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Abstract

There exists a moderate correlation between MRI-measured brain size and the general factor of IQ 

performance (g), but the question of whether the association reflects a theoretically important 

causal relationship or spurious confounding remains somewhat open. Previous small studies (n < 

100) looking for the persistence of this correlation within families failed to find a tendency for the 

sibling with the larger brain to obtain a higher test score. We studied the within-family relationship 

between brain volume and intelligence in the much larger sample provided by the Human 

Connectome Project (n = 1,022) and found a highly significant correlation (disattenuated ρ = 0.18, 

p < .001). We replicated this result in the Minnesota Center for Twin and Family Research (n = 

2,698), finding a highly significant within-family correlation between head circumference and 

intelligence (disattenuated ρ = 0.19, p < .001). We also employed novel methods of causal 

inference relying on summary statistics from genome-wide association studies (GWAS) of head 

size (n ≈ 10,000) and measures of cognition (257,000 < n < 767,000). Using bivariate LD Score 

regression, we found a genetic correlation between intracranial volume (ICV) and years of 

education (EduYears) of 0.41 (p < .001). Using the Latent Causal Variable method, we found a 

genetic causality proportion of 0.72 (p < .001); thus the genetic correlation arises from an 

asymmetric pattern, extending to sub-significant loci, of genetic variants associated with ICV also 

being associated with EduYears but many genetic variants associated with EduYears not being 

associated with ICV. This is the pattern of genetic results expected from a causal effect of brain 
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size on intelligence. These findings give reason to take up the hypothesis that the dramatic increase 

in brain volume over the course of human evolution has been the result of natural selection 

favoring general intelligence.
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0 General Introduction

People with bigger brains tend to be smarter. Furthermore, overall brain size is the only 

proxy for neural complexity that can be reliably obtained from fossils across a wide range of 

species and times, specifically from skull endocasts (Jerison, 1973). For these reasons 

overall brain size is perhaps the anatomical correlate of g that most interests researchers 

contemplating the long-term evolution of human intelligence (Burkart, Schubiger, & van 

Schaik, 2017). Among all such correlates, none that can be simply measured shows a 

consistently replicated correlation with IQ exceeding the ∼0.25 shown by brain size 

(Chabris, 2007; Pietschnig, Penke, Wicherts, Zeiler, & Voracek, 2015; Haier, 2017; Gignac 

& Bates, 2017). Furthermore, since brain volume has tripled during the most recent 3 

million years of our evolutionary history (Holloway, 2008; Herculano-Houzel, 2016), the 

study of its relationship with g promises to shed light on the nature of the selective 

advantage that has propelled this remarkable change.

There continues to be some doubt, however, about whether it is justified to interpret this 

correlation in terms of brain size affecting intelligence (Nisbett et al., 2012). One powerful 

method of testing whether a correlation is the result of spurious confounding by other 

variables affecting the two focal traits is to see whether the correlation persists within 

reared-together sibling pairs (Jensen & Sinha, 1993; Turkheimer & Waldron, 2000; McGue, 

Osler, & Christensen, 2010; Beauchamp, Cesarini, Johannesson, Lindqvist, & Apicella, 

2011; Lee, 2012). If the correlation does persist, then it cannot be attributable to aspects of 

the environment affecting both physical and mental development that are fixed for all 

siblings. Two previous studies taking this approach, each with a sample size of about 35 

sibling pairs, failed to find a significant correlation (Schoenemann, Budinger, Sarich, & 

Wang, 2000; Gignac, Vernon, & Wickett, 2003).

We reexamined this empirical issue in a Human Connectome Project (HCP) (Van Essen et 

al., 2012; Van Essen et al., 2013) sample of 1,022 young adults, each of whom is a twin or 

ordinary sibling of another sample member. We also tested the significance of the within-

family correlation between head circumference and IQ in an independent Minnesota Center 

for Twin and Family Research (MCTFR) (Miller et al., 2012) sample of 11-year-old children 

and 17-year-old adolescents (865 MZ and 484 DZ twin pairs); external measurements of the 

head provide a noisy proxy of underlying brain volume.

The presence or absence of a within-family association between brain size and intelligence 

is probably the most intuitively compelling observational data that can be brought to bear on 

the issue of a causal influence of the former trait on the latter. There are alternative 
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explanations of the population correlation between these two traits, however, that cannot be 

eliminated by the finding of a significant within-family association. These are listed in Table 

1.

To weaken these alternatives to the hypothesis of a causal effect of brain size on intelligence, 

we turned to recently developed methods for interpreting data from genome-wide 

association studies (GWAS) (Gondro, van der Werf, & Hayes, 2013; Chabris, Lee, Cesarini, 

Benjamin, & Laibson, 2015; Lee, Vattikuti, & Chow, 2016). The first of these is bivariate 

LD Score regression, a method for estimating genetic correlations from GWAS data (Bulik-

Sullivan et al., 2015a). Each trait can be regarded as the sum of a genetic and environmental 

term; if we imagine taking away the environmental part of each trait and calculating the 

correlation between whatever remains, we are left with a quantity called the genetic 
correlation (rg) by quantitative geneticists (Lynch & Walsh, 1998). (The remaining genetic 

term is called the “breeding” or “additive genetic” value. This corresponds to the “A” in the 

ACE model of behavioral genetics.) Care must be taken to ensure that the estimate of the 

genetic correlation is not itself biased by environmental confounders affecting both traits, 

and bivariate LD Score regression contains a powerful safeguard against such confounding 

(Bulik-Sullivan et al., 2015a; Lee, McGue, Iacono, & Chow, 2018). An estimated genetic 

correlation that is significant and unbiased rules out the possibility of the total correlation 

being entirely the result of environmental confounders that can assume different values even 

within the same sibship. It is also consistent with a causal effect of one trait on the other, 

since genetic influences on the upstream trait must be propagated to the downstream one 

(Duffy & Martin, 1994; Minica, Dolan, Boomsma, de Geus, & Neale, 2018).

A significant genetic correlation is also consistent, however, with some of the alternative 

explanations in Table 1. One of these is a kind of genetic confounding known as pleiotropy: 

the same or correlated polymorphic sites in the genome affecting both traits without either 

trait affecting the other. Another possibility, perhaps an obvious one, is reverse causation: 

perhaps it is really the exercise of intelligence that affects brain size, through some form of 

plasticity.

The method that we employed to address these possibilities that can be understood in the 

following intuitive manner; see Fig. 1 for an illustration of the logic. Suppose that the 

variable X is brain size and Y is a measurement of intelligence. If X → Y is the case, then 

any genetic polymorphisms affecting X must also affect Y. Conversely, there may be many 

polymorphisms affecting Y through some non-X mechanism and therefore showing no 

effect on X (Pickrell et al., 2016; Visscher & Yang, 2016; O’Connor & Price, 2018). These 

predictions also hold, mutatis mutandis, if Y → X is the case. In contrast, genetic pleiotropy 

should lead to a rejection of both causal directions. We used the Latent Causal Variable 

(LCV) method to determine which of these three possibilities—one causal direction, the 

other causal direction, non-directed pleiotropy—offers the best approximation of the pattern 

inherent in GWAS summary statistics of head size and cognition.
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1 Study 1: Within-Family Association Between IQ and Measures of Brain 

Size

1.1 Introduction

The common environment shared by all siblings growing up in the same home may 

conceivably affect both brain size and intelligence, accounting for the correlation between 

these two traits. A powerful means of ruling out this source of confounding is the calculation 

of the within-family association: does the sibling with the larger brain also tend to have the 

higher IQ?

It may be worthwhile to review the two earlier studies that have examined this question. 

Other studies have obtained relevant data, mostly from twins, but have not analyzed their 

data in this particular way.

Schoenemann et al. (2000) studied 36 pairs of sisters, administering a number of cognitive 

tests (including Raven’s Progressive Matrices and a vocabulary test) and acquiring the 

volumes of many different brain regions. The large number of cognitive and brain measures 

led to many correlations, but it probably suffices to report that they found a within-family 

correlation between total brain volume and the first principal component of their test battery 

equaling −0.05. This was despite a nominally significant between-family correlation (i.e., 

the correlation between sibship average brain volume and test score) of 0.45.

Gignac et al. (2003), performing additional analyses of data first presented by Wickett, 

Vernon, and Lee (2000), studied 32 pairs of brothers. They found a non-significant within-

family correlation of 0.16 between total brain volume and IQ as assessed by the 

Multidimensional Aptitude Battery. The estimate of the between-family correlation, 0.31, 

was not significant either.

We cannot find any serious fault in either of these studies, other than that their samples of 

sibling pairs were far too small to draw any definitive conclusions. For example, in the case 

of a sample size equaling 36 and an estimated correlation −0.05, the upper endpoint of the 

95% CI is 0.28. Clearly, even with results favoring the two-sided null hypothesis as closely 

as one might stipulate, a study of this size is incapable of ruling out theoretically significant 

values of the within-family correlation. In the current study, we were able to estimate the 

within-family correlation between MRI-measured brain volume and intelligence with more 

than 10 times as many families and thereby bring much greater statistical power to ruling out 

confounding by shared environment as the exclusive contributor to the population 

correction.

A significant within-family association would also rule out another source of confounding 

that does not easily fit into the framework of the General Introduction. The definition of the 

genetic correlation (Lynch & Walsh, 1998) includes contributions from cross-assortative 
mating, the tendency of individuals with a certain attribute to prefer mates with a certain 

other attribute (Jensen & Sinha, 1993; Redden & Allison, 2006; Keller et al., 2013). An 

example is the tendency of individuals with higher IQs to prefer mates who are taller. After 

many generations of such cross-assortative mating, a given genome tending to carry IQ-
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increasing alleles will also tend to carry height-increasing alleles at distinct sites, an example 

of long-distance linkage disequilibrium (LD). This mechanism does appear to contribute to 

the actual height-IQ genetic correlation (Keller et al., 2013).

It does not seem plausible that people find brain size per se to be attractive in potential 

partners, as opposed to the possible effects of brain size on psychological traits. This 

intuition can be given rigorous support by the finding of a significant within-family 

correlation between brain size and IQ (Jensen & Sinha, 1993; Beauchamp et al., 2011). 

Whereas under cross-assortative mating a given parent may tend to carry alleles increasing 

both traits, Mendelian independent assortment means that there will be no tendency for an 

offspring inheriting the allele increasing trait 1 at a site heterozygous in the parent to also 

inherit the allele increasing trait 2 at an unlinked site.

1.2 Methods

1.2.1 Human Connectome Project—Data from the Human Connectome Project 

(HCP) (Van Essen et al., 2013) was used as the primary analysis sample. Here, we included 

only families with at least two siblings. Some descriptive statistics of the HCP sample are 

given in the first column of Table S1; about 75 percent of the families in the HCP dataset are 

white. Details relating to participant selection and MRI acquisition have been reported (Van 

Essen et al., 2012). We chose to use total brain volume as the independent variable in our 

primary analysis.

We found that the mean and variance of total brain volume in the HCP differs substantially 

between the two sexes (Table S1). Males have both larger brains on average (d = 1.67) and 

greater variability (VR = 1.31). These differences are consistent with those observed in a 

recent study of a larger sample (Ritchie et al., 2018). For this reason we decided to 

standardize brain volume separately in each sex and use the resulting Z-score as the 

independent variable. We employed this standardization procedure in every robustness 

check.

Family “types” in the HCP are quite heterogeneous. For example, one family may consist of 

two MZ twins and their younger sibling. We included any family regardless of composition, 

so long as it contained at least two offspring with the same listed mother and father. In Table 

2, the “MZ” subsample consisted solely of MZ twins. If an individual happens to be an MZ 

twin whose co-twin is absent from the dataset, that individual was not included in the MZ 

subsample. The “DZ” subsample was constructed similarly. The “non-twin” subsample 

consisted of all families that did not qualify for either the MZ or DZ subsample; for 

example, one such family might consists of two siblings—an MZ twin whose co-twin is 

missing and his older sibling. Thus, by construction, the three HCP subsamples listed in 

Table 2 below the total sample were non-overlapping.

We selected two of the tests administered to the HCP subjects as our measures of general 

intelligence (g). The first is called the Penn Progressive Matrices in the HCP Data 

Dictionary. This is an abbreviated 24-item version of Raven’s Standard Progressive 

Matrices; it is labeled “Non-Verbal IQ” in Table S1. The second is the NIH Toolbox Picture 

Vocabulary Test (age-adjusted scale score); it is labeled “Verbal IQ” in Table S1. The 
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correlation between these two tests in the HCP data is 0.45, consistent with the g loadings of 

roughly 0.7 reported for these two types of test in the literature (Jensen, 2001; Johnson, 

Bouchard, Krueger, McGue, & Gottesman, 2004; Gignac, 2015). To construct our main 

dependent variable, we standardized each of these two tests separately, added the 

standardized scores, and finally standardized the sum. We found that this sum exhibits a sex 

difference of ∼0.3 favoring males. We applied another standardization, this time within each 

sex separately, to produce our final measure of g.

1.2.2 Minnesota Center for Twin and Family Research—The data are derived 

from the Minnesota Center for Twin and Family Research (MCTFR), including 

monozygotic (MZ) and same-sex dizygotic (DZ) twin pairs born in Minnesota. Some 

descriptive statistics of this sample are given in the final two columns of Table S1. Twin 

births from 1972 to 1984 were identified from Minnesota state birth records. Contact 

information was found for 91 percent of the families of these twins. Twins and their families 

were invited to a day-long assessment in a laboratory located in Minneapolis when the twins 

were approximately 11 or 17 years of age. Among invited families, 17 percent refused to 

participate. Over 95 percent of participating families were white. This sample is much 

simpler in structure than the HCP, in that each family for our purposes consists of two twins 

(either MZ or DZ).

Head circumference (HC) was measured with a metal tape run around the head immediately 

above the eyebrows and ears. Males and females had nearly identical means at age 11, but at 

age 17 males had a roughly 1-SD larger HC (Table S1). The female mean HC at age 11 was 

98 percent of the female mean at age 17, and the male mean at age 11 was 95 percent of the 

male mean at age 17. Males and females did not show a substantial difference in variance at 

either age. We standardized HC within each combination of sex and age cohort.

Full-Scale IQ, Performance IQ (called “Non-Verbal IQ” in Table S1), and Verbal IQ were 

measured using abbreviated versions of the Wechsler Adult Intelligence Scale-Revised 

(WAIS-R) for the 17-year-old twins and the Wechsler Intelligence Scale for Children-

Revised (WISC-R) for 11-year-old twins. The short forms consisted of two Verbal subtests 

(Information, Vocabulary) and two Performance subtests (Block Design, Picture 

Arrangement). We found the correlation between Verbal and Performance among the 11-

year-old twins to be about 0.47, which seems somewhat low; given the loadings on g of the 

WAIS-R subtests calculated by Gignac (2005), we might expect the correlation to exceed 

0.65. Among the 17-year-old twins, the correlation is only 0.28. We do not have an 

explanation for the small magnitude of this estimated correlation, although it should be kept 

in mind that its standard error is relatively large. We converted IQ from its conventional 

scale (M = 100, SD = 15) to the standardized scale with mean zero and unit variance.

Our dataset largely overlaps with that of Silventoinen, Iacono, Krueger, and McGue (2012), 

who reported a significant positive genetic correlation between head circumference and IQ. 

Here we calculated not the genetic correlation but rather the within-family correlation. It 

should be understood that these two quantities do not necessarily provide the same 

information (Beauchamp et al., 2011). For instance, positive correlations between genomic 
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sites affecting two distinct traits as a result of cross-assortative mating contribute to the 

genetic correlation, but not to the within-family correlation (Table 1).

1.2.3 Data analysis—We introduced dummies for family membership to estimate the 

within-family association between our measures of brain size and intelligence. All members 

of a given family were required to share the same mother and father. In the case of two 

siblings per family, the procedure that we followed—i.e., the regression of intelligence on 

brain size with family-membership dummies as covariates—is equivalent to the regression 

of the sibling difference in intelligence on the sibling difference in brain size. In our case the 

use of dummies is more efficient because many HCP families have more than two siblings.

We included the first three powers of mean-centered age as covariates whenever appropriate. 

There are no opposite-sex twins in any of our cohorts; in twin-only analyses, we dropped the 

age covariates. As a robustness check, we re-estimated the regression models with the first 

three powers of standardized height and weight as additional covariates. See the 

Supplemental Material for justification of these procedures.

The partial regression coefficients of brain/head size in the prediction of IQ are given in the 

“β ± SE” column of Table 2. Since both independent and dependent variables were 

standardized, these coefficients should be somewhat comparable to correlations reported in 

previous studies.

A correlation of 0.45 between the two indicators of g in the HCP leads to an estimated 

internal-consistency reliability of the IQ composite equaling 0.62; reliabilities exceeding 0.9 

are possible with a higher-quality battery of tests (Brunner, Nagy, & Wilhelm, 2012). 

Because psychometric quality appears to have a substantial impact on reported estimates of 

the correlation between brain size and intelligence (Gignac & Bates, 2017), it may be 

advisable to apply the disattenuation procedure of classical test theory (Lord & Novick, 

1968; McDonald, 1999). We corrected the coefficients for unreliability of the IQ measure 

using the formula β/√ωh, where β is the coefficient to be disattenuated and ωh is 

McDonald’s hierarchical coefficient omega (Zinbarg, Yovel, Revelle, & McDonald, 2006). 

In the case of a non-standardized dependent variable, one need not correct regression 

coefficients for unreliability of the dependent variable because zero-mean noise does not 

change the conditional expectation of the dependent variable given the independent variable. 

However, in our case of a standardized dependent variable where both true scores and errors 

contribute to the variance, such a correction is justified.

The IQ battery used in the MCTFR has excellent norming data. The g loadings of the WAIS-

R subtests calculated by Gignac (2005) on the basis of these data suggest that the internal-

consistency reliability of the abbreviated Full-Scale IQ in the MCTFR is 0.82, according to 

the formula for McDonald’s coefficient omega. For reasons that are unclear, the correlation 

between Verbal and Performance observed in the MCTFR does not seem consistent with 

such high reliability. We nevertheless used a conservative value of 0.82 in calculating the 

disattenuated associations; the assumption of a lower value would lead to larger apparent 

effects.
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A correction for unreliability using McDonald’s hierarchical coefficient omega assumes that 

it is the common factor, g, rather than group or test-specific factors, that is responsible for 

the correlation with brain size. Previous results already make this assumption a reasonable 

one (MacLullich et al., 2002; Kievit et al., 2012; Gignac & Bates, 2017). To confirm it in our 

own data, we looked at the within-family correlation between brain/head size and each 

subtest in our IQ composites.

The equality of the within-family coefficient across sibship types (MZ, DZ, non-twin full 

sibling) is not only compatible with a causal relationship between brain volume and 

intelligence but in fact is predicted by such a relationship in the absence of confounding by 

genetic pleiotropy or non-shared environment (McGue et al., 2010; Frisell, Öberg, Kuja-

Halkola, & Sjölander, 2012). That is, if brain size affecting intelligence is the only reason for 

the correlation between these variables, then any given difference between siblings in brain 

size—even if induced environmentally (which is the only possibility in an MZ pair)—is 

expected to produce the same difference between them in g. To test whether the equality of 

the relationship holds across sibship types, we re-estimated the regression model with family 

fixed effects in the non-overlapping samples of MZ twins only, DZ twins only, and non-twin 

siblings only. We then tested whether any difference between estimates is significantly 

different from zero.

1.3 Results

1.3.1 Human Connectome Project—The overall correlation between MRI-measured 

brain volume and IQ is 0.26 (0.33 upon correction for unreliability), in line with previous 

research (Pietschnig et al., 2015; Haier, 2017; Gignac & Bates, 2017). In the case of brain 

volume, the MZ and DZ intraclass correlations are 0.96 (CI95%: 0.94, 0.97) and 0.74 

(CI95%: 0.62, 0.82) respectively; IQ, 0.74 (CI95%: 0.65, 0.80) and 0.57 (CI95% CI: 0.39, 

0.70). Both MZ correlations are larger than their DZ counterparts, as expected in the case of 

a heritable trait.

The results of the within-family analysis are given in Table 2. In a model controlling for 

family background, the partial regression coefficient of brain volume is 0.142 standardized 

units of IQ per standardized unit of brain volume (CI95%: 0.062, 0.222; p < .001). A 

correction for unreliability brings this to 0.18. The upper endpoint of the CI95% becomes 

0.28 upon disattenuation, and this may be consistent with the equality of the within-family 

and population correlations. It should be kept in mind, however, that the exact upper 

endpoint bounding the disattenuated correlation is uncertain as a result of quantities such as 

the internal-consistency reliability being estimated rather than known.

As can be seen in Table S2, the within-family correlation is also significant when the 

dependent variable is either the vocabulary or matrix-reasoning component of the IQ 

composite (both p < .05). This supports the correlation being with the general factor g rather 

than any test-specific factor.

No difference between subsample coefficients in the HCP is significant (Table 2), although 

the statistical power to find any difference is poor. If a given difference between siblings in 
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brain volume were truly associated with the same difference in IQ, regardless of how the 

siblings are related, this would be powerful evidence for our postulated causal relation.

A number of robustness checks affirmed the conclusions above. Upon excluding the non-

whites and re-estimating the regression model with the same specification, we obtained a 

very similar result (β = 0.130, p < .005). We also re-estimated the regression model with the 

first three powers of standardized height and weight as additional covariates (Table S3). The 

result is nearly unchanged (β = 0.124, p < .005).

1.3.2 Minnesota Center for Twin and Family Research—As can be seen in Table 

2, we found a significant within-family correlation between HC and IQ (p < 10−7). This 

replicates two earlier studies (Jensen & Johnson, 1994; Jensen, 1994) and improves upon 

them, in that one of these studies was small (143 pairs) and the other only examined children 

no older than 7 years. In the age-17 cohort, the DZ within-family coefficient is almost 

significantly larger than the MZ (p = .055). If this were a reliable difference, it would 

provide evidence for the presence of confounding in addition to our hypothesized causal 

relation, perhaps attributable to pleiotropic influences on HC and IQ (Silventoinen et al., 

2012). Our inclination, however, is to treat this difference as a chance fluctuation. By 

contrast, in the age-11 cohort, the MZ within-family correlation between HC and IQ is very 

significant (p < .005) and not distinguishable in magnitude from the DZ within-family 

correlation.

Overall, then, the body of results in Table 2 is roughly consistent with the hypothesis of 

brain size (measured by its proxy HC) affecting intelligence. The disattenuated coefficient of 

0.19 is again consistent with the equality of the within-family and population correlations. It 

happens that our sample individual-level correlation is 0.15.

Table S2 shows that the within-family correlations of HC with both Verbal and Performance 

IQ are also significant (p < .001), supporting a correlation of head size with g rather than any 

group or test-specific factor.

Upon inclusion of the first three powers of standardized and weight as covariates, the 

coefficient of HC becomes slightly smaller but remains highly significant (β = 0.148, p < 

10−4).

1.4 Discussion

In two datasets we found positive and very robustly significant estimates of the within-

family association between brain size and intelligence. Regardless of how brain size was 

measured, the type of IQ test, the composition of the sample, and choice of covariates, we 

did not discern any meaningful difference in the within-family association. These results 

provide strong evidence against the population correlation between brain size and 

intelligence being entirely the result of cross-assortative mating, confounding by the 

common environment shared by children in the same home, or some combination of these 

two mechanisms. Note that there remain theoretically viable alternative explanations of the 

population correlation (Table 1), and it is the purpose of Study 2 to address these.
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The more specific finding of a significant within-MZ correlation would further bolster the 

case for brain size affecting IQ. Additionally, the within-MZ coefficient must be equal to the 

other within-family coefficients to affirm that pleiotropic genetic confounding and non-

shared environment make no contribution. As can be seen in Table 2, the evidence for these 

propositions is tentative. This must be regarded as a limitation of Study 1. It is evident that 

there is some value in collecting samples of twins and siblings even larger than those we 

have relied upon here. Such samples would be able to estimate the overall within-family 

correlation much more precisely. Our disattenuated estimate of 0.18 on the basis of the HCP 

data qualifies as a relatively small effect size according to the guidelines of Gignac and 

Szodorai (2016), but the confidence interval extends upward to values that would qualify as 

typical. The reduction of this uncertainty may be worthwhile. Note that since many within-

family correlations are smaller than their population counterparts, the guidelines of Gignac 

and Szodorai (2016) should be considered conservative.

2 Study 2: Causal Inference Based on GWAS Data

2.1 Introduction

The calculations of the within-family correlation between IQ and brain/head size in Study 1 

required phenotypic data only. In Study 2 we tested the causal status of the relationship by 

using recently developed methods for interpreting data from genome-wide association 

studies (GWAS), which are capable of ruling out the additional alternative explanations of 

reverse causation, a non-directed genetic overlap (pleiotropy), and confounding by non-

shared environment (Table 1).

There have been many twin studies reporting a positive genetic correlation between brain 

size and IQ (Pennington et al., 2000; Posthuma et al., 2002; van Leeuwen et al., 2009; 

Betjemann et al., 2010; Silventoinen et al., 2012). There is nevertheless great value in 

estimates based on the alternative data source provided by GWAS, especially since the 

GWAS-based technique of bivariate LD Score regression deals with confounding in a 

manner that appears quite different from the twin method and its equal-environment 

assumption. Recall that a significant and unbiased estimate of the genetic correlation rules 

out environmental confounding, whether by shared or non-shared factors, as the sole 

explanation of the phenotypic correlation.

A genetic correlation by itself is consistent with both reverse causation and pleiotropic 

confounding. We therefore turned to another method, also based on GWAS data, that bears 

on the issue of causality. If genetic variation affecting X is propagated to Y in the simple 

causal chain G → X → Y, then any parts of G identified in GWAS of X must also show 

concordant effects on Y. Furthermore, the effects of these GWAS-identified single-

nucleotide polymorphisms (SNPs) on Y must be proportional to their effects on X. In 

contrast, there may be many SNPs affecting Y through some non-X mechanism, and GWAS 

of Y should therefore detect many SNPs with no discernible effects on X. To follow this 

logic, it may be helpful to consult Fig. 1.

Actual empirical results are not likely to conform exactly to these simple predictions even 

under the most favorable conditions. It is easy to imagine that there are parts of the brain, 
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perhaps subcortical, whose sizes could hypothetically be altered in a manner increasing the 

brain’s overall volume without affecting higher cognition (Jerison, 1973; Jung & Haier, 

2007). The portion of the brain serving as the substrate of cognition would then act 

effectively as a confounder, its size sending causal arrows to both overall brain size and 

intelligence. Nevertheless, we attempted to determine the extent to which the predictions 

from the simple G → X → Y model are borne out by GWAS data.

2.2 Methods

2.2.1 Bivariate LD Score regression—Here we present estimates of relevant genetic 

correlations between measures of head size and cognition, updated from previous GWAS 

reports to reflect increases in sample size (Okbay et al., 2016; Hagenaars et al., 2016; 

Sniekers et al., 2017). We used bivariate LD Score regression (Bulik-Sullivan et al., 2015b; 

Bulik-Sullivan et al., 2015a; Lee et al., 2018), as implemented in the LCV software tool 

(O’Connor & Price, 2018). If there is a tendency for a SNP with a relatively large effect on 

one trait to also show a relatively large effect of the same sign on the other, then this method 

will return a positive estimate of the genetic correlation. An attractive feature of LD Score 

regression is that its means of controlling the influence of confounding variables extends not 

just to the evidence of association at individual SNPs but also to its genome-wide estimates 

of genetic correlations; ideally, the regression intercepts absorb all confounding, including 

the effects of environmental variables correlated with genetic variation that happen to affect 

both traits. The Supplemental Material discusses this point in more detail.

Whereas a positive result obtained by LD Score regression does provide evidence against 

environmental confounding, such a result does not bear on environmental mediators of 

genetic influence, including mediators conveying a causal influence in the direction opposite 

of what we are hypothesizing. For example, there may be genetic influences on intelligence 

or intellectual curiosity that lead to more educational attainment, which may then increase 

brain size through a plasticity-based mechanism. Such possibilities can be addressed not by 

LD Score regression itself but rather the LCV method, which will be described shortly in 

2.2.2.

We obtained the GWAS summary statistics of EduYears, IQ, and infant head circumference 

from the websites of the consortia that conducted these GWAS (Taal et al., 2012; Okbay et 

al., 2016; Lee et al., 2018). The GWAS summary statistics of adult intracranial volume can 

be obtained by contacting the ENIGMA Consortium (Hibar et al., 2015). We ran bivariate 

LD Score regression, as implemented in the LCV software (downloaded July 3, 2018) 

(O’Connor & Price, 2018). We used all recommended default settings. One recommendation 

is to remove all SNPs in the MHC region, but to our knowledge the LCV developers do not 

provide a definition of this region. We adopted the definition used by the DEPICT 

bioinformatics tool of all SNPs on chromosome 6 between positions 25,000,000 and 

35,000,000 (Pers et al., 2015).

As measures of intelligence, we examined both years of education (EduYears) and IQ. We 

designated EduYears as our primary measure because the attainable GWAS sample size for 

EduYears is currently larger than that for IQ. Previous studies have found a high genetic 

correlation (∼0.7) between IQ and EduYears, and the top SNPs identified in the respective 
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GWAS of these traits show very strong concordance. Our two measures of brain size are 

adult intracranial volume (ICV) (Hibar et al., 2015) and infant head circumference (HC) 

(Taal et al., 2012). ICV is an excellent proxy for brain volume with the advantage that it does 

not decline sharply with age (Davis & Wright, 1977); thus, any correlation with intelligence 

cannot be explained by the effects of neural atrophy on cognitive decline. According to 

bivariate LD Score regression, adult ICV and infant HC show a genetic correlation of 0.75 

(Adams et al., 2016).

The samples for IQ and EduYears consist of the cohorts studied in the largest published 

GWAS of EduYears at the time of writing with the exception of 23andMe (Lee et al., 2018). 

The EduYears sample size is ∼760,000, reflecting a net increase of ∼465,000 since the last 

reported calculation of the ICV-EduYears genetic correlation. The sample size for IQ is 

∼260,000. The sample sizes for adult ICV and infant HC, 11,373 and 10,678 respectively, 

are unchanged since their GWAS were published. There has been a more recent and larger 

GWAS of ICV (Adams et al., 2016), but its full summary statistics are not publicly available.

It is possible to estimate the genetic correlations between measures of brain size and 

cognition using twin data, of the kind that we employed in Study 1, rather than GWAS 

summary statistics. Our HCP dataset contains too few twins, however, to produce a reliable 

estimate of the genetic correlation. As we stated earlier, the twins in the MCTFR have 

already been used to estimate the genetic correlation between IQ and HC (Silventoinen et 

al., 2012).

Another method for estimating genetic correlations is the genomic relatedness restricted 

maximum-likelihood (GREML) method (Lee, Yang, Goddard, Visscher, & Wray, 2012), 

which has been used in many applications, including a study showing that both twin 

analyses and GREML produce similarly large estimates of the genetic correlations between 

different mental tests (Trzaskowski et al., 2013). We discuss the data requirements and 

assumptions of LD Score regression and GREML respectively in the Supplemental Material.

2.2.2 Latent Causal Variable—The most recent GWAS of intracranial volume reported 

seven genome-wide significant SNPs in its Table 1 (Adams et al., 2016). We included the 

four additional SNPs in Supplementary Table S9 of this paper that were found to reach 

genome-wide significance upon a meta-analysis of both adult intracranial volume and infant 

head circumference. These are the 11 SNPs plotted in the left panel of our Fig. 1. One of 

these SNPs, rs138074335, has changed its identifier and is not present in the summary 

statistics of Lee et al. (2018). We took its association statistics from the summary file of 

Okbay et al. (2016).

Eleven genome-wide significant SNPs does not provide enough power to make use of the 

testing framework proposed by Pickrell et al. (2016) for the data plotted in Fig. 1. We 

therefore turned to LCV, a recently developed method that overcomes the limitation of 

insufficient significant SNPs by using genome-wide summary statistics and additionally 

addresses the problem of the candidate causal variable X being a proxy affected by residual 

genetic variation (O’Connor & Price, 2018). The Supplemental Material contains an 

extensive discussion of the LCV method, providing intuitive explanations on top of those 
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here in the main text and comparing it in great depth with a distinct class of methods 

(Mendelian randomization) for drawing causal inferences from GWAS data. The output of 

LCVis the genetic causality proportion (GCP), which ranges in possible value from −1 to 

+1. A value of zero means that the genetic correlation is entirely attributable to undirected 

pleiotropy; a value of +1 means that all genetic variation affecting X is propagated to Y in a 

perfect causal chain; a value of −1 means that it is actually Y affecting X. The developers 

suggest |GCP| > 0.6 as a cutoff for considering the relationship between the two traits to 

approximate a causal one reasonably well.

To be clear, Fig. 1 does not depict the results of our main analysis relying on LCV. It depicts 

the data that would be used in the method of Pickrell et al. (2016), which has been 

generalized and made more robust by LCV. Fig. 1 is nevertheless useful for illustrating the 

intuition behind the LCV method and suggesting the pattern in the genome-wide summary 

statistics that drives our positive results.

The LD Score regression slope Z-statistic of ICV is roughly 4, which falls short of the 

threshold of 7 recommended by the LCV developers. The Supplemental Material explains 

the rationale behind this recommendation. Therefore, as a robustness check, we meta-

analyzed ICV and HC with PLINK 1.9 (Chang et al., 2015) and used the resulting ICV + 

HC trait with an effectively twofold sample size as the candidate causal variable in LCV. 

Recall that the genetic correlation between ICV and HC is high; both measures of brain size 

are in turn genetically correlated with IQ (Sniekers et al., 2017; Savage et al., 2018).

2.3 Results

2.3.1 Genetic correlations between head size and measures of cognition 
estimated by bivariate LD Score regression—As can be seen in Table 3, IQ shows a 

significant genetic correlation with adult ICV (rg = 0.29, SE = 0.11), as does EduYears (rg = 

0.41, SE = 0.08). These estimates are fully consistent with previous DNA-level studies, one 

of which used largely overlapping data to study IQ (Savage et al., 2018). The estimates are 

also consistent with previous twin studies. To give just one example, the HC-IQ genetic 

correlations based on the MCTFR (one of the datasets in Study 1) are 0.32 in the 11-year-old 

boys (CI95%: 0.14, 0.50), 0.28 in the 11-year-old girls (CI95%: 013, 0.46), 0.25 in the 17-

year-old boys (CI95%: 0.10, 0.42), and 0.17 in the 17-year-old girls (CI95%: 0.04, 0.30) 

(Silventoinen et al., 2012).

2.3.2 Causal inference from asymmetry of GWAS results—The effects of the top 

SNPs identified in GWAS of ICV and EduYears respectively are displayed in Fig. 1. Note 

that we use the term “effect” loosely, because the SNPs plotted in Fig. 1 may not be causal 

themselves but in LD with the actual causal sites (Lee & Chow, 2013). The left panel 

displays the 11 genome-wide significant SNPs identified in the largest GWAS of ICV 

(Adams et al., 2016). Since we can be highly confident that these SNPs are associated with 

brain size, a causal effect of brain size on intelligence implies the tight clustering of the data 

points around a straight line. The right panel displays the 1,044 genome-wide significant 

SNPs identified in the largest GWAS of EduYears (Lee et al., 2018) that are also contained 

in the ICV summary statistics. We can be highly confident that these SNPs are associated 
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with EduYears, but the complement of the subset acting through brain size should show no 

association with ICV.

Ten of the 11 SNPs associated with ICV show concordant effects on EduYears (signtest one-

sided p < .01). Of the 10 concordant SNPs, the associations of 9 with EduYears are 

nominally significant (all p < .05). In contrast, only 592 of the 1,044 SNPs as-certained 

through the GWAS of EduYears show concordant associations with ICV (57 percent, sign-

test one-sided p < 10−5). The Spearman correlation between effect sizes is 0.83 when 

ascertainment is by ICV, whereas it is only 0.17 when ascertainment is by EduYears. 

Qualitatively, then, this pattern is consistent with a causal effect of brain size on intelligence.

To determine whether the pattern evident in Fig. 1 extents to the entire genome, including 

sub-significant SNPs, we applied LCV to the complete GWAS summary statistics of our 

traits. The results can be found in Table 3. When the candidate causal variable is ICV, the 

estimated values of GCP exceeding 0.7 are very significantly different from zero (both p < 

10−4 on the assumption of a normal sampling distribution). The LCV developers consider 

GCP > 0.6 to be indicative of a good approximation to a causal relationship between the two 

variables. In fact, for neither EduYears nor IQ can we reject the hypothesis GCP = 1 (both p 
> 0.15).

In our setting, the LCV model is consistent with an appealing interpretation. Suppose that 

only a portion of the brain affects intelligence. Upon standardization of all breeding 

(additive genetic) values, the breeding value of the intelligence-supporting part of the brain 

has an effect on the ICV breeding value equaling 0.884 and an effect on the EduYears 
breeding value equaling 0.467. These two path coefficients reproduce the values of rg and 

GCP given in Table 3 for ICV and EduYears. Thus it may be reasonable to treat a measure 

like ICV as the actual causal variable affecting intelligence—despite the likely existence of 

brain regions unrelated to higher cognition function (Jerison, 1973; Jung & Haier, 2007)—

because genetic influences uniquely affecting such regions are comparatively slight.

As a robustness check, we meta-analyzed adult ICV and infant HC and used the resulting 

GWAS summary statistics as input to the LCV method. This use of ICV + HC as the 

outcome variable led to GCP estimates between 0.45 and 0.50 (Table 3). An effect of the 

intelligence-supporting portion of the brain on ICV + HC equaling 0.753 and on EduYears 
equaling 0.472 reproduces the relevant values of rg and GCP, although the interpretation of 

the variable ICV + HC is admittedly unclear.

A potential limitation of Study 2 is that the relevant intercepts in bivariate LD Score 

regression may not adequately reflect the degree of confounding in the GWAS if the cohorts 

were sampled from different latitudes in Europe along a cline in average intelligence; the 

Supplemental Material further discusses this possibility. As another robustness check, we 

reran the LCV software with the GWAS summary statistics of EduYears taken this time, not 

from Lee et al. (2018), but from a single large cohort (the UK Biobank) analyzed with a 

linear mixed model to address confounding and other biases (Loh, Kichaev, Gazal, Schoech, 

& Price, 2018). We obtained very similar results (rg = 0.43, SE = 0.08; GCP = 0.78, SE = 

0.15), indicating that confounding is indeed unlikely to be seriously biasing our inferences.

Lee et al. Page 14

Intelligence. Author manuscript; available in PMC 2020 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4 Discussion

Applying bivariate LD Score regression to GWAS summary statistics, we found significant 

genetic correlations between measures of head size and cognition whose magnitudes agree 

well with those obtained in twin studies. This agreement across methods suggests that each 

provides a reasonably accurate estimate of this key quantity and thus can be relied upon to 

rule out confounding by non-heritable environmental factors as the sole contributor to the 

total phenotypic correlation.

A nonzero genetic correlation by itself is silent about whether the relationship between the 

two traits is causal and the direction of the causal influence. To make the further causal 

inference, we turned to the LCV method, which generalizes the logic illustrated in Fig. 1: if 

G → X → Y is the case, then those parts of G identified in GWAS of X must show 

concordant and proportional associations in GWAS of Y, whereas the top signals in GWAS 

of Y may often affect Y through non-X mechanisms and thus show no association with X. 

We obtained estimates of the genetic causality proportion exceeding 0.7, which can be 

interpreted as ICV being an effective proxy for those parts of the brain where size affects 

intelligence. We obtained a smaller estimate when meta-analyzing ICV and HC as a 

robustness check, which perhaps implies that HC measured in infancy is a noisier proxy for 

the sizes of the relevant brain regions. Further precision will come with increasing the 

GWAS sample size for three-dimensional measures of brain size, which certainly seems 

likely to occur; there are currently plans to acquire high-quality imaging data of many 

different organs in the UK Biobank.

The novelty of the LCV method should be kept in mind. Other ingenious methods in 

statistical genetics have often disclosed non-obvious intricacies only years after their 

introduction (Speed, Hemani, Johnson, & Balding, 2012; Lee & Chow, 2014; Lee et al., 

2018; Berg et al., 2018), although it is notable how robust these methods remain even after 

they have become better understood. The Supplemental Material summarizes at some length 

the simulation studies conducted by the LCV developers, but it is hard to know whether a 

given set of simulations covers all plausible states of nature. This is an issue worth following 

as research unfolds. Right now, what we can say is that the LCV method is a generalization 

of the notions associated with Fig. 1 and thus appears to rest on a solid basis (Pickrell et al., 

2016; Visscher & Yang, 2016).

3 General Discussion

Altogether, the results of Studies 1 and 2 provide a compelling case for brain volume (or the 

volumes of certain brain regions) affecting intelligence within the human species. Study 1 

found that the sibling with a larger MRI-measured brain volume (or externally measured 

head circumference) tends to have the higher level of g. Study 2 found that SNPs in the 

human genome that are associated with intracranial volume also tend to be associated with 

both years of education and IQ; furthermore, whereas the effect of a SNP on intracranial 

volume is strongly predictive of its effect on intelligence, there appear to be many SNPs 

associated with intelligence that have no appreciable effect on intracranial volume.
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We now discuss the relevance of these empirical findings to the notion of brain size affecting 

intelligence.

3.1 Significant within-family correlation is evidence against confounding by shared 
environment and cross-assortative mating

A detailed consideration of the within-family correlation leads to many theoretical arcana, 

but the basic notion is simple and compelling: if there is a significant within-family 

correlation, then the correlation observed in the population at large cannot be wholly 

ascribed to confounding variables that assume the same value for siblings growing up 

together. Despite the abundance and variety of the existing evidence, the failure to observe a 

significant correlation between MRI-measured brain volume and IQ in the few within-family 

studies reporting this estimate has been perhaps the weightiest point against accepting a 

nontrivial causal relationship between these two variables (Nisbett et al., 2012).

Here we have examined the within-family correlation in a sample consisting of more than 10 

times as many families as those used in either of the two previous studies and obtained a 

significant result. We supplemented this finding with a calculation of the within-family 

correlation between IQ and head circumference, which is a noisier proxy for brain volume 

but is available to us in a much larger sample of twin pairs. We found this correlation to be 

significant as well.

3.2 Significant genetic correlation estimated by bivariate LD Score regression is evidence 
against exclusive confounding by non-shared environment

A within-family correlation might still be attributed to environmental confounders that can 

vary even within the same household (Frisell et al., 2012). We ruled out this kind of 

confounding as the sole explanation of the correlation between brain size and intelligence by 

replicating the genetic correlation between head size and two distinct measures of cognition. 

For this purpose we used bivariate LD Score regression, a powerful method that guards 

against environmental confounders affecting the two traits whose genetic correlation is to be 

calculated.

The sensitivity of this method to cross-assortative mating and other evolutionary forces 

inducing long-range LD between a site affecting trait 1 and a distant site affecting trait 2 is 

an interesting question that we did not consider here (although for the sake of simplicity 

Table 1 states that a positive result from bivariate LD Score regression does not provide 

evidence against this possibility). A within-family correlation between two highly polygenic 

traits, however, is very unlikely to be the result of long-range LD.

3.3 Significant LCV estimate is evidence against genetic pleiotropy and reverse 
causation

After ruling out the ascription of the entire correlation between brain size and intelligence to 

the combination of family background, non-shared environment, and cross-assortative 

mating, we are still left with the possibility of pleiotropic confounding—the same genetic 

polymorphisms affecting the two traits, without one trait affecting the other. We 

acknowledge that pleiotropy must, strictly speaking, be favored a priori as the explanation of 
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the correlation over a directed causal relationship, if for no other reason than the plausible 

existence of brain regions that do not subserve higher cognitive functions (Jerison, 1973; 

Jung & Haier, 2007).

On the other hand, there is good reason to think that overall brain size acting as a cause of 

intelligence could prove to be an extremely useful approximation. Nearly 80 percent of the 

human brain by volume is taken up by the cerebral cortex (Swanson, 1995), the seat of 

memory, attention, thought, and language. Furthermore, there are strong individual-level 

correlations (both genetic and overall phenotypic) between the volumes of different regions 

within our own species (Rentería et al., 2014). The means available to nature of adjusting 

one brain region often act on functionally distinct regions as well. If overall brain size is as 

good a proxy for the sizes of the cognition-supporting regions as suggested by these 

considerations, then we are well justified in testing the (near) validity of strong hypotheses 

that fix measures of overall size as causally upstream of intelligence.

Examples of such strong hypotheses include the equality of the within-family regression 

coefficient across sibship types and a perfectly linear relationship between GWAS effect 

sizes upon ascertainment of SNPs whose associations with the measure of brain size reach 

genome-wide statistical significance. Although the first hypothesis was not clearly borne out 

in the sibling analysis of Study 1, both the data plotted in Fig. 1 and the results of applying 

the LCV method do support the approximate validity of the second hypothesis. Furthermore, 

they provide a nearly definitive refutation of reverse causation. The right panel of Fig. 1 

seems to reveal hundreds of SNPs with significant effects on EduYears having no effect on 

intracranial volume, and the formal LCV results back up this impression by providing 

overwhelming statistical evidence against GCP = −1 (perfect causal chain) and the 

developer-recommended cutoff of GCP = −0.6 (reasonable approximation of causal chain). 

This conclusion agrees with that of van Leeuwen et al. (2009), who argued against reverse 

causation on the grounds that the high heritability of brain volume is evidence against the 

propagation of environmental influences on intelligence to brain volume.

3.4 Limitations

We have pointed to limitations of each study in its own Discussion section. Here we mention 

a limitation common to both studies—the low reliability with which g was often measured 

(Gignac & Bates, 2017).

In Study 1’s HCP dataset, we chose only two subtests as indicators of g for reasons of 

content validity and consequently suffered from an internal-consistency reliability of 

roughly 0.6. Similarly, the largest cohort contributing to the GWAS meta-analysis of IQ in 

Study 2 was assessed with an IQ test containing only a dozen items (Lee et al., 2018); the 

hierarchical coefficient omega of this test may well be less than 0.6. The relatively low 

reliability of the HCP test probably led to a diminution of the within-family correlation, 

although we tried to account for this with corrections based on classical test theory. It is 

tempting to think that the genetic correlation is not susceptible to unreliability because the 

greater error variance is simply part of the environmental term wiped away in the definition 

of this quantity. But care must be taken with such reasoning in genetic studies of behavioral 

traits (Chabris et al., 2013). Psychometric errors of measurement may in fact represent stable 
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and heritable attributes that are not affected by brain size, and thus even the estimates in 

Table 3 may increase with greater reliability. Highly reliable measurements of psychological 

traits are typically difficult to obtain in large studies where any given research goal is 

incidental, but their acquisition should remain a priority of differential psychologists 

involved in such projects.

3.5 Wider implications of brain size affecting intelligence in humans—We 

think that alternative explanations of the correlation between brain size and intelligence have 

been sufficiently weakened to justify some tentative remarks about what deeper meaning a 

causal relationship might hold.

We can imagine a brain becoming larger by either increasing the sizes of its neurons or 

adding more of them. The number of neurons is probably the more promising focus of 

theoretical and empirical inquiry, for reasons that we now explain.

It is a well-known paradox that humans are certainly the most cognitively advanced species 

but nevertheless show a smaller average brain size, by weight or volume, than elephants and 

whales. One attempt at a resolution of this paradox invoked the encephalization quotient 

(EQ), a measure of brain mass normalized essentially by body mass (Jerison, 1973). Many 

researchers found EQ appealing because it served well to distinguish humans from other 

species, but this measure turns not to provide an acceptable rank order of other species 

(Deaner, Isler, Burkart, & van Schaik, 2007; MacLean et al., 2014); for example, monkeys 

are more encephalized than the undoubtedly intelligent great apes (Deaner, van Schaik, & 

Johnson, 2006). Furthermore, the notion of an EQ may not be applicable to individual 

differences within the human species, for both birds and mammals exhibit within-species 

brain-body scaling that is weaker and more variable than in other vertebrates (Tsuboi et al., 

2018).

The more likely resolution of this paradox is that whereas average neuron size increases 

along with average neuron number in most taxa, this relationship has been abolished in 

primates, where neuron size remains fairly constant across a wide range of neuron number 

(Herculano-Houzel, Manger, & Kaas, 2014). Some large-bodied representatives of non-

primate taxa thus have more voluminous brains than humans merely because their neurons 

are larger. The relevance of a neuron’s size to its function is unclear; the number of synapses 

per neuron, a critical computational attribute, varies very weakly with neuron size across 

species (Wang, Ambrosini, & Wittenberg, 2016). When the average number of cortical 

neurons is the measure of size, then humans are by far the top-ranked species (Herculano-

Houzel, Catania, Manger, & Kaas, 2015), followed in an intuitive order by other species 

(Herculano-Houzel, 2016). It therefore seems reasonable to infer that our intraspecific 

variation in neuron number is causally antecedent to g. This inference is compatible with the 

implication of genes and pathways associated with the regulation of neurogenesis in the 

GWAS of EduYears (Okbay et al., 2016; Lee et al., 2018), and it may be possible to add to 

the coherence of these findings by partitioning the genetic covariance between brain size and 

intelligence between subsets of the genome with different functional annotations (Lu et al., 

2017; Ni, Moser, Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

Wray, & Lee, 2018).
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By positing that neuron number is a cause of g because the human brain has evolved more 

neurons than that of any other species, we have relied on the assumption that the average 

level of g in our lineage has increased over the last several million years as a result of 

evolution by natural selection (Burkart et al., 2017; Lee & Chabris, 2017). Genetic data may 

soon show whether this assumption is empirically well founded.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Among offspring of the same parents, the sibling with the greater MRI-

measured brain volume (or externally measured head circumference) tends to 

have the higher IQ.

• GWAS summary statistics show that genetic influences on head size and 

cognition overlap substantially.

• According to the Latent Causal Variable method, the genetic overlap between 

intracranial volume and years of education (or IQ) is largely consistent with a 

causal effect of the former on the latter.
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Figure 1: 
The nature of the causal relationship between brain volume and years of education inferred 

from the asymmetry of GWAS results. Each data point represents the effects of a single-

nucleotide polymorphism (SNP) on intracranial volume (ICV) and years of education 

(EduYears) respectively, as estimated in genome-wide association studies (GWAS) of these 

two traits. The left panel displays 11 SNPs reaching genome-wide significance in the latest 

GWAS of ICV (Adams et al., 2016), whereas the right panel displays 1,044 SNPs reaching 

genome-wide significance in the latest EduYears GWAS (Lee et al., 2018) that are also 

found in the publicly available summary statistics of the ICV GWAS (Hibar et al., 2015). 

Both traits have been standardized. The error bars represent plus/minus 1 SE. In the right 

panel, ICV errors larger than 0.03 (about 5 percent of all SNPs) have been omitted for 

clarity.
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Table 1:

Strengths and limitations of methods for causal inference.

Ruled out by . . .

WF LDSC LCV

Confounding by shared environment Yes Yes No

Confounding by non-shared environment No Yes No

Cross-assortative mating Yes No No

Genetic pleiotropy No No Yes

Reverse causation No No Yes

Each row corresponds to an alternative explanation of the correlation between brain size and intelligence other than the former being a cause of the 
latter. “Yes” indicates that a positive result obtained with the method given in the column provides evidence against that alternative explanation. A 
simple yes- or-no answer is always given for the sake of simplicity; consult the text for more nuance. WF, within-family phenotypic association; 
LDSC, bivariate LD Score regression; LCV, Latent Causal Variable.
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Table 2:

Within-family associations between brain/head size and IQ.

Dataset Families Measure β ± SE ρ p-value

HCP

 All sibs 381 Brain volume 0.142 ± 0.040 0.18 4 × 10−4

 MZ 138 Brain volume 0.175 ± 0.168 0.22 0.30

 DZ 79 Brain volume 0.055 ± 0.109 0.07 0.61

 Non-twins 161 Brain volume 0.162 ± 0.064 0.21 0.01

MCTFR

 All sibs 1,349 Head circumference 0.172 ± 0.031 0.19 3 × 10−8

 MZ 11 yr 642 Head circumference 0.150 ± 0.049 0.17 0.002

 DZ 11 yr 363 Head circumference 0.219 ± 0.053 0.24 5 × 10−5

 MZ 17 yr 223 Head circumference −0.050 ± 0.086 −0.06 0.56

 DZ 17 yr 121 Head circumference 0.209 ± 0.104 0.23 0.05

β is the estimated partial regression coefficient of brain/head size in a model predicting IQ with family fixed effects. Both size and IQ were 
standardized. “All sibs” means all families in the dataset, regardless of type (e.g., zygosity). Within each dataset, the rows beneath “All sibs” 
correspond to subsamples of the total sample. ρ, the partial regression coefficient (β) divided by the square root of the IQ test’s internal-consistency 
reliability.
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Table 3:

Genetic correlations and genetic causality proportions.

Traits rg ± SE GCP ± SE

Intracranial volume

 IQ 0.291 ± 0.107 0.746 ± 0.146

 EduYears 0.411 ± 0.077 0.721 ± 0.174

ICV + HC

 IQ 0.306 ± 0.083 0.495 ± 0.137

 EduYears 0.353 ± 0.064 0.450 ± 0.136

rg, the genetic correlation estimated by bivariate LD Score regression between the measures of head size (Taal et al., 2012; Hibar et al., 2015) and 

cognition (Lee et al., 2018); GCP, the genetic causality proportion, which ranges between zero (genetic variation acts purely as a confounder X ← 
G → Y ) and one (joint genetic influences act purely through the causal chain G → X → Y ); ICV + HC, GWAS meta-analysis of adult 
intracranial volume and infant head circumference.
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