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a b s t r a c t 

Novel Coronavirus pandemic, which negatively affected public health in social, psychological and eco- 

nomical terms, spread to the whole world in a short period of 6 months. However, the rate of increase 

in cases was not equal for every country. The measures implemented by the countries changed the daily 

spreading speed of the disease. This was determined by changes in the number of daily cases. In this 

study, the performance of the Random Forest (RF) machine learning algorithm was investigated in esti- 

mating the near future case numbers for 190 countries in the world and it is mapped in comparison with 

actual confirmed cases results. The number of confirmed cases between 23/01/2020 - 17/06/2020 were 

divided into 3 main sub-datasets: training sub-data, testing sub-data (interpolation data) and estimating 

sub-data (extrapolation data) for the random forest model. At the end of the study, it has been found 

that R 2 values for testing sub-data of RF model estimates range between 0.843 and 0.995 (average R 2 = 

0.959), and RMSE values between 141.76 and 526.18 (mean RMSE = 259.38); and that R 2 values for es- 

timating sub-data range between 0.690 and 0.968 (mean R 2 = 0.914), and RMSE values between 549.73 

and 2500.79 (mean RMSE = 909.37). These results show that the random forest machine learning algo- 

rithm performs well in estimating the number of cases for the near future in case of an epidemic like 

Novel Coronavirus, which outbreaks suddenly and spreads rapidly. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Novel Coronavirus disease 2019 (COVID-19), which first ap-

eared in Wuhan, China in December 2019, has caused the death

f more than 450 thousand people worldwide as of June 2020 [1] .

n addition, COVID-19 quickly became a worldwide epidemic due

o its high contagiousness and rapid spread [2] . For this reason, all

ountries take steps to prevent the spread of the COVID-19 out-

reak. Many medical studies have been conducted to examine and

reat the disease caused by this new type of virus in recent months

3–7] . In addition, many studies have been conducted to examine

he social, psychological and economic effects of the COVID-19 out-

reak and the changes it causes [8–13] . Epidemiological, statistical

nd mathematical models have also been introduced to predict the

istribution, to observe the changes depending on meteorological

onditions, and to examine the structure of this epidemic which

ffects all countries globally [14–21] . Besides, the performance of

achine learning approaches for the diagnosis and treatment of

he disease was also studied [22–28] . All these studies reveal the

eneral structure of such an epidemic and disease that humanity
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as not encountered before and its effects on society. For this rea-

on, it is very important to research each individual and social im-

act that occurs in the COVID-19 pandemic, in different disciplines

ith different methods, along with its causes. This idea has been

he main motivation for this study. In this study, the performance

f the Random Forest (RF) method, which is a machine learning

lgorithm, was analyzed in estimating the daily increase rates and

he number of daily cases in the near future and synchronous par-

llel computing was carried out for 190 countries. 

In recent years, machine learning algorithms and artificial intel-

igence approaches have been used successfully in many different

elds [29–36] . One of the most important of these algorithms is

andom forest machine learning [37,38] . This method occurs with

he combination of many specialized decision trees. The input-

utput relationship is learned by the machine in certain confidence

ntervals with the help of experimental data. The success level of

he estimation model is determined by testing validation data after

ufficient learning is provided by the machine. 

The main purpose of this study is to discover the spread esti-

ation of the daily cases of the COVID-19 outbreak for the near fu-

ure using RF machine learning algorithm. Thus, by using the daily

hanges in the number of confirmed cases for 190 countries world-

https://doi.org/10.1016/j.chaos.2020.110210
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.110210&domain=pdf
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Fig. 1. Process steps in this study. 
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ide, the spatio-temporal distribution of the outbreak in the world

s estimated and mapped. In addition, this study also aims to re-

eal the performance of the RF algorithm both in determining the

pread of the outbreak and in estimating cases for the near future.

. Materials and methods 

.1. The data repository and software resources 

The COVID-19 data repository 1 used in the study was obtained

rom the Johns Hopkins University Center for Systems Science and

ngineering (JHU CSSE) [39] . In this study, the number of up-

ated and confirmed cases for 147 days between 23/01/2020 –

7/06/2020 in 190 countries worldwide was used. The entire study

as conducted in the R programming environment [40,41] and

andom Forest [42] was used for random forest calculations,

ovid19.analytics [43] for COVID-19 data, rnaturalearth [44] for

apping, ggpot2 [45] for visualizing of data, and caret [46] R pack-

ges for data preparation and separation. 

.2. Random forest 

The random forest approach proposed by Breiman [37] is a ma-

hine learning algorithm with many decision trees. It is a combi-

ation of Bagging [47] and Random Subspaces [48] methods. This

ethod has proved its success in both regression and classification

roblems in recent years and is one of the best machine learn-

ng algorithms used in many different fields [25,30,34,38,49–51] .

n RF algorithm, firstly, data set is randomly divided into two parts

s training data (the in-Bag) for learning and validation data (the-

ut of bag) for testing the learning level. 2/3 of the data set is de-

oted to training data and 1/3 to validation data. Later, many de-

ision trees are randomly created with “boot-strap samples” from

he data set. The branching of each tree is determined by randomly

elected predictors at node points. The RF Final estimate is the av-

rage of all results from each tree. Therefore, each individual tree

ffects RF estimation at certain weights. Since this method shows

black box” feature, each tree is not examined individually [52] . RF

lgorithm is stronger than other machine learning algorithms due

o its ability to randomly receive training data from subsets and

orm trees with random algorithm [53] . In addition, the random

orest algorithm maintains the overfitting level as training is car-

ied out on randomly selected different sub-datasets by boot-strap

ampling. 

.3. Process steps 

This study was carried out in 4 main stages. These process steps

re shown in Fig. 1 and explained below. 

1. Step, data split process; the number of confirmed cases for

90 countries between 23/01/2020 – 17/06/2020 is divided into 3

ain sub-datasets. The first data set is the training sub-dataset be-

ween 23/01/2020–31/05/2020. The second sub-dataset is the test-

ng sub-dataset consisting of 6 days (16–29 March, 18–29 April and

2–19 May) data randomly selected from the training data set days

fter the 50th day and separated from the training data set. This

ata set is different from validation data, which is inside the RF

lgorithm system and whose data is separated as 1/3. The third

ub-dataset is the estimating sub-dataset, where future predictions

re made for the date range 01/06/2020 - 17/06/2020. This data

et is separated from training data like the testing data set and is

ot included in the RF learning algorithm. Testing sub-data shows

andomly selected days (after the 50th day) among the date ranges
1 https://github.com/CSSEGISandData/COVID-19 . 

S  

s  

b  
n the training data set (Interpolation), while estimating sub-data

hows data from the days (near future) after the end of the train-

ng data (Extrapolation). 

2. Step, RF training process; machine learning process is per-

ormed at this stage by applying RF algorithm with training data.

n this process, determining the number of trees to be created and

he number of splits at the node points of the trees is impor-

ant for accurate predictions. 1/3 validation sub-datasets created

n RF algorithm were used for the optimization of these values.

t the end of the optimization, the number of trees was found as

500 for the most suitable model and the number of splits on the

odes as 3 (Average R 

2 = 0.952 at 10–fold cross-validation, average

MSE = 354.74). 

3. Step, RF testing process; after performing RF training with

ctual data, the model created is tested with the testing sub-

ataset separated from the data set and the results are shown

n the cross-validation diagram. The performance of the model is

etermined by mean error (ME, Eq. (1) ), root mean square error

RMSE, Eq. (2) ) and the correlation coefficient (R 

2 , Eq. (3) ). 

E = 

1 

n 

n ∑ 

i =1 

( A i − P i ) (1) 

MSE = 

√ 

1 

n 

n ∑ 

i =1 

( A i − P i ) 
2 

(2) 

 

2 = 

⎛ 

⎜ ⎝ 

1 −

n ∑ 

i =1 

( A i − P i ) 
2 

n ∑ 

i =1 

(
A i − A 

)2 

⎞ 

⎟ ⎠ 

(3) 

here n is the total number of points in cross-validation, P i , A i and

 are the estimated values, actual values and average of actual val-

es, respectively. 

4. Step, RF estimating process; Estimates of confirmed cases in

stimating sub-dataset are performed with RF model and results

re shown in cross validation diagram. In this process, 17-day esti-

ates of COVID-19 cases for the near future were calculated with

F algorithm. The results were interpreted with the performance

escriptors used in Step 3. 

. Results and discussion 

Fig. 2 shows the distribution maps of actual confirmed daily

ase numbers in 190 countries worldwide for testing data and the

istribution maps of daily case numbers estimated by RF model

or the same day in comparison. These maps were created with

he actual and estimated values of the randomly selected and sep-

rated test data from the training data set for the days after the

0th day, as stated earlier. Estimates of the number of cases by RF

odel were found very close to the number of actual confirmed

ases for all countries except the USA, France and Spain on March

6, 2020 (54th day). It is thought that the most important reason

hy RF estimation results are not correct for these three countries,

hich are among the countries most affected by the COVID-19 out-

reak is due to the sudden increase in the spread of the epidemic

n mid-March [1] . RF map of daily case estimates seems to be quite

imilar to the actual data on March 29, 2020 (67th day) except

urkey. The rapid increase in the number of cases in late March

nd early April in Turkey is slightly faster than the level estimated

y the model. A similar situation can be seen in Saudi Arabia on

pril 18, 2020 (87th day). Also, when the maps of the 87th day are

ompared, it is seen that there are fewer daily cases in France and

pain than RF estimation. It is remarkable that there is a very high

imilarity between the actual daily number of cases and the num-

er of cases estimated by the RF model, especially on the maps of

https://github.com/CSSEGISandData/COVID-19
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Fig. 2. For the testing data, comparative maps of daily cases estimated using the RF model with actual confirmed cases. 
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Fig. 3. Cross-validation and error distribution diagrams for the testing data. 
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Fig. 4. For 3 days (5-10-15 June 2020) selected from the estimating data, comparative maps of daily cases estimated using the RF model with actual confirmed cases. 
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Table 1 

The performance identifiers between actual confirmed cases and RF model esti- 

mation values for each day from June 1 to 17, 2020. 

Date Day R 2 RMSE Linear regression equation 

01 June 2020 131 th 0.916 802.76 y = 0 . 77 x + 57 . 94 

02 June 2020 132 th 0.915 820.23 y = 1 . 06 x − 30 . 37 

03 June 2020 133 th 0.959 632.60 y = 1 . 10 x + 30 . 62 

04 June 2020 134 th 0.942 802.60 y = 1 . 15 x + 1 . 56 

05 June 2020 135 th 0.958 814.06 y = 1 . 20 x − 21 . 42 

06 June 2020 136 th 0.968 549.73 y = 1 . 11 x + 13 . 17 

07 June 2020 137 th 0.955 575.82 y = 0 . 88 x + 67 . 55 

08 June 2020 138 th 0.940 722.57 y = 0 . 78 x + 76 . 37 

09 June 2020 139 th 0.825 1136.91 y = 0 . 99 x + 23 . 80 

10 June 2020 140 th 0.910 1129.12 y = 1 . 23 x − 81 . 03 

11 June 2020 141 th 0.955 815.86 y = 1 . 19 x + 18 . 52 

12 June 2020 142 th 0.930 830.80 y = 1 . 13 x + 10 . 36 

13 June 2020 143 th 0.957 627.43 y = 1 . 09 x + 59 . 90 

14 June 2020 144 th 0.855 967.45 y = 0 . 92 x + 153 . 64 

15 June 2020 145 th 0.938 616.37 y = 0 . 94 x − 87 . 66 

16 June 2020 146 th 0.929 1114.14 y = 1 . 28 x − 20 . 81 

17 June 2020 147 th 0.690 2500.79 y = 1 . 38 x + 105 . 53 

Mean 0.914 909.37 
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9 April 2020 (98th day), 12 May 2020 (111th day) and 19 May

020 (118th day). Thus, it is clearly seen in the comparative maps,

specially after the 90th day, that the model suggests closer esti-

ates to actual data. 

Fig. 3 shows the distribution of errors and the cross-validation

iagrams, where actual numbers and RF estimates are given to-

ether for the testing subset. Accordingly, R 

2 has been calculated

s 0.843, 0.984, 0.955, 0.995, 0.990 and 0.984, RMSE as 141.76,

44.47, 526.18, 173.64, 204.90, and 265.37 for the 54th, 67th, 87th,

8th, 111th and 118th days, respectively. As shown in the distri-

ution of the errors graph, ME values were determined as 0.0 on

ll days tested. It is seen that most of the standardized errors (ex-

ept a few outlier) in all diagrams are concentrated at the 0.0 point

nd the error distributions fit the normal distribution. These re-

ults reveal the success of the random forest algorithm in estimat-

ng the number of missing COVID-19 daily cases in the training

ata time range. Fig. 4 shows diagrams that demonstrate estima-

ion performance of the RF model for the near future. In these di-

grams, the actual confirmed cases and RF estimation results of

 days (5–10–15 June 2020) selected from estimation data, which

ave never been introduced to the machine as training data inter-

al, are shown in both maps and cross validation diagrams com-

aratively. Accordingly, R 

2 has been calculated as 0.958, 0.910 and

.938; and RMSE as 814.06, 1129.12 and 616.37 for 135th, 140th

nd 145th days, respectively. In addition, Table 1 lists the perfor-

ance identifiers between actual confirmed cases and RF model

stimation values for each day from June 1 to 17, 2020. Accord-

ng to this table, the best RF model estimation for the near future

as been calculated as the highest R 

2 0.968 and the lowest RMSE

49.73 for the 6 June 2020 data. In addition, the average R 

2 value

or 17 days between 1 and 17 June 2020 has been found as 0.914

nd the average RMSE value has been found as 909.37. These re-

ults show the success of the RF machine learning algorithm in

stimating the number of COVID-19 daily cases in the near future.

owever, when Table 1 is analyzed, it is seen that there is a signif-

cant decrease in RF estimation performance for June 17, 2020. The

ain reason for this is thought to be the unpredictably high in-

rease in the number of daily cases (36,179) recorded in Chile that

ay. RF model estimation maps and cross-validation diagrams for

–17 June 2020 are presented in Figure S1 in the Supplementary

aterial. 

When the results of the study are evaluated in general, it has

een shown that the random forest machine learning algorithm

an create appropriate estimations in determining the number of
ear future cases in a sudden emerging epidemic. It is thought that

ppropriate estimations can be made for the distant future as well

y increasing the input data and introducing other factors affect-

ng the epidemic as an appropriate parameter to the random forest

earning algorithm. Based on these results, a hybrid approach can

e created by using the advantages of other machine learning algo-

ithms in future studies. Spatio-temporal spread rate estimation of

 sudden epidemic and potentially risky areas identification might

lso be possible with the aforementioned approach. 

. Conclusions 

In this study, the performance of the random forest machine

earning algorithm in estimating near future COVID-19 confirmed

ases were investigated. In addition, RF estimation results were

alculated and evaluated separately for both randomly selected

ays from the training data and for the days outside the training

ata. The comparative results are shown in cross-validation dia-

rams as well as distribution maps created for 190 countries. R 

2 

alues of RF model estimations calculated for 6 days randomly se-

ected among training data set time intervals were found to range

etween 0.843 and 0.995, and RMSE values between 141.76 and

26.18. In addition, according to the performance indicators of the

F model estimation results for the near future for the date range

f 1–17 June 2020, which are out of the training data set time in-

erval, the R 

2 values vary between 0.690 and 0.968, the average is

.914 and the RMSE values vary between 549.73 and 2500.79 and

he average is 909.37. These results show that the random forest

achine learning algorithm has produced very successful results

n estimating the number of cases for the near future in case of

 sudden epidemic. This study can be improved by increasing the

umber of input variables (number of daily tests, the population

f the country, number of quarantined people, number of people

ecovering, meteorological data, measures taken by countries etc.)

ffecting the daily increase in cases and by using different machine

earning algorithms in a hybrid way. However, it should be noted

hat the machine learning process and the estimation periods will

e longer in this case. These issues should be taken into consider-

tion for future studies. 
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