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Abstract

Enterprise imaging has channeled various technological innovations to the field of clinical 

radiology, ranging from advanced imaging equipment and postacquisition iterative reconstruction 

tools to image analysis and computer-aided detection tools. More recently, the advancement in the 

field of quantitative image analysis coupled with machine learning-based data analytics, 

classification, and integration has ushered in the era of radiomics, a paradigm shift that holds 

tremendous potential in clinical decision support as well as drug discovery. However, there are 

important issues to consider to incorporate radiomics into a clinically applicable system and a 

commercially viable solution. In this two-part series, we offer insights into the development of the 

translational pipeline for radiomics from methodology to clinical implementation (Part 1) and 

from that point to enterprise development (Part 2). In Part 2 of this two-part series, we study the 

components of the strategy pipeline, from clinical implementation to building enterprise solutions.
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INTRODUCTION

Radiomics can be defined as the process of uncovering signals buried within images and 

using such signals to augment the traditional radiologic interpretation and gain insights into 

the structure, behavior, and therapeutic response profile of a disease. We define translational 

radiomics as a process of converting the basic radiomic methodologies into evidence-based 

clinically applicable models that may then undergo the steps of platform standardization, 

algorithm integration, and applied business intelligence to create a commercialized product 

for mainstream use.

In this part (Part 2), we identify the steps involved in the process of translating a clinically 

viable radiomics tool to a successful enterprise solution to include the following 

components: understanding the most applicable areas for clinical implementation of 

radiomics, performing outcomes analysis to which radiomic features may be associated, 

implementing radiomics in a platform that can help guide physician behavior, and 

identifying ways to continually improve the radiomics algorithms as exponentially 

increasing data and features are generated in the path toward precision medicine (see Fig. 1).

APPLICATIONS FOR CLINICAL RADIOMICS

Image Interpretation and Direct Image Analysis

Perhaps the most direct application of radiomics from an imaging physician’s standpoint is 

to improve or facilitate the interpretation of images, as has been investigated in evaluating 

levels of fibrosis on ultrasound imaging of the liver [1], classifying neurodegenerative 

disease on MRI [2], and classifying bone tumors on PET-CT [3]. In a sense, this type of 

application represents an extension of computer-assisted detection and classification and has 

seen prior direct application in the realms of lung nodule classification or breast cancer 

detection.

Incorporation of radiomics into other aspects of image analysis stretches the field’s utility 

into the realm of image-guided therapy. The use of feature analysis for more precise 

delineation of anatomic boundaries in cardiology or vascular images has the potential to 

improve the segmentation process for quantitative volumetric analyses themselves or to 

delineate boundaries or track them for treatment purposes [4–6]. Feature-based tumor 

boundary delineation has applications in staging as well as radiation oncology treatment 

planning [7–9].

Precision Medicine—Imaging Phenotypes to Guide Therapy

The realization that diseases and their relationships cannot be understood or treated 

effectively using traditional disease classifiers has led to the concept of precision medicine. 

Precision medicine seeks to accurately identify the true nature of disease to apply highly 
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targeted therapeutic agents to achieve an optimal response [10]. The opportunity to bring 

imaging directly into precision medicine, as both genomics and proteomics and other 

“omics”-related fields, is one of the most intriguing areas of radiomics’ growth. One of the 

most aggressively pursued applications of radiomics has been in identifying imaging 

phenotypes in cancer [11–13]. These phenotypes may or may not have corresponding 

detectable proteomic or genomic correlates and may be used independently to predict 

survival, select patients for specific therapies, assess response to systemic or targeted 

therapies, or otherwise guide therapy [14–22]. By identifying noninvasive means to 

characterize the whole tumor, rather than based on results of a single needle core biopsy, 

assessment of the patient’s future risk may be more accurately identified, allowing selection 

of a more appropriate course of neoadjuvant or adjuvant therapy as well as improved 

assessment of response to therapy [23–31].

Textural feature analysis has likewise been employed to understand microstructure in 

nononcologic applications such as cardiovascular disease [32,33]. Feature changes in 

atherosclerotic plaques [34–37] and abdominal aortic aneurysms [38] have implications for 

important disease evolution [39–41].

CONNECTING RADIOMICS TO OUTCOMES—HIGHLIGHTS OF THE 

PROCESS

Radiomics in Clinical Trials

There is a need to incorporate radiomics and radiogenomics into existing and future clinical 

trials, to codevelop radiomics feature-based criteria for treatment response. For example, 

because existing treatment response criteria, such as response evaluation criteria in solid 

tumors, immune-related response criteria, World Health Organization classification, and 

PET response criteria in solid tumors, do not address the problem of pseudoprogression, 

integrating radiomics-based response assessment into new immuno-therapy trials should be 

a priority (Fig. 2).

Incorporation of robust radiomics biomarkers into the design of new clinical trials will 

increase the rate of convergence onto those feature sets that provide the most information 

about treatment response. Radiomics can be paired with genomics and circulating tumor 

deoxyribonucleic acid (liquid biopsy) to develop multidimensional diagnostic-prognostic 

assessment solutions. A concerted effort between entities such as the Eastern Cooperative 

Oncology Group and ACR Imaging Network, and between the Quantitative Imaging 

Biomarkers Alliance and RSNA, is under way to meet these challenges.

Extracting Features to Assess as Predictors of Clinical Outcomes.—The first 

step toward achieving radiomics analysis of specific volumes that include tumor, other 

specified lesions, vasculature, or organs is to segment the volume of interest using one of a 

number of approaches, most of which entail manual, or at best, semi-automated 

segmentation strategies [42]. A number of such methods have been described by other 

authors, including region growing methods, level set methods, graph cut methods, active 

Shaikh et al. Page 3

J Am Coll Radiol. Author manuscript; available in PMC 2020 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contours (snake) algorithms, and semi-automatic segmentations such as live wires, among 

others [43–45].

Defining Clinical Outcomes to Which Radiomics Features May Be Compared.
—Clinical outcome is often not a single predefined number. Seemingly straightforward 

concepts, such as overall survival or progression-free survival, are at times difficult to extract 

from electronic medical records or other informatics sources. Other outcome variables might 

include more complex concepts such as significant cardiac events, the performance of one or 

more specified procedures, clinical biomarkers, and so on.

Transforming clinical medical records into outcomes requires extraction of both structured 

and unstructured data from the electronic health record. Structured information provides 

specific events or therapies to be placed on clinical timelines relative to the imaging event on 

which radiomics is being performed. To address the need for standardization of clinical 

context in the electronic health record in a manner that can be processed in a meaningful 

way using information technology tools, many clinical and biomedical ontologies have been 

developed over decades, such as the Systematized Nomenclature of Medicine–Clinical 

Terms developed by the International Health Terminology Standards Development 

Organization, which standardizes clinical terminology and physician phrases in multiple 

languages and is widely used in the exchange of electronic health information [46–50].

The unstructured information in free-text fields (eg, physician’s notes) requires a 

sophisticated review of clinical notes and other free-text entries to piece together the 

patient’s medical condition and the timeline of events to achieve quantifiable outcomes, such 

as progression-free survival in the case of oncology. Basic strategies, such as word 

tokenization and part-of-speech tagging, can be initially employed; however, higher forms of 

natural language processing and artificial intelligence (AI)–based methodologies are often 

required to contextualize events in the medical record [51–58]. Open source natural 

language processing tools have been developed specifically for application in medical 

contexts, such as the clinical Text Analysis Knowledge Extraction System and Python 

Natural Language Toolkit [59–61].

Analyzing Relationships Between Radiomic Feature Sets and Clinical 
Outcomes.—After understanding the collection of clinical measures that must be made or 

the genomic or proteomic parameters to which radiomic data are to be correlated, an 

analysis plan must be constructed. Tests of the stability and reproducibility of features must 

be incorporated into the study [62]. Radiomics features can number in the thousands, and 

generally the outcome variables will be drawn from patients numbering an order of 

magnitude fewer; therefore, care must be taken to avoid the identification of statistically 

significant findings due to random chance [63]. A number of means of dealing with this 

issue in the context of this type of discovery research exist [64–68].

Implementing Radiomics in a Platform That Impacts Physician Practice.—Full 

integration of radiomics in clinical radiology requires a close collaboration between 

radiologists and computer scientists. Radiologist engagement goes beyond building a 

pleasing user interface; radiologists will be asked to embrace a shift from a chiefly 
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qualitative use of imaging to a form of imaging assessment in which quantitative assessment 

is integral. In addition, radiologists will be asked to heavily rely on results obtained through 

AI methods. Identifying liaisons in the radiology community to educate peers and serve as 

resources for those wary of AI will both facilitate the translation of radiomics into clinical 

practice and ensure that the radiology specialty maintains its central role as medicine’s 

information science specialty.

New technologies, especially if they involve using results from an automated or a semi-

automated computational system, can take time before they are universally accepted across 

medicine. Once results of a radiomics-driven clinical decision support system are clinically 

validated through outcomes research, it will provide a more robust evidence base to 

implement radiomics in the practice of precision medicine. Furthermore, in the era of value-

based care, evidence of value improvement and cost reduction based on radiomics would 

further facilitate radiomic’s move into mainstream standard of care.

Crowdsourcing Algorithms

Any data-driven technology requires methodologies to improve based on new information. 

The roles of deep learning and AI, in general, are integral to radiomics because they enable 

this type of continuous improvement based on incredibly large sets of new data generated in 

the clinic each day. The crowdsourcing of algorithms, such as through the popular Kaggle 

competition website, is a method to obtain insights from a large population of data scientists. 

Competition participants are often rewarded with recognition and, for top performers, 

monetary consideration [69], although solutions in the radiomics space will also require a 

balance between high predictive performance and solution distinctiveness. A large challenge 

of this crowdsourcing approach is navigating regulatory and institutional requirements in 

sharing data broadly. Although adding complexity and constraining knowledge discovery, 

homomorphic encryption may offer a mechanism to address these concerns [70].

Product Development and Product Management

As solutions are developed, they should be tested with feedback from users to allow greater 

future enhancement, tailored to each health care enterprise system for most optimum use. 

Closed loop feedback between radiologists and referring physicians will ensure success and 

future updates to the software tools. Institutions often find it challenging to get buy-in from 

its users—the medical professionals who deliver health care—because new technology can 

often mean increased workload, distraction, or risk, even at the promise of better, faster, or 

cheaper patient care in the future. The design of the software should make it as a seamless 

part of the work-flow, using principles of user- or human-centered design and iterative 

software development.

When evaluating the feasibility of radiomics for day-to-day patient care, an institution must 

consider a strategy to develop and scale a solution, an approach surrounding the adoption of 

such solution, and the manpower it will take to deploy that solution. Because the field of 

radiomics is still emerging, a ready solution to put the science into practice may not exist 

and an institution may likely need to customize proxy solutions, piece together components, 

or even build some components from the ground up. For any of these cases, the institution 
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will need dedicated product management personnel and an experienced software architect. 

Scalability considerations will include server and database selection, data and network 

architecture, as well as the development platform.

Several academic centers and commercial entities have developed radiomics platforms, and 

ensuring that these platforms produce comparable radiomics feature measurements and that 

any studies underlying predictive analytics applications follow a set of prescribed guidelines 

should help to facilitate a coordinated effort to move translational radiomics into the 

precision medicine mainstream [71–74].

Marketing Radiomics With Comparative Performance Analysis

Driving the adoption of radiomics to the enterprise requires effectively communicating the 

value proposition to both internal stakeholders and commercial entities. Internal 

stakeholders, including leaders among clinical practitioners, will benefit from an 

examination of not only a comparison of the aggregate performance of professional image 

interpreters versus algorithms, but from a comprehensive analysis of the value of the data 

added by radiomics and how the performance and value differs according to subject 

characteristics and the targets of interpretation. CDS tools will need to be available to assist 

in the organization and interpretation of the volumes of data that radiomics analyses may 

generate [75].

Mainstream application of any technological advancement in medicine is subject to an 

evidence-based impact on clinical outcomes and, increasingly, on performance on the value-

to-cost model [76]. Radiomics and imaging genomics hold great promise on that front—

guiding precision biopsy, predicting and evaluating response to neoadjuvant chemotherapy, 

predicting response to immunotherapy, and deciphering pseudoprogression. If a radiomics 

solution is shown to decrease hospital stays or visits, to reduce the number of avoidable 

imaging studies and interventions, to allow for targeted therapy that avoids trying 

conventional lines of medication, and, in doing so, to favorably impact the health care 

financial bottom line, then it will be embraced as an effective as well as efficient state-of-

the-art component of health care delivery.

CONCLUSION

There are several key steps in the translation of radiomics techniques to commercially 

implementable enterprise solutions. Further translation of radiomics to enterprise is still a 

novel concept, and we have introduced a framework that identifies its unique challenges and 

attempt to provide a pathway to mainstream application that improves outcomes.
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TAKE-HOME POINTS

• The results of radiomics-based CDS are to be subject to robust outcomes 

analysis, which then impacts physician behavior.

• The second phase of the translational pipeline involves the steps from clinical 

application to enterprise solutions, including considerations for algorithm 

crowdsourcing, product management, and comparative performance analytics.

• The final goal of this process is mainstream application of a clinically viable 

and commercially successful product that improves the standard and the value 

of health care.
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Fig 1. 
The translational radiomics pipeline illustrating all the components thereof.
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Fig 2. 
Illustration of the factors involved in the outcomes analysis of radiomics. OS = outcomes 

survival; PFS = progression-free survival.
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