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ABSTRACT
Introduction  Air and noise pollution are emerging 
environmental health hazards in African cities, with 
potentially complex spatial and temporal patterns. Limited 
local data are a barrier to the formulation and evaluation of 
policies to reduce air and noise pollution.
Methods and analysis  We designed a year-long 
measurement campaign to characterise air and noise 
pollution and their sources at high-resolution within the 
Greater Accra Metropolitan Area (GAMA), Ghana. Our 
design uses a combination of fixed (year-long, n=10) 
and rotating (week-long, n =~130) sites, selected to 
represent a range of land uses and source influences 
(eg, background, road traffic, commercial, industrial 
and residential areas, and various neighbourhood 
socioeconomic classes). We will collect data on fine 
particulate matter (PM

2.5), nitrogen oxides (NOx), weather 
variables, sound (noise level and audio) along with street-
level time-lapse images. We deploy low-cost, low-power, 
lightweight monitoring devices that are robust, socially 
unobtrusive, and able to function in Sub-Saharan African 
(SSA) climate. We will use state-of-the-art methods, 
including spatial statistics, deep/machine learning, and 
processed-based emissions modelling, to capture highly 
resolved temporal and spatial variations in pollution levels 
across the GAMA and to identify their potential sources. 
This protocol can serve as a prototype for other SSA cities.
Ethics and dissemination  This environmental study 
was deemed exempt from full ethics review at Imperial 
College London and the University of Massachusetts 
Amherst; it was approved by the University of Ghana Ethics 
Committee (ECH 149/18-19). This protocol is designed 
to be implementable in SSA cities to map environmental 
pollution to inform urban planning decisions to reduce 
health harming exposures to air and noise pollution. It will 
be disseminated through local stakeholder engagement 
(public and private sectors), peer-reviewed publications, 
contribution to policy documents, media, and conference 
presentations.

INTRODUCTION
Sub-Saharan Africa (SSA) is the world’s 
fastest urbanising region, with the number 
of urban dwellers having increased by over 
400% from 84 million in 1980 to an estimated 
~450 million people in 2020.1 Urban growth 
in SSA has been largely unplanned espe-
cially in relation to housing, transport and 
energy. As a result, air and noise pollution are 
increasingly a public health concern for SSA 
urban residents.2–4 For example, estimates 
from global models suggest that ambient 
fine particulate matter (particulate matter 
with diameter <2.5 micrometres, PM2.5) in 
SSA is well above levels in high-income North 

Strengths and limitations of this study

►► Our study is the largest air and noise pollution mea-
surement campaign conducted in a Sub-Saharan 
African city and serves as a prototype for other cities 
in SSA.

►► The study relies on new sensor technologies to gen-
erate rich datasets on air and noise pollution along 
with imagery and audio recordings that help identify 
sources across ~140 locations.

►► Data from a combination of fixed (1 year, n=10) and 
rotating (7 days, n=~130) monitoring sites repre-
senting a diversity of areas will allow for an assess-
ment of both the temporal and spatial variability of 
pollution.

►► While our study makes use of next-generation 
low-cost technologies, significant need for human 
resources is required for site identification and 
preparation, equipment deployment and mainte-
nance, and data download and management.

http://bmjopen.bmj.com/
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America and Western Europe.3 5 The data from the few 
available measurement studies show that only about 10% 
of cities in SSA are meeting the WHO annual average Air 
Quality Guideline of 10 µg/m3.5 6 While such global esti-
mates and the limited measurement data provide a broad 
view of air pollution, they do not capture the spatial vari-
ability and within-city disparities, nor do they provide 
information on sources.7–9 Those within-city differences 
are important determinants of pollution-related health 
inequalities. There are even less data on noise pollution, 
and none on its health burden. The limited noise data 
show much higher levels compared with cities in high-
income countries,10–15 which may be associated with 
hearing loss, sleep disturbance, impaired cognitive func-
tion, and cardiovascular disease.16–18

Air and noise pollution in SSA have a complex mix of 
local and regional sources: these include informal indus-
tries; transportation predominantly from old imported 
vehicles for commercial and private use; biomass use for 
household and commercial activities; household trash 
burning; resuspended dust from unpaved roads; dust from 
regional dust storms; and noise from road traffic, small 
road-side businesses, and religious practices, to name a 
few.4 7 9 19 20 These sources influence the pollutant mixture 
and the type of urban sounds, resulting in variation in 
spatial patterns and potentially differential impacts on 
health. Carefully designed measurements using low-cost 
robust sensors present an opportunity to provide data on 
the levels, variations, and sources to inform and evaluate 
the effectiveness of policies in SSA.

Motivated in part by earlier air pollution data from four 
neighbourhoods in the city core, Accra, Ghana’s largest 
city, in 2018 announced initiatives to reduce air pollu-
tion,21 whereas noise is currently making headlines in both 
local and international media.22–24 Our goal is to leverage 
advancement in sensor technology, modelling and image 
processing to design a measurement campaign combined 
with machine learning, statistical and process-based 
modelling to characterise highly resolved space-time vari-
ability of air and noise pollution, and their sources in the 
Greater Accra Metropolitan Area (GAMA). This work is 
nested within the larger multicountry and multicity ‘Path-
ways to Equitable Healthy Cities’ study (http://​equi​tabl​
ehea​lthy​cities.​org/), which aims to identify and inform 
equitable and healthy urban development and revitalisa-
tion pathways in six cities on four continents.

This paper details the protocol being used to collect 
and analyse large-scale pollution data in high resolution 
and provides practical guideline in a rapidly growing SSA 
metropolitan area. As one of the few studies of air and 
noise pollution at fine spatial resolution in a SSA city, 
this paper and the data to be generated make three main 
contributions. First, to develop and implement a data-
rich measurement campaign on air and noise pollution 
in the GAMA that can provide spatially and temporally 
graded data. Second, to present a measurement protocol 
that can be readily adapted to other SSA cities. Third, to 
describe how the data will be used to fit and/or validate 

geostatistical, machine learning and physical dispersion 
models that can predict pollution levels at high spatial 
and temporal resolution and simulate and evaluate 
different policy scenarios on air quality in Accra.

METHODS AND ANALYSIS
Study location and timeline
Our measurement campaign is focused on the GAMA, 
which covers about 1500 km2, and consists of multiple 
metropolis and municipalities, with Accra Metropolitan 
Area (AMA) at its core (figure 1). Accra lies in the dry 
equatorial climate zone with rainy (May–September) 
and dry Harmattan seasons characterised by dusty north-
easterly trade winds from the Sahara Desert. The eleva-
tion of the GAMA is near sea level. Monthly average 
temperatures range from 27°C to 32°C with average daily 
humidity of 79%.25 As Ghana’s capital and largest city, 
Accra has become one of SSA’s hubs for business, tech-
nology, communications and education. However, there 
remain large inequalities in housing and possibly expo-
sure to environmental health risks.8 26–28

We scheduled a 1-year field measurement campaign to 
cover the rainy and Harmattan periods. Measurements 
began with a 3-week long pilot campaign in April 2019 
and will continue until May 2020 (figure 2).

Measurement campaign design
To capture the temporal (daily, weekly, seasonal) and 
spatial variations in both pollution and its sources across 
the entire study area, we are using a combination of 
‘fixed’ and ‘rotating’ monitoring sites. The sites repre-
sent a blend of features such as background areas (eg, low 
traffic and high green space), low versus high road traffic, 
sparsely versus densely built-up areas, poor versus affluent 
and established versus emerging neighbourhoods.

Ten fixed sites have been installed and will operate 
continuously all year long; the sites were purposefully 
selected based on the above criteria related to population 
density, road traffic and road networks, and on neigh-
bourhood socioeconomic status and biomass fuel use 
based on national census data.29 The sites included four 
locations used in an earlier air pollution study7 26 in the 
AMA and additional provisions have been made to colo-
cate with World Bank sponsored regulatory monitoring 
sites and one at the US Embassy.

To capture spatial patterns of pollution while maxi-
mising a finite number of sensor packages, we also 
operate sites that rotate weekly in order to capture the 
spatial variation in pollution levels and sources as well as 
the temporal variation within and between days. In each 
measurement week, measurements are collected at four 
to five new locations that continuously monitor for 7 days. 
By the end of the study, ~130 unique locations will have 
been monitored for 1 week across the GAMA.

In selecting the rotating site locations, we used a strati-
fied random sampling approach as follows:

http://equitablehealthycities.org/
http://equitablehealthycities.org/
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1.	 The study area (GAMA) was stratified by a land use 
grid (20 m × 20 m raster converted into a polygon 
shapefile) with four classes (medium/low-density resi-
dential; high-density residential; commercial, business 
and industrial areas; and ‘other’ areas (eg, parks, for-
est, agricultural areas))30 and inside or outside AMA.

2.	 The computer then generated and returned the lat-
itude/longitude coordinates of a random sample of 
target measurement locations within strata.

3.	 Target measurement locations were first examined by 
overlaying point locations onto Google Maps and Goo-
gle Earth to identify sites that were in restricted areas 
(eg, military barracks). Sites in restricted areas were re-

sampled to a nearest suitable spot that also fell within 
the same type of land use strata (n=~5 sites).

4.	 Using the coordinates of the target sampling locations, 
the field team then visit individual sites throughout the 
campaign to find measurement sites at or as close as 
possible to the target locations and also with the same 
land use characteristics.

5.	 When a site is deemed structurally sound by the field 
team (eg, staircase to the roof) and can allow for the 
equipment to be installed at a target height, permis-
sion is requested from the site owner/manager (more 
details on the logistics of field work are in the next sec-
tions).

Figure 1  The Greater Accra Metropolitan Area (GAMA) and locations of the fixed and computer-generated (sampled) rotating 
sites. The road network data are from OpenStreetMap and the background land cover shapefile is from the World Bank (2014). 
The inset shows background maps of Africa and Ghana (ESRI (Environmental Systems Research Institute)), along with the 
GAMA boundary from Ghana Statistical Service. High-density residential indicates neighbourhoods with small, crowded, 
irregular buildings and narrow unidentifiable unpaved roads such as in shanty towns and slums. Medium/low-density residential 
indicates neighbourhoods with small regular planned buildings and indicate formal residential areas. Commercial/ business/ 
industrial indicates neighbourhoods with large buildings that can be used for commercial, industrial, office or warehouse 
purposes. Other indicates areas with large spaces of vegetation (eg, dense forest), barren land (eg, sand, soil) or water bodies.

Figure 2  Timeline of measurement campaign. Weekly measurements consist of continuous (PM2.5 air concentration, noise 
levels, meteorological conditions, audio, and imagery) and integrated (PM2.5 and NOx concentration) samples. We chose weekly 
integrated samples for PM2.5 and NOx for logistical reasons (cost and time) as well as lessons from a previous study that showed 
relatively high temporal correlation between daily measurements.8
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6.	 During the measurement campaign, we will actively 
review the balance between the number of actual mea-
surement sites by land use strata as originally designed, 
and potentially sample additional sites to make up for 
unrepresentative site types.

Measurement methods and equipment
We systematically selected and are employing low-cost, 
low-power and lightweight monitors that are robust and 
able to function in an environment characterised by 
high temperatures and humidity, rain and dust storms, 
and with limited and intermittent electricity supply from 
the grid, and at the same time are socially unobtrusive 
(table 1, figure 3).

Air pollution monitors
Integrated PM2.5: the Ultrasonic Personal Aerosol Sampler 
(UPAS)31 from Access Sensor Technologies (Fort Collins, 
USA; UPAS) is a time-integrated PM2.5 monitor and has 
a quiet solid-state miniature piezoelectric pump for 
drawing air through a customised cyclone onto a 37 mm 
diameter filter media contained in barcoded cartridges 
within the device. With a mass flow sensor and controller, 
UPAS provides a steady flow rate over time. A mobile app 
makes UPAS easily programmable to collect samples at 
varying duty cycles. The UPAS devices are being oper-
ated at 1 L/min at 50% duty cycle to avoid overloading 
the weekly integrated filters. The UPAS has been eval-
uated in laboratory and field settings against a federal 
reference monitor (URG‐2000‐30EGN‐A; URG Corp., 
USA), personal environmental monitor (PEM 761‐203; 
SKC, USA) and Harvard Impactors, respectively, and has 
proven valid for ambient, household and personal moni-
toring in a typical tropical climate as our study.31–33

Continuous PM2.5: the ZeFan continuous monitor 
(http://www.​zfznkj.​com/) is a portable direct-reading 
PM2.5 monitor that is based on light scattering technique.34 
ZeFan uses the Plantower sensor (model PMS7003) 
which has been validated against a TEOM 1400a anal-
yser and tested for durations ranging from 6 months to 
a year in various environmental conditions.34 35 Prior to 
field deployment, we tested minute-by-minute monitor–
to-monitor precision by running 15 monitors alongside 
each other over a 24-hour period at the University of 
Ghana, Legon campus with average relative humidity 
(RH) (~78%) and temperature (29°C) representative 
of the city, and the measurements had good agreement 
(figure 4). Since light-scattering techniques only infer PM 
mass from detecting particle number concentrations and 
are impacted by weather conditions (ie, RH and tempera-
ture), their estimates of mass concentration are inexact. 
Thus, we will colocate the ZeFan with a US federal equiv-
alent continuous monitor Met One BAM 1020 at three 
sites, each with unique source influence in Accra for a 
week at the end of the campaign and adjust the minute-
by-minute PM records for impact of RH and then their 
average against the colocated integrated PM2.5 concentra-
tions from the UPAS. Ta
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Nitrogen oxides (NOx/NO2): the Ogawa Passive Sampler 
(https://​ogawausa.​com) is being used to measure NOx 
and NO2, which are inorganic gaseous indicators of traffic 
related air pollution.36 The sampler is easy to deploy, 
reusable and does not require electricity, thus making it a 
cost-effective option in SSA settings. The sampler consists 
of two chambers with double-sided diffusion that can 
concurrently capture NOx and NO2 concentrations on 
collection pads precoated with 2-phenyl-4,4,5,5-tetrameth
ylimidazoline-1-oxyl-3-oxide and triethanolamine, respec-
tively. The samplers are covered by an opaque plastic 
container which serves as weather shield.

Sound monitors
Sound levels: the Noise Sentry Sound Level Meter (SLM) 
datalogger (NSRT_mk3) from Convergence Instruments, 
Canada, is being used to measure sound levels at 1 min 
integrating and logging intervals. The Noise Sentry is a 
relatively low-cost SLM with Type I precision for capturing 
and constructing common metrics of environmental 
noise pollution with multiple weighting curves. It is 
small and rugged, built to withstand temperatures in the 
range of −20°C to 60°C, and protected against water and 
dust. Previous studies have used the Noise Sentry SLM in 
diverse settings.12 14 Our prepilot tests of monitor–to-mon-
itor precision showed good agreement (more details in 
online supplementary information 1 (SI 1)). Our Noise 
Sentry SLMs were also validated in a separate aircraft 
noise study conducted in San Francisco against a Type 
I industry standard instrument (DUO 01 dB),37 and the 
agreement was high (mean and median second by second 
difference between the instruments was −0.42 and −0.38 
dBA, respectively).

Audio: the AudioMoth audio recorder is a low-cost, full 
spectrum, acoustic logger developed by Open Acoustic 
Devices (Oxford, UK).38 The AudioMoth will comple-
ment the SLM by recording audio which will be used to 
classify different types of sounds in an urban environment 
(eg, animals, vehicle sounds). The AudioMoths are set 
to a sampling rate of 32 kHz in our study to capture the 
majority of sound in the audible range.39

Weather monitors
The Kestrel 5500 weather metre (Nielsen-Kellerman, 
Boothwyn, Pennsylvania, USA) is being used to record 
weather variables every minute. The Kestrel is a hand-
held environmental metre and considered tough and 
immune to the elements. It tracks several weather param-
eters, including temperature, RH and heat index. It was 
selected for its low power consumption, large memory 
capacity (>10 000 data points), and dust-proof and water-
proof properties. Kestrel 5500 has been used in several 
studies in diverse settings.40 41 According to factory spec-
ifications, the accuracy of the instrument is 0.5°C for 
temperature and 2% for RH.

Time-lapse cameras
To characterise sources of pollution in space and time, we 
use weatherproof and rugged time-lapse cameras (Moul-
trie-50 camera trap, PERDIX wildlife, UK). The cameras 
are programmed to capture images at 5 min intervals 
throughout the sampling period, including at night using 
infrared technology. Depending on the location, one or 
two cameras are mounted to capture multiple frames of 
view of potential pollution sources in the street such as 
cars and community cookstoves.

Integrated equipment monitoring box
To house the equipment, we built integrated field 
measurement boxes using weather protective Seahorse 
(SE-300) cases. The cases were designed and weather 
tested to securely house each piece of equipment along 
with battery packs inside a single compartment, and 
could be mounted on poles of different sizes using ratchet 
straps. The cameras are mounted on the outside of the 
box with rotational multiaccess brackets for ease of orien-
tation. Additionally, soundproof foam was placed in-be-
tween the air monitors and the SLM to mitigate internal 
sound that might be generated from the quiet air pollu-
tion monitor pumps. NOx/NO2 passive samplers and the 
audio recorders are placed outside of the measurement 

Figure 3  Images of environmental monitoring equipment.

Figure 4  Smoothed time series of minute-by-minute PM2.5 
from 15 colocated real-time Zefan monitors in Accra. The 
levels were neither corrected for relative humidity nor against 
integrated filter-based data.

https://ogawausa.com
https://dx.doi.org/10.1136/bmjopen-2019-035798
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boxes in their own smaller weather protective plastic 
cases.

Equipment deployment and data capture
The field team identifies potential sites at or as near as 
possible to the computer-generated locations using direc-
tion from the saved locations on Google Maps. The team 
then approaches residents, owners or managers, and 
explains the study rational and seeks approval to instal 
equipment for a 1-year (fixed sites) or 7-day (rotating 
sites) period. The team carry signed letters containing 
description of the research and contact information of 
project investigators at the University of Ghana. The site 
is then prepared, and the equipment box is mounted 
on metal poles, in care of an established contact person, 
and out of direct reach of passers by. Depending on 
the specific site, the poles are secured on flat rooftops/
balconies of one-story buildings or directly in the ground 
(figure 5) about 4 m (±1 m) high, as is a common prac-
tice in ambient air pollution and noise measurement,42 
and also has no obstruction between the monitors and 
the sources of air and noise pollution. The cameras are 
mounted on the outside of the box and secured in metal 
cases.

After deployment, the field team completes a short 
form, documenting information about the site, including 
the presence or absence of visible pollution sources (eg, 
road-side cooking), mitigation factors (eg, trees) or other 
locations/features of interest, such as road-side food 
sales, shopping centres, schools, or hospitals. For the 
rotating sites, four to five locations are monitored each 
week. Because of logistical and time constraints related 
to setting up each site, the team chooses sites that are 
within the same part of the city, but may have varying 
land use characteristics (eg, mix of low and high-density 

residential locations). Monitors are retrieved 7 days after 
initiating the measurements for data download and 
equipment cleaning in the field laboratory. The moni-
tors are then redeployed 48 hours later at a new set of 
locations in a different geographic area, with the aim 
of capturing potential microclimate and source-related 
differences between areas which likely impact pollution. 
For the fixed sites, replacement monitors, replacement 
batteries and memory cards are swapped on site so as not 
to have a disruption in monitoring.

Logistics and training
Our local field team comprises three recent graduates 
from the University of Ghana and a taxicab driver, all with 
technical training needed to manage the field operation. 
The team is given project specific training to understand 
the site selection criteria and to collect high-quality data. 
Additionally, periodic field visits and regular phone calls 
by researchers are made to maintain high-quality data. In 
each neighbourhood or community, the team identifies 
and works with a community member to establish trust 
and facilitate entry into that community.

Data handling
Weekly data are downloaded, saved in triplicate onto 
two external hard drives, and a third copy uploaded to a 
sever at Imperial College via an encrypted laptop. For the 
integrated PM2.5 filter samples, prelabelled 0.2 µm pore 
size 37 mm barcoded Teflon membrane filters (https://​
mtlcorp.​com/​filters/) are used and weighed pre- and 
post-sampling using an MTL AH500 automated robotic 
scale (http://www.​mtlcorp.​com/#/​filter-​weighing/) 
maintained in a temperature and RH-controlled labora-
tory (23°C±2°C, 35±2% RH) at The University of British 
Columbia. The filter labels are scanned, time stamped, 

Figure 5  Deployment of the pollution measurement equipment.

https://mtlcorp.com/filters/
https://mtlcorp.com/filters/
http://www.mtlcorp.com/#/filter-weighing/
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placed in individual carriers and loaded into the input 
silos for 48 hours to equilibrate to laboratory conditions 
before weighing. System-generated weighing reports (eg, 
balance stability) for each filter are issued for quality 
control purposes. Samples are weighed thrice in both 
pre- and post-weighing and the average of the three 
measured masses is used for calculating concentrations. 
The preweighed filters are scanned and paired to and 
placed in labelled petri dishes which are then sealed into 
individual packages. Each petri dish has four labels used 
to match the filter to the cartridge, UPAS monitor, and 
field log sheet during field work. After sampling, the 
filters are matched to, and placed back in, their corre-
sponding petri dishes and shipped to the laboratory for 
postweights. Detailed information on the filter handling 
process can be found elsewhere.32 An emerging low-cost 
image-based approach will be applied to the postweighed 
filters to estimate optical reflectance as a measure of black 
carbon (BC) concentration,43 the mass related to light 
absorption due to the presence of carbonaceous species.

NOx/NO2 samples are handled according to the 
protocol from Ogawa.44 After assembly in the laboratory, 
the loaded samplers contained in an airtight container 
are exposed only on site for the entire sampling week. 
After sampling, the above procedure is again followed, 
and samples refrigerated until the exposed pads are 
shipped in airtight shipping vials for laboratory analysis. 
The final sample concentrations are determined based 
on the ratio of the sample absorbance (measured by spec-
trometer) to the slope of a prepared standard curve. The 
full analytical method is publicly available.44

Quality assurance and control
Throughout the campaign, we will follow a set of proce-
dures and protocols to uphold and assess the quality of 
the data being generated. We follow the principles that 
all procedures should be carefully planned, tested and 
performed, the origin and life course of all data must 
be traceable, and any deviations or irregularities must 
be recorded. Throughout all data collection, documen-
tation of sampling and conditions will be maintained in 
field notebooks. Furthermore, data collection logs will be 
digitised and backed up electronically on hard-drives and 
an online server, which will be checked on a daily basis 
for accuracy. The field team were given multiple weeks of 
project specific training prior to the pilot measurements. 
The team were taught specific protocols for equipment 
handling and cleaning, data inspection and cleaning, and 
equipment installation at measurement sites. The team 
were also given hardcopies of the protocols and, in addi-
tion to field visits by researchers, had constant remote 
access via phone/web to project researchers throughout 
the campaign. In the online supplementary information, 
we have included further information on our precision 
and accuracy testing, protocol for blank and duplicate 
collection, and data cleaning and inspecting procedures 
(SI 1).

Modelling and analysis
The data from this measurement campaign will be used to 
characterise the spatial and temporal patterns of air and 
noise pollution and serve as inputs into a diverse suite of 
state-of-the-art statistical, physical and machine learning 
models to (1) predict pollution levels in high spatial 
and temporal resolution across the GAMA, (2) identify 
sources of pollution, and (3) simulate the impacts of 
policy scenarios on air pollution levels. Below are brief 
descriptions of some of our planned analysis and model-
ling activities following data collection. Future results-
based papers will describe the modelling approaches in 
greater detail.

Descriptive summaries of the spatial and temporal variations in air 
and noise pollution
We will provide summary statistics and visuals of the 
spatial and temporal patterns (within and between day, 
and seasonal) of air pollution (PM2.5, NO2) concentra-
tions and average-based metrics of noise pollution such 
as LAeq24hr, daytime (Lday), nighttime (Lnight), and day–
evening–night weighted Lden. Additionally, we will include 
metrics which capture short term and episodic sound 
events such as the maximum sound level and a novel 
metric that captures the percentage of event-based sound 
(the intermittency ratio (IR24hr, IRday, IRnight)).45

High-resolution modelling of air and noise pollution in the GAMA
The increasing availability of geospatial datasets with land 
use characteristics,46 road network information47 and loca-
tions of interest (eg, locations of schools and hospitals) 
supports the development of land use regression (LUR) 
models to predict pollution levels for urban areas.48 49 To 
date, most applications of LUR models for air and noise 
pollution have been in high-income countries,13 14 48 with 
an emerging number in Asian cities and a limited number 
in African cities.12 50–52 To generate high-resolution esti-
mates of air and noise pollution in the GAMA, we will 
build LUR models with spatial and temporal predictor 
variables. The models will also include terms that allow 
for the capturing of systematic temporal patterns, for 
example, random intercepts for hour of the day or month 
of the year, and terms that use pollution levels at fixed 
sites to remove weekly temporal changes. The models will 
use year-long data on PM2.5, BC, NO2 and NOx concen-
trations, aggregated to weekly average concentrations, 
and sound level metrics aggregated hourly and daily. The 
LAeq metric will be modelled hourly so that within-day 
patterns of sound variation can be captured in the model 
and then model predictions can be used to construct 
LAeq24hr, Lday, Lnight and Lden. The specific temporal and 
spatial structures that are built into the models will be 
determined from the descriptive work.

We will obtain spatial/location-based predictor variables 
from publicly available sources (eg, OpenStreetMap), 
government databases, and satellite imagery to collate 
data on transportation networks (eg, road type), land 
cover/land use, locations of interest and green and blue 

https://dx.doi.org/10.1136/bmjopen-2019-035798
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spaces. We also have temporal information on meteo-
rological conditions (eg, temperature, wind speed and 
direction, humidity) from local weather stations that 
are colocated with six fixed-site environmental moni-
tors. Appropriate data checks will be done to ensure that 
model assumptions are met along with 10-fold hold-out 
cross-validation methods to assess model performance in 
different parts of the city.

We will be reporting the model results in the form of 
estimates that represent annual average levels of PM2.5, 
NO2, NOx, LAeq24hr, Lden and IR24hr. We will also provide 
maps that show estimates that are disaggregated by season 
(eg, Harrmattan and non-Harrmattan for air pollution) 
and within day (eg, day vs night).

Identification of sources of air and noise pollution with imagery 
and audio
We will glean insights into the determinants and correlates 
of air and noise pollution (ie, potential sources) in 
both space and time by applying machine learning 
approaches, novel in the domain of pollution research, 
to our time-lapse images collected every 5 min at the ~140 
measurement sites.53 We will use Object Detection algo-
rithms, implemented in a Convolution Neural Network 
architecture, to identify predefined object classes within 
an image with a rectangular box bounding their pres-
ence (figure 6). We will modify pre-existing algorithms to 
include custom object classes specific to our study context 
such as roadside cookstoves and street loudspeakers, and 
as determined by the research team.54–57 A sample set of 
prelabelled images will be used to fine-tune a pretrained 
object detection algorithm to detect the objects of rele-
vance to this study. The algorithm will then be applied 
to all images collected during the campaign to produce 
a list of variables that can be included as independent 
variables in models estimating the association of air and 
noise pollution levels with the occurrence of these vari-
ables in high spatial–temporal resolution. This approach 
could be extended to potential future applications such 
as estimating traffic flows (segmented by vehicle type such 
as bicycles, cars and minivans whose average emissions 
vary) or to apply the model to new sources of street level 
imagery data to identify correlates of air and noise pollu-
tion at unmeasured locations across the city.53

Similarly, machine learning models can be applied 
to the audio to classify different sound types and 

identify sound sources. Some models can predict over 500 
different sound types/sources (eg, dog barking, ocean 
waves, car engine revving) and have been pretrained on 
2 million short audio clips.58 59 The recent wave of devel-
opment of these models highlights advancements in this 
field. However, the transferability of the available models, 
which have predominantly been trained on data from 
high-income cities and countries,39 58 60 to a setting such 
as Accra will have to be tested and understood.

Air pollution impacts of policy and urban planning
We plan to use deterministic process-based models of air 
pollution to estimate the air pollution impacts of policies 
and urban planning decisions in Accra. Process-based 
models such as meteorological chemical transport and 
dispersion models61–63 can provide quantitative estimates 
of the air pollution impacts of different policy scenarios 
by modifying sources according to the specific scenario. 
After minimising errors in meteorological inputs by 
nudging to ECMWF (European Centre for Medium-
Range Weather Forecasts) meteorological reanalysis 
data, the deterministic relationships between the model’s 
emissions inputs and concentration outputs will be used 
in conjunction with the measurement data to calibrate 
the highly uncertain SSA emissions data. This relation-
ship will be recreated using Gaussian process emulation64 
to simulate the millions of model runs required for a 
Bayesian Monte Carlo calibration65 exercise, in which 
each run is weighted according to its output’s agreement 
with the measurements. The same weights are applied to 
the corresponding emissions inputs, producing a distri-
bution of emissions values, the modal value of which is 
taken as the calibrated input. Repeating this at multiple 
model time steps averages the calibration over the values 
of the many other varying model inputs. The remaining 
measurements will then be used to validate the model’s 
outputs, after it is rerun with the calibrated emissions. 
Following validation, the model (if appearing to perform 
well) can be used for ongoing policy and urban planning 
scenario testing exercises for emissions reduction policies 
in Accra, and other SSA cities with similar source profiles.

PATIENT AND PUBLIC INVOLVEMENT
No patients or members of the public were involved in 
this component of the study.

Figure 6  Illustration of how object detection models and street-level imagery can be combined from the Accra campaign 
data to identify potential correlates of air and noise pollution in the imagery. Information recorded on the bottom of the images 
includes the date and time, camera name and the ambient temperature. The numbers illustrate an example of object counts 
within imagery.
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ETHICS AND DISSEMINATION
This environmental study was deemed exempt from full 
ethics review at Imperial College London and the Univer-
sity of Massachusetts Amherst; it was approved by the 
University of Ghana Ethics Committee. While pollution 
sources (cars, roadside cookstoves and loudspeakers, etc) 
are the targets of our field camera and audio recorders, 
bystanders in public places and their voices may some-
times be in the mix. Monitors are placed at about 4m 
height where faces are normally not recognisable in the 
images and conversations unintelligible in the audio. 
Further, the audio recorders record for only 10 s every 
10 min. Extra precautions (eg, blurring of faces in 
imagery) is taken to maintain privacy of bystanders.

Both public and private stakeholders and relevant 
civil society groups will be invited to annual research 
consortium meetings where preliminary and final results 
will be shared. This will enable policy-makers to frame 
and understand impacts of current and future policy 
scenarios. Additionally, results will be presented at inter-
national conferences and published in peer-reviewed 
journals. Further, we will also engage with civil society 
through blog posts and other social media platforms.
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