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Abstract

As shown in computer vision, the power of deep learning lies in automatically learning relevant 

and powerful features for any perdition task, which is made possible through end-to-end 

architectures. However, deep learning approaches applied for classifying medical images do not 

adhere to this architecture as they rely on several pre- and post-processing steps. This shortcoming 

can be explained by the relatively small number of available labeled subjects, the high 

dimensionality of neuroimaging data, and difficulties in interpreting the results of deep learning 

methods. In this paper, we propose a simple 3D Convolutional Neural Networks and exploit its 

model parameters to tailor the end-to-end architecture for the diagnosis of Alzheimer’s disease 

(AD). Our model can diagnose AD with an accuracy of 94.1% on the popular ADNI dataset using 

only MRI data, which outperforms the previous state-of-the-art. Based on the learned model, we 

identify the disease biomarkers, the results of which were in accordance with the literature. We 

further transfer the learned model to diagnose mild cognitive impairment (MCI), the prodromal 

stage of AD, which yield better results compared to other methods.

1 Introduction

Alzheimer’s disease is one of the most growing health issues, which devastated many lives, 

and the number of people with Alzheimer’s dementia is predicted to be doubled within the 

next 20 years in the United States [2]. However, the basic understanding of the causes and 

mechanisms of the disease are yet to be explored. Currently, diagnosis is mainly performed 

by studying the individual’s behavioral observations and medical history. Magnetic 

Resonance Imaging (MRI) is also used to analyze the brain morphometric patterns for 

identifying disease-specific imaging biomarkers.

In recent years, numerous methods are introduced exploiting MRI data for distinguishing 

Alzheimer’s Disease (AD) and its prodromal dementia stage, Mild Cognitive Impairment 

(MCI), from normal controls (NC). These approaches can be categorized in four main 

categories: Voxel-based methods [10], methods based on Regions-of-Interest (ROI) [6,7], 

patch-based methods [9], and approaches that leverage features from whole-image-levels 

(i.e., without considering local structures within the MRIs) [13]. The voxel-based 
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approaches are prone to overfitting [8] (due to high dimensionality input image) while ROI-

based methods are confined to a coarse-scale limited number of ROIs [8] that may neglect 

crucial fine-scaled information secluded within or across different regions of the brain. 

Patch-based approaches often ignore global brain representations and focus solely on fixed-

size rectangular (or cubic) image patches. In contrast, whole-image approaches cannot 

identify the subtle changes in fine brain structures. Leveraging a trade-off between the global 

and local representations can, therefore, contribute to a better understanding of the disease, 

while not overemphasizing one aspect.

With the recent developments of deep learning and Convolutional Neural Network (CNN) 

algorithms in computer vision studies, many such methods are developed for medical 

imaging applications. However, the majority of such previous works mainly focused on 

segmentation, registration, landmark or lesion detection [8]. For disease diagnosis, 

researchers have tried two-dimensional (2D) or three-dimensional (3D) patch-based models 

to train deep networks that diagnose diseases to a patch-level rather than subject-level. Only 

a few end-to-end deep learning methods (leveraging local and global MRI cues) are 

developed for the classification of neuroimages into different diagnostic groups [9,8], 

despite the power of deep learning owes to automatic feature learning made possible through 

end-to-end models. Not developing end-to-end models were mainly due to several 

limitations including: (1) not having enough labeled subjects in the datasets to train fully 

end-to-end models; (2) brain MRIs are 3D structures with high dimensionalities, which 

cause large computational costs; and (3) difficulties in interpretability of the results of end-

to-end deep learning techniques from a neuroscience point-of-view. To resolve these 

challenges, instead of replicating standard deep learning architectures used in the computer 

vision domain, one requires explicit considerations and architectural designs. We conduct 

several experiments and tailor our architecture (through exploiting its numerous 

hyperparameters and architectural considerations) for classification of 3D MR images.

In this paper, we build a 3D Convolutional Neural Network (3D-CNN) and provide a simple 

method to interpret different regions of the brain and their association with the disease to 

identify AD biomarkers. Our method uses minimal preprocessing of MRIs (imposing 

minimum preprocessing artifacts) and utilizes a simple data augmentation strategy of 

downsampled MR images for training purposes. Unlike the vast majority of previous works, 

the proposed framework, thus, uses a voxel-based 3D-CNN to account for all voxels in the 

brain and capture the subtle local brain details in addition to better pronounced global 
specifics of MRIs. Using this detailed voxel-based representation of MRIs, we eliminate any 

a priori judgments for choosing ROIs or patches and take into account the whole brain. To 

avoid overfitting potentially caused by the large dimension of images, we carefully design 

our training model’s architecture in a systematic way (not using standard computer vision 

architectures). We, then, propose a simple method to identify the MRI biomarkers of the 

disease by observing how confidently different regions of the brain contribute to the correct 

classification of the subjects. Finally, we propose a learning transfer strategy for MCI 

classification alongside the other two classes, in a three-class classification setting (AD, 

MCI, NC). Experiments on ADNI-1 dataset show superior results of our model compared to 

several baseline and prior works.
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2 Dataset and Preprocessing

In this study, the public Alzheimer’s Disease Neuroimaging Initiative-1 (ADNI-1) [4] 

dataset is used, with all subjects having baseline brain T1-weighted structural MRI scans. 

The demographic information of the studied subjects is reported in Table 1. According to 

clinical criteria, such as Mini-Mental State Examination (MMSE) scores and Clinical 

Dementia Rating (CDR) (see http://adni.loni.usc.edu), subjects were diagnosed with AD or 

MCI conditions. There is a total of 841 subjects with baseline scans in the dataset, including 

200 AD, 230 NC, and 411 MCI. Fig. 1 shows the age distribution of different classes. 

Almost half of the subjects in each male/female category are in the MCI stage. Note that this 

stage is quite difficult to classify (from NC or AD) as it is a transition state and has 

similarities with both other classes. As can be seen, subjects are distributed proportionally 

similar across the three classes with respect to their age. Besides, both male and female 

groups have approximately similar portions of patients in each of the classes. Although the 

three classes are similar with respect to both age and gender distributions, we consider these 

two factors as input features to the model, as they can be confounding factors in MRI studies 

[1].

As a simple preprocessing step, the MR images of all subjects are skull-stripped, which 

includes removal of non-cerebral tissues like skull, scalp, and dura from brain images. To 

this end, we use the Brain Extraction Technique (BET) proposed in [11]. This step reduces 

the size of images by a factor of two and hence slashes the amount of computational time 

spent for training the model.

3 3D-CNN Training and Evaluation

Architecture:

For our end-to-end classification task, we build a three-dimensional Convolutional Neural 

Network (3D-CNN) using the TensorFlow framework. To evaluate the performance and to 

avoid overfitting, we consider two architectures: a complex architecture, as shown in Fig. 2, 

and a simplified version (with less number of filters, one less FC layer, and removing one 

Convolution (Conv.) layer at each stage). The complex architecture has O 105  trainable 

parameters, and the simple one has O 104  parameters. The fewer number of parameters 

helps the network avoid overfitting on a limited number of subjects.

The input MR images are re-sized to 116×130×83 voxels. The first batch of Conv. layers 

(L1,2) have 33 × 32 and filter the second (L4,5) and the third (L7,8) 33 × 64 and 33 × 128, 

respectively. The max-pooling layers (L3, L6, and L9 ) are with sizes 23, 33, and 43, 

respectively. The fully connected (FC) layers have 512 (for L10) and 256 (for L11) nodes. 

The demographic variables of the subjects (age and gender) are added as two additional 

features in the first FC layer. We use a rectified linear unit (ReLU) as the activation function, 

and a cross-entropy cost function as the loss, which is minimized with the Adam optimizer. 

To optimize the architecture parameters and improve the trained model, we experiment by 

adding drop-out (D/O) and ℓ2-regularization (Reg). Therefore, several hyperparameters are 

introduced to experiment on, including the β coefficient of the ℓ2-regularization, the drop-out 
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probability, and the size of input training batches, in addition to the learning rate, number of 

filters in the convolutional layers, and the number of neurons in the FC layers.

Data Augmentation:

To train the model, we augment the data by flipping all subjects such that left and right 

hemispheres are swapped. This is a common strategy for data augmentation in the medical 

imaging as the neuroscientific studies suggest that the neurodegenerative disease (such as 

AD) impair the brain bilaterally [2].

Training Strategy:

As can be seen in Fig. 2, the output layer defines c different classes. To better model the 

disease and identify its biomarkers, we first train the model on two classes (c = 2), i.e., AD 

and NC. After training the classifier with two classes, we add a third class (i.e., MCI) and 

fine-tune the weights to now classify the input into three categories. This is simply possible 

as we use a cross-entropy loss in the last layer of the network, which can be easily extended 

for multi-class cases. This fine-tuning strategy is actually conducting a transfer learning 

from the domain of the two-class learned model to the three-class case. We show in our 

experiments that, in the presence of limited sets of training data such as medical imaging 

applications, this transfer learning strategy leads to better results compared to training the 

three-class model from scratch. It is important to note that MCI is the intermediate stage 

between the cognitive decline of normal aging and the more pronounced decline of dementia 

(to some extent between AD and NC), and hence, first learning to separate AD from NC 

identifies the differences between the two classes. Then, adding the third class and fine-

tuning the network transfers the learned knowledge to classify the middle condition, not 

jeopardizing the performance of AD Diagnosis.

Evaluation:

We use the classification accuracy (Acc), F2-score, precision (Pre) and recall (Rec) for 

evaluating the models. Having true positive, true negative, false positive, and false negative 

denoted by TP , TN, FP , and FN, respectively, precision and recall are computed as Pre = 

TP/(TP + FP), Rec = TP/(TP + FN). and then the F2-score is defined by weighing recall 

higher than precision (i.e., placing more emphasis on false negatives, which is important for 

disease diagnosis): F2 = (5 × Pre × Rec)/(4 × Pre + Rec).

4 Experiment Results

To evaluate the model, at each iteration of 10-fold cross-validation, we randomly split the 

dataset into three sets of training (80%), validation (10%), and testing (10%). Starting from 

the training model shown in Fig. 2 (the complex architecture), we simplified the network, as 

described before, to avoid early overfitting. Besides, we investigated the effect of ℓ2-

regularization of kernels and biases in the Conv. layers, as well as the FC layers with the 

regularization hyperparameter searched in the set {0.01, 0.05, 0.1, 0.5, 1.0}. Regularization 

coefficient 0.5 for the kernels and 1.0 for the biases are found to result in the best validation 

F2-score. We also tested the drop-out strategy in the last two FC layers in the training 

process, controlling the drop-out extent by the value of keep-rate. We tested regularized 
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simple and complex model architectures with different keep-rate values for the FC layers 

ranging from 0.15 to 0.85 and found that keep-rates of 0.15 and 0.25 for the first and second 

FC layers lead to the best validation-set accuracy in the complex model and keep-rate of 0.4 

gives the best validation-set accuracy in the simple model.

AD vs. NC Classification Results (Two-Class Case):

Table 2 shows the results of our model on the testing set in comparison with respect to 

ablation tests (removing components from the model and monitor how the performance 

changes). To test the significance of the classification results, we test our models using a 

Fisher exact test, in which our simple and complex models led to a p-value of less than 

0.001. This indicates that the classifiers are significantly better than chance. As it can be 

seen, augmenting the size of the dataset led to improvement in the testing F2 score, 

increasing it by 12.2% from its value of 81.1% in the non-augmented case. Another 

interesting observation is that the simple network outperforms the complex one, as it is less 

prone to overfitting.

Fig. 3 shows the training and validations accuracy and loss function values with respect to 

the number of epochs for the best model (i.e., the one with validation-set F2 score of 0.933). 

The learning process is terminated when the accuracy of the training set reaches near 1.0. 

Furthermore, the drop in the loss function curve after a middle stage plateau, where it 

reaches a saddle point, can be attributed to the hyperparameter tuning inherent to the Adam 
optimizer during the training process. The model converges to a steady optimum without 

overfitting to the training data and hence yields reliable testing accuracies.

Comparisons with Prior Works:

Table 3 compares the results of our AD vs. NC classification with prior works in terms of 

accuracy, sensitivity (Sen), and Specificity (Spe) as reported in the respective references. 

Although the experimental setup in these references is slightly different, this table shows 

that our end-to-end classification model can classify the subjects more accurately. The 

improved accuracy can be attributed to the end-to-end manner of classifying the data, which 

helps to learn better features for the specific task of AD diagnosis and hence yield better 

results compared to other works.

Identification of AD Biomarkers:

To identify the regions of the brain that cause AD, we simply perform an image occlusion 

analysis on our best model (i.e., 3D-CNN+Reg+D/O+Aug) by sliding a box of 1 × 1 × 1 

zero-valued voxels along the whole MR image of AD patients that were correctly labeled as 

AD by our trained model. The importance of each voxel, hence, can be characterized as the 

relative confidence of the samples being classified as AD. The resulting heat map is shown 

in Fig. 4, in which the color map indicates the relative importance of each voxel. The red 

areas decrease the confidence of the model, suggesting that they are areas that are of critical 

importance in diagnosing AD. The red regions in Fig. 4 coincides with the hippocampus, 

amygdala, thalamus, and ventricles of the brain, which have been reported to be responsible 

for short-term memory and early stages of AD [7,2,10,3].
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Learning Transfer (Three-Class Classification):

We use the best model for the binary classification of AD vs. NC in Table 2 and fine-tune it 

to develop a learning transfer strategy for classification MCI subjects. Doing so, we build a 

three-class classifier to classify NC vs. MCI vs. AD. To this end, the output layer of our 

model changes to c = 3 instead of the previous c = 2 classes. We keep the previously learned 

weights in the network and fine-tune the network by exposing it to the sample from the MCI 

class. Table 4 shows the results of training with learning transfer strategy, in comparison 

with the method that trains based on three classes from scratch. As it can be seen, our model 

results in 61.1% accuracy, while if we train the model from scratch with all three classes, the 

model results in worse accuracies. This is due to the difficulty of the MCI class to 

distinguish from AD or NC. When training based on all three classes at once, the model gets 

stuck in local optima easier and overfit to the training data. On the other hand, the learning 

transfer strategy helps first learning the easy problem (i.e., AD vs. NC) and then transfer the 

knowledge to the domain of the harder class (i.e., MCI). Interestingly, our three-class 

classification results are better than the results of other works for the three-class AD, MCI, 

and NC classification. For instance, Liu et al. [10] obtained a 51.8% accuracy, compared to 

which, our results are better by a large margin (i.e., 9.3%). Again, this improvement can be 

attributed to the end-to-end design of our model and the learning transfer strategy.

5 Conclusion

In this paper, we developed a 3D-CNN model to diagnose Alzheimer’s disease and its 

prodromal stage, MCI, using MR images. Our end-to-end model not only led to the best 

classification performance compared to other methods but also contributed to identifying 

relevant disease biomarkers. We found the hippocampus region of the brain is critical in the 

diagnosis of AD. With an extensive hyperparameter tuning and exploiting the best model 

architecture for binary classification, we fine-tuned the resulting model for MCI diagnosis as 

well. An interesting finding of this work was that the simple architecture led to better testing 

results, compared to the other more complex architecture, as it is less prone to overfitting to 

the training data.
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Fig. 1: 
Age distributions across groups.
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Fig. 2: 
3D-CNN architecture used in this paper. The blue cubes (L1, L2, L4, L5, L7, and L8) are 

convolutional layers; Orange cubes (L3, L6, and L9) are max-pooling layers; and the last two 

layers are fully connected (FC) layers.
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Fig. 3: 
(Left) training loss and (Right) training-validation accuracies with respect to the number of 

epochs for our 3D-CNN.
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Fig. 4: 
Relative importance of different voxels associated with AD diagnosis.
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Table 1:

ADNI-1 subjects demographic information.

Class Sex Count
Age

mean±std min 25% 50% 75% max

AD
M 97 75.0±7.9 55.2 70.8 75.3 80.4 91.0

F 103 76.1±7.4 56.5 71.1 77.0 82.3 87.9

MCI
M 265 75.4±7.3 54.6 71.0 75.4 80.7 89.8

F 146 73.6±7.5 55.2 69.1 74.3 79.7 86.2

NC
M 112 76.1±4.7 62.2 72.5 75.8 78.5 89.7

F 118 75.8±5.2 60.0 72.1 75.6 79.1 87.7
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Table 2:

Ablation tests: testing performance comparison of different models (last row is our model). The comparison 

includes the Accuracy (Acc), F2 score, Precision (Pre), and Recall (Rec) of all methods (Reg: Regularization, 

D/O: Drop-Out, Aug: Augmentation).

Model
Simple Complex

Acc% F2 Pre Rec Acc% F2 Pre Rec

3D-CNN 68.7 0.71 0.68 0.72 66.5 0.69 0.67 0.70

3D-CNN+Reg 77.6 0.77 0.74 0.78 77.4 0.75 0.72 0.76

3D-CNN+Reg+D/O 83.1 0.811 0.78 0.82 79.7 0.82 0.79 0.84

3D-CNN+Reg+D/O+Aug (Ours) 94.1 0.93 0.92 0.94 88.3 0.89 0.88 0.91
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Table 3:

Comparisons with prior works for AD diagnosis.

Method Modalities Acc% Sen Spe

[12] MRI+PET 85.7 0.99 0.54

[3] MRI 90.8 N/A N/A

[10] MRI 91.1 0.88 0.93

[5] MRI 93.9 0.94 0.93

Ours MRI 94.1 0.94 0.91
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Table 4:

Testing performance for three-class Alzheimer classification.

Method
Simple Complex

Acc% F2 Pre Rec Acc% F2 Pre Rec

3D-CNN+D/O+Reg+with learning transfer 61.1 0.62 0.59 0.63 57.2 0.59 0.55 0.61

3D-CNN+D/O+Reg+w/o learning transfer 0.54 53.4 0.49 0.55 48.3 0.50 0.45 0.52
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