reflects on the increment of the average
𝑟𝑚𝑖𝑛 value in W2 with respect to W1, which is 27.7% in AMD and 66.8%
in UDMD, but not on the increment of the 𝑟𝑚𝑖𝑛 standard deviation
value, which remains almost unchanged: 203.6% in AMD and 280.8%
in UDMD.

Similar considerations can be made about measurements with
sources in Italy and targets spread all over Europe (excluding Italy), as
shown in Figs. 4(a) and 4(b) for AMD and UDMD respectively. Also in
this case, the generally increased variability during lockdown is clearly
visible.

When considering measurements with sources in Europe and targets
in Italy, as shown in Figs. 4(c) and 4(d), the situation is a bit different
between AMD and UDMD. In particular, for AMD the pattern is ap-
proximately the same as in Fig. 4(a). For UDMD, instead, the pattern is
quite different. An increase of the overall variability is still noticeable,
however the three curves appear to be much more squeezed on top of
each other, i.e. the 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 curves are much closer to each other
than in the other scenarios.

It is also worth to notice that, especially for AMD, the local minima
of the 𝑟𝑚𝑖𝑛 curve tend to get higher during the transitory period but
then they start to get lower. This is particularly visible in Figs. 3(a) and
3(c). The local minima (the troughs) correspond to night hours, when
the network is lightly loaded. This phenomenon could be explained
by the infrastructural enhancements introduced by network operators
to respond to the crisis. For example, during the transition period,
TIM (the Italian incumbent) started peering again in public peering
LANs of Italian IXPs for the first time since the end of 2012 [45].
Also, IXPs reported an increase of traffic of 30%–40%, which pushed
them to introduce upgrades in the capacity of their peering LANs,
as reported during the Italian Network Community Meeting held for
the occasion [46]. Such improvements could also justify the situation
in Figs. 4(a) and 4(c), where the troughs during the lockdown reach
smaller values compared to the one of the first analyzed week.
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Fig. 4. 𝑟 in measurements from Italy to the rest of Europe and vice-versa. The dashed vertical lines correspond to lockdown events. The two gray areas correspond to W1 and

2.
Fig. 5. Packet loss in measurements with both source and target in Italy.
6.2. Packet loss

We estimated the impact of the lockdown in terms of packet loss,
as the fraction of unsuccessful echo request/reply. Fig. 5 shows the
evolution of the packet loss for the whole observation period, for both
AMD and UDMD. Both datasets show an increase of packet loss over
time, especially after the lockdown starts. This is consistent with the
previous results, and indicates a generally increased congestion due to
the lockdown. We computed the average packet loss in W1 and W2.
The increase is significant: from 2.8e−3 to 5.9e−3 (+110.3%) for AMD,
and from 3.1e−3 to 9.4e−3 (+205.7%) for UDMD. Also the standard
deviation of the packet loss rate in W2 increases significantly compared
to W1: from 1.8e−3 to 1.1e−2 for AMD (+507.2%), and from 5.6e−3
to 2.6e−2 for UDMD (+367.9%).

We notice that in AMD there is an increase of the packet loss that
lasts approximately 2 days, around February 29 – March 1. We inves-
tigated this behavior and found that the increase is not attributable
7

to a narrow subset of the source–target pairs. We did not register any
disconnections of sources nor targets, and the same packet loss pattern
can be seen in measurements directed to 74% of the targets, although
with different intensities. These targets are geographically spread all
over Italy. In particular there are two targets that contribute in a
significant manner, which are located in Milan (at the Milan Internet
eXchange) and Monopoli (Puglia region), respectively (we point out
that measurements towards one target involve multiple source–target
pairs). The temporary increase of packet loss is not reflected in the
𝑟 curve, as for the involved source–target pairs the packets that are
correctly delivered experience a negligible increase of the RTT.

6.3. Circadian rhythms

The three curves shown in Figs. 3 and 4 show repeated peaks and
troughs. This is particularly evident during lockdown, and suggests that
latency gets more influenced by weekly or circadian rhythms.

To evaluate the influence of the day of the week, we separated the

Italian measurements in those run during work days and those run
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Fig. 6. Boxplot of 𝑟𝑚𝑖𝑛 in work days and weekend for AMD with both source and target
n Italy: comparison between W1 and W2. The red line represents the median value,
ottom and top edges indicate the 25th and 75th percentiles, whiskers extend to ±2.7
td. dev., the most external values are depicted using the ‘‘+’’ symbol. Note that the y
xis scale does not start from 0.

Fig. 7. Ratio of 𝑟 in W2 to 𝑟 in W1, for all hour slots. Hours are expressed in UTC
ime (Italy is UTC+1 for the observed period).

uring weekends for W1 and W2. Results can be seen in Fig. 6, which
hows the boxplot of 𝑟𝑚𝑖𝑛 in W1 and W2 for work days and weekends.
n both W1 and W2 the weekend values are slightly higher and show
8

higher variability. In addition, a significant increase can be observed in
W2 compared to W1.

To evaluate the influence of the time of the day on latency, we
divided Italian measurements in one-hour slots and aggregated them
when executed in the same hour. Then, we calculated for each slot the
ratio between the average 𝑟 values collected during W1 and during W2.
Results are represented in Fig. 7(a) for AMD. It is clearly visible how the
increase is not uniform across the time of the day. Night hours show
no considerable increase. This is not surprising, as human activity is
very limited at night, thus also the congestion of the Internet. Morning
hours show some little increase. Afternoon hours show a more evident
increase, but the highest increase occurs between 16:00 UTC and 22:00
UTC, with a peak between 20:00 and 21:00 UTC. This is interesting,
as, combined with the results of weekend highlighted in Fig. 6, it
suggests that remote working and distance learning have some impact
on the Italian Internet latency, but the major effects can be attributed
to leisure activities which typically occur in the afternoon/evening and
on weekends, such as gaming or video streaming (the reader has to
keep in mind that Italy is UTC+1 in the analyzed period). This could
be due to the lack of other recreational activities during the lockdown.
To deepen on this aspect we computed the empirical CDFs of the 𝑟𝑚𝑖𝑛
values in peak and off-peak hours for W1 and W2 (Figs. 8(a) and 8(b)).
For peak hours, we considered the interval 16:00-23:00, for off-peak we
considered the interval 00:00-08:00. We can notice that in both peak
and off peak hours the CDFs for W1 and W2 are clearly separated, and
the CDF for W2 shows the highest values. However, it is clearly visible
that while in off-peak hours the two CDFs are very similar, in peak
hours the CDF for W2 shows a substantial increase of the 𝑟𝑚𝑖𝑛 values
(note that the x axis scale in the two figures is different).

In Section 6.1, we highlighted as in night hours the values of 𝑟𝑚𝑖𝑛
are particularly low during the lockdown, and in particular in Figs. 4(a)
and 4(c) the local minima during the lockdown seem lower than the
ones before the lockdown. To evaluate this effect we computed the ratio
between W1 and W2 for the two cases depicted in the aforementioned
figures. The results are shown in Figs. 7(b) and 7(c), respectively. In
both cases the ratio goes slightly below one during night and morning
hours. Especially surprising is Fig. 7(c) where the ratio goes below one
for the entire morning. This could happen as in Fig. 7(c) we consider
sources outside Italy, thus the access network is still not involved in
a lockdown phase, and targets in the Italian infrastructure, which as
mentioned has been improved to cope with the traffic increase. During
night and morning hours the load on the network is still light, so in this
particular configuration the performance could increase. To conclude,
in evening hours the increased Internet usage during lockdown gener-
ally produces larger delays, but in periods of lighter load the network
is sometimes more efficient than before the lockdown.

6.4. IPV4 and IPv6

We further analyzed AMD taking into account the version of the IP
protocol. To perform a fair comparison we only selected measurements
run by dual stack probes (i.e., probes which have both IPv4 and IPv6
connectivity). This means that for both IPv4 and IPv6 we consider
measurements run between the same sources and targets. We found
11.6 million IPv4 RTT values and 9.8 million IPv6 RTT values with
both source and target in Italy. Figs. 9(a) and 9(b) shows the three 𝑟
variations for IPv4 and IPv6, respectively. IPv6 latency, in Italy, seems
to be characterized by larger variability compared to IPv4 latency,
independently from the lockdown period. Such variability increases
even more during the lockdown period. However, for IPv6 a reduction
of minimum 𝑟𝑚𝑖𝑛 values is particularly evident, probably due to the
network improvements introduced by operators. In particular, a signif-
icant drop around March 17 is visible. We investigated on this aspect
and found that a subset of measurements were initially originated
by source–target pairs which shared a common upstream provider

and were flowing through non national paths (mainly via Germany,
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Fig. 8. Peak hours vs off-peak hours, 𝑟𝑚𝑖𝑛 values in W1 and W2 for AMD measurements with source and target in Italy.
Fig. 9. 𝑟 in measurements with both source and target in Italy: IP version comparison.
Switzerland, and Netherlands). In correspondence of the observed drop,
the measurements involving these source–target pairs start to flow
through local paths via other providers. These paths show considerably
smaller latencies. After few days, the original configuration is restored.

We further studied the latency experienced between 20:00 UTC and
21:00 UTC (the peak hour previously identified) by the two protocol
versions. In particular, we compared the values collected during W1
with the values during W2. For IPv4, values of the 𝑟𝑚𝑖𝑛 average show a
121.7% increase in W2. For IPv6 instead, the increase is more modest,
11.2%. Both show a similar increase in variability in W2: 103.8% IPv4,
and 128.1% for IPv6.

To conclude, IPv6 in Italy is characterized by a generally higher
variability than IPv4, but in peak hours the former has been impacted
less than the latter by stay-at-home orders. This is not surprising, as
IPv4 and IPv6 are generally served by different infrastructures, and
follow different paths [47]. In addition, IPv6 is not as common as IPv4
in domestic connectivity, and this could justify the minor impact of the
lockdown on latencies observed in IPv6 measurements.

The same analysis was not repeated using UDMD, as the relatively
limited amount of IPv6-based UDMs does not allow us to produce
statistically sound results.

6.5. A content delivery example: Youtube

Since a large fraction of traffic is nowadays directed towards content
providers, which we suspect also being related to most of the evening
traffic (e.g. video entertainment), we investigated the impact of the
lockdown on the latencies towards YouTube.

We collected measurements towards the YouTube Content Delivery
Networks (CDNs), which is used to serve video content. YouTube
operates elaborated server selection strategies [48] which could lead
9

to inaccurate results. To avoid this, we operated as follows:
Fig. 10. 𝑟 in measurements towards YouTube servers located in Italy.

(i) We first mapped the names associated with the ad-hoc YouTube
CDNs (googlevideos.com and ggpht.com) to the IP addresses that
are used to serve content in Italy. For this purpose, we used all
the RIPE Atlas probes in Italy to run multiple DNS queries in
order to obtain the IP addresses associated with the YouTube
servers.

(ii) After obtaining all the visible IP addresses of the YouTube’s
servers (413 addresses), we used the anycast detection service
offered by RIPE IPmap, which uses active measurements from
RIPE Atlas probes to detect if an IP is anycast or not.

(iii) Then, we used again RIPE IPmap to geolocate the IP addresses

of the servers. The servers not located in Italy were discarded.
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Fig. 11. 𝑟 in measurements towards YouTube servers located in Italy: time slot comparison.
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Fig. 12. Fraction of the source–target pairs that experience at least one path change
t the AS-level during each single day, AMD.

(iv) Finally, we used these IP addresses to extract RIPE Atlas mea-
surements targeting them. We only selected ICMP ping measure-
ments (which are not subject to HTTP or application layer redi-
rects). We found approximately 6 million RTT values towards
115 YouTube’s servers located in Italy.

Fig. 10 shows the three 𝑟 variations we obtained. An increase of
he overall latency and its variability is visible during the days of
he lockdown. The standard deviation of 𝑟𝑚𝑖𝑛 is approximately 86.9%
igher in W2 with respect to W1. The average 𝑟𝑚𝑖𝑛 instead increases by
5.2%.

Our hypothesis that the increase of RTT registered in the evening
ours is due to people forced to stay home and using the Internet for
ntertainment, is thus strengthened by the results of the measurements
owards YouTube. Fig. 11(a) shows measurements collected between
5:00 UTC and 06:00 UTC while Fig. 11(b) shows measurements
ollected between 20:00 UTC and 21:00 UTC, for the entire observation
eriod. Also in this case, the 𝑟𝑚𝑖𝑛 during night hours slightly improves
uring the lockdown. The 𝑟𝑚𝑖𝑛 in the evening gets moderately higher
uring the transitory period and abruptly increases after the first day
f complete lockdown.

We acknowledge that YouTube is not fully representative of all
ontent providers networks, in fact our initial purpose was to collect
easurements towards Facebook and Netflix as well. However, we
id not find in RIPE Atlas enough measurements towards Facebook
nd Netflix servers to cover the whole observation interval and obtain
tatistically significant results.

.6. Path changes

To further improve our analysis, we looked for anomalous patterns
n the level of path changes between the sources and targets of our
easurements. We consider path changes at the Autonomous System
10

t

AS) level, as such level is the one impacting the most on the geography
f the paths, while the IP level is subject to various known artifacts
nd intra-AS load balancing [49]. From RIPE Atlas, we collected ICMP
raceroute measurements to match the Italian source–target pairs of our
nalysis. For AMD, this was rather straightforward as, besides ICMP
ing measurements, AMs also include other types of measurements
uch as ICMP traceroutes. For UDMD, instead, we could not find
nough traceroute measurements to match the source–target pairs of
he ping measurements, thus we restricted our analysis to the AMD
ource–target pairs.

To extract the AS paths from the traceroute IP paths, we use the
ollowing methodology: Initially, we match all the IP addresses against
he Internet Topology Data Kit [50] produced by CAIDA. This step
onverts different IPs belonging to the same router to a single one.
hen, we remove the first IP hop inside the network of the probe’s host,
s it is usually fixed. This step allows us to avoid most of the artifacts in-
roduced by the ICMP rate limiting happening close to the probes [51].
f an IP path includes series of wildcards (i.e., non responding hops),
hese are squashed into a single one. Then, each IP is converted to the
S number originating the prefix such IP belongs to. For this step we
se the longest-prefix matching on RIPE RIS data [52]. Some addresses
annot be mapped to an AS because they are not available in the RIPE
IS data (e.g. not announced publicly), or, more frequently, they are
art of the private address space (RFC1918) [53]. We discard such
nmappable addresses. This approach has been previously described
y Hyun et al. [54]. More sophisticated approaches are of difficult
pplication due to the size of our dataset. Moreover, our main interest is
o quantitatively estimate the variation of the path changes over time,
nd not to analyze the Internet AS-level topology.

We then divided the observation period in buckets of one day each,
nd for each bucket we computed the fraction of source–target pairs
hat incurred in at least one change of AS path in that bucket. Fig. 12
hows the fraction of path changes over time for AMD. The fraction
f source–target pairs experiencing path changes each day is rather
niform on all the observation period, between 0.1 and 0.2, which
eans that each day just 10%–20% of source–target pairs experienced
change of AS path. However, by comparing W1 and W2 from a

umerical point of view, we found that the average fraction of path
hanges per day is 17.9% higher in W2. Thus, there seems to be a slight
ncrease of the number of path changes per day due to the impact of
ockdown.

.7. HTTP

In the previous sections, we reported results obtained via ping mea-
urements based on ICMP echo requests. This type of traffic is used for
etwork diagnostics and sometimes routers can treat it differently from
raffic generated by end users, even if they usually behave similarly in

erms of RTT [55].
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Fig. 13. HTTP measurements with both source and target in Italy.
Even if the trends highlighted in the previous sections by ICMP show
an evident increase of the network congestion caused by the COVID-19
lockdown, we also analyze the latencies produced by RIPE Atlas HTTP
Anchoring Measurements (based on TCP). These kinds of measurements
are quite different from the ICMP measurements which we analyzed
above. In particular, each HTTP measurement collects just one sample
(instead of at least three for the ICMP ping ones). In addition, the
latencies that can be extracted from these measurements include the
time for sending an HTTP request to a server and waiting for the HTTP
response body to arrive. This time includes the time needed for the
server to build the response. The time needed for the DNS resolution
of the server address, instead, is not included. For this reason, it must
be noted that the latencies extracted from HTTP measurements are not
directly comparable with the latencies obtained by means of ICMP ping.

We analyzed the latencies extracted from HTTP measurements with
the methodology described in Section 4, however, being each measure-
ment composed by just one sample, we will not have 𝑑𝑚𝑖𝑛, 𝑑𝑎𝑣𝑔 , and
𝑑𝑚𝑎𝑥, but just 𝑑, and therefore just 𝑞 and 𝑟. Fig. 13(a) shows the results
for measurements with source and target located in Italy. The figure
shows an increase in the latency due to the lockdown. Like in the pre-
vious results, the increase is progressive and not step-like, as we recall
that Italy experienced multiple partial lockdowns before entering in the
strictest one. A step-like increase is noticeable in correspondence of the
increase of the packet loss showed in Section 6.2. In this case the packet
loss affects the performance of HTTP as, differently from ICMP, the
packet loss triggers retransmissions of the TCP protocol. Consequently,
the end-to-end latency of the TCP connection increases. Besides this
anomaly, the overall increment is noticeable also by comparing average
and standard deviation values of 𝑟, which are respectively 24.9% and
98.5% higher in W2 with respect to W1. In Fig. 13(b), the failure rate of
HTTP measurements is shown. Such failures are due to a combination
of network errors which include connection timeout, host unreachable
and network unreachable problems. Also in this case an increment of
the failure rate can be noticed as long as the Italian lockdown becomes
more restrictive. These results allow us to confirm that the increased
latency, in Italy, during lockdown is not limited to network diagnostic
traffic but also to end user traffic.

7. Impact of COVID-19 pandemic in other european countries

In this section, we show how the latency in other European coun-
tries was affected by the COVID-19 pandemic. We considered Spain,
France, and Germany, which had their major lockdown events re-
spectively five, seven, and twelve days after Italy. In addition, we
considered Sweden, as an example of a country that adopted a less
formal lockdown policy. Finally, we considered all European countries
together. Overall results are depicted in Fig. 14. Table 2 reports the
increment of the average and standard deviation of 𝑟𝑚𝑖𝑛 and packet loss
after stay-at-home orders. To obtain the increment, for each country
11

we compared the first week of measurements (W1) and the first week
of lockdown (W2). For Germany, the considered periods are four day
long instead of seven: Germany was put on lockdown at the end of our
observation period and a full week was not covered by the collected
data. Since there is not a unique date for lockdown in the whole of
Europe, and since some countries did not even enter a lockdown phase,
for Sweden and Europe we compared the first and the last week of the
observation period. The two weeks used for comparison are highlighted
in light gray in Fig. 14. In the following we analyze the considered
countries in detail.

Spain shows high variability of latencies also before the lockdown.
However, an increase due to enforced restrictions is noticeable in AMD.
Similarly, circadian patterns become more evident (Fig. 14(a)). This is
confirmed also by the summary statistics, which show an increment
of 37.4% of the 𝑟𝑚𝑖𝑛 average, and of 110.8% of the 𝑟𝑚𝑖𝑛 standard
deviation, in W2 compared to W1. The visual analysis of UDMD shows
a progressive increase of latency which starts much earlier than the
lockdown, with a generally spread variability (Fig. 14(b)). In fact,
results in Table 2 show a significant increment in the average 𝑟𝑚𝑖𝑛 of
63.2%, but a modest 19.3% for the standard deviation. On March 7,
a temporary increase can be observed in Fig. 14(b). We investigated
this phenomenon and found that it is due to a considerable increase
in the latency towards one target, observed from multiple sources. We
believe this to be an anomalous behavior due to the target itself or the
network in its proximity. The analysis of the packet loss shows opposite
behaviors between AMD and UDMD. In AMD, the packet loss decreases
during the lockdown, while in UDMD increases greatly.

In France, the situation is different, as shown in Figs. 14(c) and
14(d), which show AMD- and UDMD-based results respectively. In
AMD, the overall increase of latency is barely noticeable. Lockdown
seems to accentuate the periodic fluctuations due to circadian rhythms.
In fact, the summary statistics included in Table 2 show even a decre-
ment of 𝑟𝑚𝑖𝑛 average and standard deviation in W2 compared to W1, in
the AMD. However, it must be noticed that the first week of measure-
ments in AMD appears as particularly noisy if compared to the other
pre-lockdown weeks. UDMD instead show much higher variability,
which is the attribute that shows the most evident impact of the
lockdown. In fact, the analysis shows an increment of just 0.5% for
the 𝑟𝑚𝑖𝑛 average and 49.6% for the standard deviation of 𝑟𝑚𝑖𝑛. The
packet loss increases during lockdown for both AMD and UDMD, in
both average and standard deviation.

In Germany the situation is different from both Spain and France.
In AMD, the effect of lockdown is noticeable only in terms of amplified
circadian patterns (Fig. 14(e)). The analysis confirms this, by showing
just a 2.8% increase of the 𝑟𝑚𝑖𝑛 average, and a 37.3% increase of
the 𝑟𝑚𝑖𝑛 standard deviation. In UDMD, a more significant increase of
latency is visible (Fig. 14(f)), which corresponds to a 34.1% higher
value for the 𝑟𝑚𝑖𝑛 average and a 88.7% higher value for the 𝑟𝑚𝑖𝑛 standard
deviation in W2 compared to W1. It is worth noticing that in Germany
the degradation of latency starts more than one week before the lock-

down. This happened because Germany, like Italy, proceeded to some
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Fig. 14. 𝑟 in Spain, France, Germany, Sweden and whole of Europe. The dashed vertical lines correspond to lockdown events for the considered region. The gray areas correspond
to W1 and W2 for the considered region.
partial lockdowns and school closures before the major restrictions.
The average packet loss slightly increases for UDMD, and decreases for
AMD.
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As mentioned, Sweden adopted less formal restrictions. For this
reason, results shown in Figs. 14(g) and 14(h) are definitely interesting.
Both AMD and UDMD show a progressive increase of 𝑟 and of its
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Table 2
𝑟𝑚𝑖𝑛 and packet loss average and standard deviation increments (W2 compared to W1) in Italy, Spain, France, Germany, Sweden, and whole of Europe.

Country 𝑟𝑚𝑖𝑛 avg. increment (%) 𝑟𝑚𝑖𝑛 std. dev. increment (%) packet loss avg. increment (%) packet loss std. dev. increment (%)

AMD UDMD AMD UDMD AMD UDMD AMD UDMD

Italy 27.7 66.8 203.6 280.8 110.3 205.7 507.2 367.9
Spain 37.4 63.2 110.8 19.3 −55.6 134.3 −36.6 49.4
France −5.8 0.5 −15.6 49.6 17.0 43.5 45.4 37.4
Germany 2.8 34.1 37.3 88.7 −22.7 18.3 −33.8 −14.6
Sweden 44.7 28.6 531.2 231.7 101.0 −33.7 52.8 −47.6
Europe 8.1 15.4 114.6 108.1 −21.6 −0.3 −18.5 0.6
variability in the considered time period. This can mean either that
Swedish people autonomously increased social distancing and imple-
mented stay-at-home policies as suggested by the Swedish government,
or that the performance of the Swedish Internet infrastructure has
been affected by the lockdown imposed in other countries. Also the
comparison of W1 and W2 show a significant increase of 𝑟𝑚𝑖𝑛 average
nd standard deviation: 44.7% and 531.2% for AMD and 28.6% and
31.7% for UDMD. The packet loss increases for AMD but decreases
or UDMD.

Figs. 14(i) and 14(j) show respectively the AMD- and UDMD-based
esults for all of Europe. Additional latency is generally smaller than the
ndividual countries we analyzed. The response to national lockdowns
eems to be fairly good even if we notice an accentuation of the
ariability due to the circadian activities, starting from the Italian
ockdown, but not a significant increase of the overall latencies. This
s confirmed by the statistics reported in Table 2: the 𝑟𝑚𝑖𝑛 average is

subject to a modest increase, equal to 8.1% and 15.4% in AMD and
UDMD respectively, while the 𝑟𝑚𝑖𝑛 standard deviation experiences a
significant increase, equal to 114.6% and 108.1%. These results seem
to indicate that, on a continent-level scale, the impact of lockdown is
still noticeable but without dramatic changes in observed performance.
The packet loss instead decreases for AMD and is almost unchanged for
UDMD.

It is worth to notice that, after analyzing the packet loss in the
different countries, we cannot conclude that an increase in latency is
coupled with an increase in packet loss. In fact, in some cases we found
increasing latency and decreasing packet loss, and vice-versa.

8. Conclusion

It is well-known that computer viruses may cause a slowdown of
the Internet [56,57]. In 2020 we all learned that also biological viruses
may affect the global Internet performance, because of the changes they
bring in the way we live.

In this paper, we analyzed the impact of the COVID-19 pandemic
on the latency of the Internet on a large scale. Latency is particularly
important not only because it has a profound effect on some classes
of applications, but also because it is, by itself, an excellent indicator
of the health status of the network. Results, which have been obtained
from the analysis of a large amount of measurements, show that the
impact of the increased on-line activities is relevant, especially in
terms of higher variability. The major changes have been observed in
the evening, the time of the day when most of the on-line activities
are related to entertainment. This suggests that distance learning and
remote working contributed to a lesser extent in terms of additional
network latency. Results obtained for the considered countries show
relevant differences, which can be due to the resilience levels of their
network and/or to the non-uniform restrictions imposed by authorities.

We believe that the provided numbers and the related analysis,
despite being limited to a portion of the Internet, definitely help in
better understanding this previously unseen event in the history of the
13

Internet.
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