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Abstract
Localized prostate cancer develops very slowly in most men, with the androgen receptor (AR) and MYC transcription
factors amongst the most well-characterized drivers of prostate tumorigenesis. Canonically, MYC up-regulation in luminal
prostate cancer cells functions to oppose the terminally differentiating effects of AR. However, the effects of MYC up-
regulation are pleiotropic and inconsistent with a poorly proliferative phenotype. Here we show that increased MYC
expression and activity are associated with the down-regulation of MEIS1, a HOX-family transcription factor. Using RNA-
seq to profile a series of human prostate cancer specimens laser capture microdissected on the basis of MYC
immunohistochemistry, MYC activity, and MEIS1 expression were inversely correlated. Knockdown of MYC expression in
prostate cancer cells increased the expression of MEIS1 and increased the occupancy of MYC at the MEIS1 locus. Finally,
we show in laser capture microdissected human prostate cancer samples and the prostate TCGA cohort that MEIS1
expression is inversely proportional to AR activity as well as HOXB13, a known interacting protein of both AR and MEIS1.
Collectively, our data demonstrate that elevated MYC in a subset of primary prostate cancers functions in a negative role in
regulating MEIS1 expression, and that this down-regulation may contribute to MYC-driven development and progression.

Introduction

Locally advanced prostate cancers harbor a limited number of
recurrently altered genes whose expression change at the
earliest stages of tumor development. These include down-
regulation of the tumor suppressors NKX3-1 and PTEN (often

due to genomic deletion), up-regulation of ERG (due to fusion
with TMPRSS2), and up-regulation of MYC, which often co-
occurs with a single-copy gain of chromosome 8q24 [1–5].
Although up-regulation ofMYC in most neoplastic tissues is a
very early event that contributes to self-renewal and pro-
liferation, localized prostate cancer (PCa) is not proportionally
as hyperproliferative as metastatic prostate cancers which
frequently harbor focal amplification of MYC [6, 7]. In part,
the effects of the androgen receptor (AR) in terminally-
differentiated luminal prostate cells are disrupted by MYC
and other co-factors including FOXA1 and HOXB13 to re-
engage proliferative processes during tumorigenesis [7–11].

Recently, increased awareness that the vast majority of
prostate cancers are indolent has led to increased molecular
profiling of tumor biopsies prior to definitive treatment.
Although MYC expression has been observed in the cancer
precursor high-grade prostatic intraepithelial neoplasia, MYC
expression in indolent-appearing tumor cells predicts the pre-
sence of higher-grade disease and is associated with poor dif-
ferentiation [3–5]. In localized prostate cancers, up-regulated
MYC has been further associated with alterations in nucleoli
structure, concomitant with increased biogenesis of ribosomal
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RNA, increased purine metabolism, and expression of the
telomere RNA subunit TERC [12–14]. These effects contrast
sharply with the phenotype of highly amplified MYC, which is
enriched in metastatic and treatment-resistant prostate cancers,

and mirrors the role of MYC in other cancer types via effects
on AKT to contribute toward cell division and survival
[15–17]. Nonetheless, even in primary PCa, MYC protein
expression is diffuse and heterogeneous [3].
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We sought to examine the genetic contribution of MYC to
the development and progression of primary PCa in the
context of dysregulated growth by using anti-MYC immu-
nohistochemistry (IHC) and performing laser capture micro-
dissection on populations of human prostate tumor cells with
varying expression of MYC protein. We show using tran-
scriptome profiling that increased MYC activity is inversely
correlated with expression of Myeloid Ecotropic viral Inser-
tion Site 1 (MEIS1), a transcription factor that interacts with
and regulates the activity of HOX homeodomain transcription
factors, including HOXB13 [18–20]. We determined that
MYC binding to the MEIS1 locus decreases as MYC levels
increase, and that MEIS1 expression is negatively correlated
with HOXB13 expression and AR activity.

Results

MYC activity is weakly associated with proliferation
in primary prostate cancer

Although MYC orchestrates a broad range of biological
functions, it has been shown in many cancers that MYC
drives tumorigenesis by potentiating or stimulating cell

growth and proliferation [21]. To assess the relationship
between MYC activity and proliferation across cancer
types, we evaluated MYC activity and cell proliferation rate
in TCGA pan-cancer cohort using ssGSEA with MYC
activity and proliferation signatures [22]. As shown in Fig.
1a, signatures for MYC activity and proliferation were
positively correlated in all cancers with the vast majority
showing strong positive correlations (r > 0.5). However,
prostate adenocarcinoma (PRAD) was below this cut-off as
one of the weakest correlating cancer types (r= 0.4822,
95% C.I. 0.4112–0.5472, P < 0.0001). Repeating this ana-
lysis with a prostate cancer-specific gene set generated by
MYC overexpression in LNCaP cells [11], PRAD correla-
tion with proliferation increased modestly (r= 0.5609, 95%
C.I. 0.4972–0.6186, P < 0.0001), but was still below the
median correlation coefficient (Supplementary Fig. 1). To
validate this observation, we screened a new cohort of
treatment naïve Gleason score 7 prostate tumors for MYC
and Ki67 expression by IHC. Although MYC was expres-
sed in a majority of tumor cells, Ki67 expression was lim-
ited to <5% of cells (Fig. 1b, left), consistent with median
Ki67 indices from large cohorts of GS7 tumors in the 2–4%
range [23, 24]. We then applied automated image analysis
to quantify millions of nuclei across 20 tumor foci from
ten different cases. While the MYC positive histology
score ranged from 0 (low expression) to 0.46 (high
expression), the Ki67 positive histology score was <0.1 in
18 out of 20 foci (Fig. 1b, right). An unweighted Pearson
correlation demonstrated that MYC IHC was weakly but
positively correlated with Ki67 (r= 0.4954, 95% C.I.
0.06772–0.7693, P= 0.0263), similar to what we observed
in the PRAD TCGA cohort, indicating that the transcrip-
tional signatures applied to the larger dataset accurately
recapitulated MYC and Ki67 protein abundance. Because
high Ki67 expression was not associated with high MYC
expression, proliferation may have been dependent upon
MYC activity, but MYC expression alone was not sufficient
for proliferation.

To further examine the role of MYC in prostate tumor-
igenesis, we knocked down MYC in LNCaP cells, which
had physiologically-elevated levels of MYC. Like primary
PCa, LNCaP cells express AR, are androgen sensitive, and
grow slowly despite elevated MYC [25]. Using MYC-
knockdown cells as a model of MYC-low PCa cells, we
show in Supplementary Fig. 2 that we achieved ~50%
reduction in MYC transcript and MYC protein expression.
As anticipated, knockdown of MYC was associated with a
modest decrease in cell number at each time point (Fig. 1c)
but the decrease in cell proliferation was not proportional to
the decrease in MYC expression. The relationship between
MYC and proliferation in other cancer types also stipulates
a role for MYC as a universal amplifier of transcription
[26], alleviating constraints on cell growth and proliferation

Fig. 1 MYC and proliferation in human cancers. a Left: correlation
of the 54-gene ssGSEA MYC activity signature score and the 17-gene
ssGSEA proliferation signature score for each tumor type from the
TCGA pan-cancer cohort. All scatter plots are on the same scale.
Right: plot of Pearson r coefficients of correlation from each scatter
plot shown on the left. All tumor types showed a positive correlation,
ranging from 0.3386 (PCPG: pheochromocytoma and paraganglioma)
to 0.8473 (DLBC: diffuse large B-cell lymphoma). PRAD: prostate
adenocarcinoma, r= 0.4822. All correlations were significant at P <
0.001 except THCA (thyroid carcinoma; P= 0.5543). b Left: repre-
sentative IHC staining used as input for automated image analysis with
Definiens Tissue Studio and the processed file used for quantification
of histologic score via nuclear classification, for anti-MYC and anti-
Ki67 immunostains. Right: unweighted scatter plot and Pearson cor-
relation of the quantified intensities of anti-Ki67 vs. anti-MYC stain.
Each open circle represents a contiguous quantified region, color-
coded by patient. Multiple regions from the same patient indicate
multiple noncontiguous regions were measured, and the size of each
circle indicates the number of nuclei considered for the analysis.
c Assessment of cell growth in vitro as a function of MYC knockdown.
LNCaP cells expressing non-targeting or MYC-targeting hairpins were
seeded at a density of 50,000 cells per well and counted every 2 days
in triplicate using a hemocytometer by three different individuals
blinded to the identities of the cultures. Data shown represents the
mean ± standard error of ten independent experiments. ****P < 0.0001
for each cell line vs. control by two-way ANOVA. d RNA content as a
function of MYC knockdown. Total RNA was extracted from 1 × 106

pelleted LNCaP cells expressing non-targeting or MYC-targeting
hairpins. RNA concentrations were measured by Nanodrop and total
RNA was calculated per cell. Data represents mean ± standard devia-
tion of three independent experiments conducted in triplicate, with
open circles representing individual replicate RNA quantity values
(****P < 0.0001 for each cell line vs. control by two-way ANOVA).
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[27]. However, we observed the opposite: the total amount
of cellular RNA increased whenMYC was knocked down in
LNCaP cells (Fig. 1d). Together, these findings indicate that
the cellular behavior of MYC in PCa contrasts with other
tumor types, and that MYC does not act solely in a pro-
liferative capacity.

Increased MYC is associated with specific up- and
down-regulation of target genes

We hypothesized that analysis of tumors with different
levels of MYC expression would identify genes that may
contribute to MYC activity in PCa pathogenesis. Using
samples of human radical prostatectomy specimens stained
with anti-MYC, we identified concomitant regions of high-
and low-MYC expression in the same patients. We sub-
jected these within-patient sets of tumor foci to laser capture
microdissection (Fig. 2a), controlling for PTEN and ERG
status by confirming their concordance within each case. Of
the 19 foci microdissected, we designated 42% MYC-high
(n= 8) and 58% MYC-low (n= 11). We performed RNA-
seq on these cases and derived a limited gene set of 293 up-
or down-regulated genes, with only 15 genes showing
expression changes of fourfold or more with adjusted P
values < 0.10 (Fig. 2b and Supplementary Table 2). Con-
sistent with our observation of increased RNA in LNCaP
cells expressing MYC knockdown hairpins (see Fig. 1d),
we observed more genes down-regulated than up-regulated
in MYC-high vs. MYC-low tumor foci.

To further refine genes of potential interest, we analyzed
a second dataset comprised of whole transcriptome
sequencing from 499 primary tumors in the TCGA PRAD
cohort. Using the mRNA expression values of genes in the
MYC activity signature (see Fig. 1a and Supplementary
Table 1), we compared the top 20 and bottom 20 ranked
cases based on average median absolute deviation-modified
z-score (Supplementary Fig. 3), and established a second list
of differentially expressed genes (Fig. 2c and Supplemen-
tary Table 3). As these cases were compared between
patients rather than within-patient, a far greater number of
genes were differentially expressed (1346) with fold-change
of at least 4 and adjusted P values < 0.05.

When comparing differentially expressed genes between
MYC-high vs. MYC-low tumors, MYC expression was
consistently greater in the MYC-high group in the LCM
primary PCa cohort (Fig. 2b and Supplementary Table 2).
As MYC RNA and protein expression often do not correlate
due to the tight posttranslational regulation of MYC
[28, 29], the statistically insignificant increase of MYC
expression in the MYC-high group was not unexpected.
However, MYC was amongst the up-regulated genes in
the MYC activity high group, confirming proper stratifica-
tion in the TCGA PRAD cohort as well (Fig. 2c and

Supplementary Table 3). Taking an inclusive approach to
combine both datasets, we identified 293 and 7390 differ-
entially expressed genes between MYC-high and MYC-low
prostate tumors in the LCM tissue and TCGA PRAD
cohorts, respectively (Fig. 2d, e) that were concordantly
regulated in the same direction. Of these, 221 were in
common at a false discovery rate threshold of 0.10 for LCM
tissue and 0.05 for TCGA PRAD (Fig. 2e and Supple-
mentary Table 4).

MEIS1 is negatively associated with MYC expression
and MYC activity

Given that we observed more genes down-regulated in
MYC-high tumors than we would have expected if MYC
were functioning as a genome-wide transcriptional ampli-
fier, we hypothesized that collective analyses of gene
expression might reveal coordinated down-regulation of
biological processes that may contribute to MYC-driven
PCa tumorigenesis. We therefore performed gene set
enrichment analysis (GSEA) using both the LCM and
TCGA cohort datasets as inputs, limiting our analyses to
gene sets with differentially expressed genes shared by the
LCM and TCGA cohorts. As depicted in Fig. 3a, our initial
comparative analyses demonstrated significant and con-
cordant enrichment of 762 gene sets (Supplementary Table
5). To narrow our focus further, we refined our search only
to include gene sets based on ChIP-seq target discovery
studies with the premise that increased MYC activity would
misregulate a multitude of transcriptionally-driven path-
ways. These analyses identified 11 gene sets, a pre-
ponderance of which were associated with development and
survival (Table 1).

Of note, gene sets related to NOTCH, RUNX1, HOXA9,
and TNF were negatively enriched in MYC-high vs. MYC-
low tumors. This suggested that one or more transcription
factors exert effects in opposition to MYC, and may be
guiding MYC-mediated misregulation of these pathways. In
seeking a gene or common regulator between these gene sets,
we identified the transcription factor MEIS1 as an important
regulator in each of the aforementioned pathways. For
example, MEIS1 has been shown to regulate genes in the
NOTCH pathway [30] and sensitizes cells to TNF [31].
Moreover, MEIS1 is essential for the expression of genes
driven by the HOXA9-NUP98 fusion in acute myeloid leu-
kemia [32–34]. Therefore, we examined whether MEIS1
expression was associated with increased MYC activity as a
proxy for its role in PCa development.

We observed thatMEIS1 expression was reduced in MYC-
high cases compared with MYC-low tumors, for both the
LCM and TCGA cohorts (Supplementary Tables 2 and 3,
respectively). At a case-by-case level, MEIS1 expression was
negatively correlated with MYC (Fig. 3b; r=−0.4321, 95%
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C.I. −0.7409–0.0275, P= 0.0323) and MYC activity
(Fig. 3c; r=−0.5527, 95% C.I. −0.7372 to −0.2713,
P= 0.0001) in the LCM and TCGA cohorts, respectively. To
assess whether this association occurred in unselected popu-
lations of primary PCa, we analyzed RNA-seq data from an
additional 69 microdissected tumor foci and the entire TCGA
PRAD cohort (n= 499). Although weaker than the MYC-
selected cohorts, the negative relationship between MEIS and
MYC expression was still observed (Fig. 3d, e).

MYC negatively regulates MEIS1 expression

Recently, Bhanvadia et al., postulated that higher MEIS1
expression conferred a less aggressive PCa phenotype [19].

Based on these results, we hypothesized that repression of
MEIS1 expression by MYC may contribute to the aggres-
sivity of MYC-driven PCa. We engineered LNCaP cells
with a non-targeting hairpin as MYC-high and LNCaP cells
with three different MYC-targeting hairpins as MYC-low
(see Supplementary Fig. 2), with variable efficiency of
MYC knockdown to replicate the biological variability
observed in patient samples. We then performed ChIP-seq
against MYC in these cells to generate genome-wide
site maps and ascertain chromatin occupancy at MEIS1.
In these cells, we had observed increased overall
transcriptional output (see Fig. 1d), and we controlled for
this phenomenon using Drosophila chromatin spike-in
controls.
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The quality of our MYC ChIP DNA was assessed using
Active Motif’s ChIP-IT qPCR Analysis Kit and primers
targeting a MYC super-enhancer region prior to sequencing.
As shown in Supplementary Fig. 4A, an enrichment of six-

to eight-fold was achieved for each experiment and thus
submitted for subsequent ChIP-seq analysis. We identified
~18,000 and 27,000 high confidence peaks (P < 1 × 10−9) in
LNCaP/NTC and LNCaP/shMYC consensus sites (that is,
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sites common in all three MYC knockdown lines), respec-
tively; and of these, 98% of all peaks were shared (Sup-
plementary Fig. 4B). These sites overlapped with those
reported in multiple publicly-available MYC ChIP-seq
datasets ([11, 35–37]), with the extent of overlap ranging
from 22 to 90% (Supplementary Table 6). Of note, when
compared with another LNCaP MYC ChIP-seq, the overlap
ranged from 77 to 90%, validating the technical results of
our experiment. Applying functional annotation of binding
sites, the majority of MYC-bound peaks were either pro-
moter proximal or enriched for intronic/intergenic DNA in
both control and MYC knockdown cell lines (Supplemen-
tary Fig. 4C). This distribution was also similar to that of
previous MYC ChIP-seq datasets, providing orthogonal
validation of our data (Supplementary Fig. 4D).

When we examined MYC ChIP-seq peaks in the vicinity
of MEIS1, we observed that proportional MYC recruitment
to MEIS1 was increased 1.29-fold on average, relative to
global binding in each of the three MYC shRNA lines
relative to control (Fig. 4a). In contrast to MEIS1, we would
anticipate that genes positively regulated by MYC would
demonstrate reduced recruitment of MYC at their loci when
MYC levels are reduced by shRNA, counter to what we
observed in Fig. 4a. When we examined binding events at
the known MYC-regulated gene PNP, we observed 1.17-
fold less MYC recruitment, on average, to the PNP locus
(Fig. 4b). For both MEIS1 and PNP, ChIP-seq for H3K27ac
marks in parental LNCaP cells also identified a peak at the
same genomic position, indicating that the MYC ChIP-seq
was identifying chromatin of active enhancer elements.
Similar results were observed for two additional MYC tar-
gets, NOLC1 and EIF5A (Supplementary Fig. 5A-B) of
1.28-fold less binding at each locus. The increased occu-
pancy of MYC at MEIS1 was far more pronounced when
peaks were normalized to Drosophila spike-in controls
(Supplementary Fig. 5C), although this also resulted in

minimal differences between control and MYC knockdown
for MYC binding at PNP (Supplementary Fig. 5D).
Nonetheless, motif enrichment analysis at MYC-ChIP
peaks showed decreases at canonical MYC binding sites
upon MYC knockdown (Fig. 4c).

We then sought to determine if the observed increase in
chromatin occupancy translated to altered MEIS1 tran-
scription by qRT-PCR. Knockdown of MYC resulted in
increased abundance of the MEIS1 transcript, consistent
with the observed increase in MYC recruitment at MEIS1
(Fig. 4d). Together, these results support the role of MYC in
the negative regulation of MEIS1 in primary PCa.

In PCa, MEIS1 functions to direct transcriptional speci-
ficity and activity of HOXB13 and act as a negative reg-
ulator of AR [20, 38]. Therefore, we next determined
whether HOXB13 expression or AR activity were altered in
the context of MYC activity. Indeed, there were statistically
significant positive correlations between MYC and HOXB13
mRNA levels in both the entire LCM tissue cohort (Fig. 4e,
top; r= 0.6801, 95% C.I. 0.5285–0.7897, P < 0.0001) and
the entire TCGA PRAD cohort (Fig. 4f, top; r= 0.0894,
95% C.I. 0.0016–0.1758, P= 0.0230) although the strength
of correlation in the TCGA cases was notably less than the
purer LCM tissue cohort. We also observed a positive
correlation between MYC mRNA levels and the ssGSEA
scores for AR activity [39] in both the LCM cohort (Fig. 4e,
bottom; r= 0.7550, 95% C.I. 0.6311–0.8413, P < 0.0001)
and the TCGA cohort (Fig. 4f, bottom; r= 0.0567, 95% C.
I. −0.0312–0.1438, P= 0.1029), although statistical sig-
nificance was reached solely in the LCM cohort. Moreover,
there was a statistically significant negative correlation
between MEIS1 and HOXB13 expression in both the LCM
cohort (Fig. 4g, top; r=−0.4495, 95% C.I. −0.6202 to
−0.2381, P < 0.0001) and the TCGA cohort (Fig. 4h, top;
r=−0.5273, 95% C.I. −0.5879 to −0.4608, P < 0.0001).
This inverse association was also observed between MEIS1

Table 1 List of common gene
sets negatively enriched in
MYC-activity high vs. low
comparing LCM tissue and
TCGA cohorts.

LCM tissue TCGA

MSigDB gene set NES Q value NES Q value

Onder CDH1 Targets 3 DN −2.041 4.27E-03 −2.193 6.96E-03

Ono AML1 Targets DN −2.154 2.18E-03 −2.135 6.96E-03

Klein Targets of BCR ABL1 Fusion −2.192 1.80E-03 −2.274 6.96E-03

Hess Targets of HOXA9 and MEIS1 DN −2.206 1.63E-03 −2.192 6.96E-03

Takeda Targets of NUP98 HOXA9 Fusion DN −2.216 1.43E-03 −2.005 6.96E-03

Phong TNF Targets UP −2.222 1.41E-03 −2.207 6.96E-03

Kim GLIS2 Targets UP −2.431 1.75E-04 −2.066 6.96E-03

Hecker IFNB1 Targets −2.497 1.50E-04 −2.086 6.96E-03

Servitja Islet HNF1A Targets UP −2.542 8.51E-05 −2.164 6.96E-03

Vilmas NOTCH1 Targets UP −2.575 8.93E-05 −2.342 6.96E-03

Gaurnier PSMD4 Targets −2.768 0.00E+ 00 −2.311 6.96E-03

NES normalized enrichment score.
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expression and AR activity in the LCM (Fig. 4g, bottom;
r=−0.2757, 95% C.I. −0.4810–0.0417, P= 0.0109) and
TCGA (Fig. 4h, bottom; r=−0.3814, 95% C.I. −0.4540 to

−0.3038, P < 0.0001) cohorts. Given the potential impact of
the HOXB13 G84E SNP (rs138213197) on MEIS1 inter-
action, expression, and function [20], we performed SNV
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analysis of germline samples from the LCM and TCGA
cohorts (data not shown). However, none of the LCM cases
carried the G84E SNP, and only five TCGA cases which
carried the SNP (CH-5748, CH-5771, G9–6370, KK-A8IG,
and V1-A9OF), were not amongst the MYC-high or MYC-
low group (see Fig. 3c). Taken together, our data suggest
that in MYC-high tumors, PCa development is collectively
mediated by increased AR activity and HOXB13 expression
resulting from MEIS1 down-regulation.

Discussion

In many cancer types, the role of amplified MYC in med-
iating tumorigenesis has been linked to genes involved in
ribosomal biogenesis, universally up-regulated transcrip-
tion, proliferation, and reprogramming cells to a pluripotent
state [40]. A subset of advanced prostate cancers also harbor
amplified MYC, but it is distinct from the up-regulated
MYC that is a hallmark of many localized prostate cancers
[3, 14–16]. In the current study, we used transcriptome
profiling to assess subpopulations of prostate tumors based
on differential MYC protein expression and MYC activity,
and we similarly compared differentially expressed genes
and pathways within the larger prostate TCGA cohort based
on MYC activity. Finding that increased MYC activity was
inversely proportional to overall transcription, we focused

on down-regulated pathways, identifying a negative corre-
lation between MYC activity and MEIS1 expression, with
MYC directly involved in the negative regulation of MEIS1
as demonstrated by knockdown and chromatin immuno-
precipitation analyses. The inverse association between
MEIS1 expression and AR extended further to HOXB13
expression, indicating that in a subset of primary PCa,
decreased expression of MEIS1 may be necessary for AR
and HOXB13 to drive tumor development and progression.

From its discovery as an oncogene to the subsequent
challenges associated with targeting MYC pharmacologi-
cally, efforts have shifted in identifying targetable MYC
effector genes or other targetable co-factors that are neces-
sary for MYC activity [41, 42]. Efforts to dissect functions
of MYC have frequently relied on cancer models in which
MYC levels rise up to 20-fold, in contrast to 1–2 fold
physiological elevation of MYC expression in PCa
[2, 6, 43]. Not surprisingly, the phenotypes associated with
MYC up-regulation differ. For example, MYC expression in
the activation of lymphocytes [26] or in Burkitt’s lym-
phoma [27] is associated with a universal amplification of
transcription, while we observed that in LNCaP PCa cells
with up-regulated MYC, knocking down MYC by <50%
with shRNA consistently increased the total amount of
RNA produced per cell.

The differences in MYC function in PCa extend to the
long-standing relationship between MYC and proliferation
[40]. Here, we report a series of PCa tissues, serially-
sectioned and stained with anti-MYC and anti-Ki67 anti-
bodies, that show a weak proportional relationship. While
up to 50% of luminal PCa cells were positive for MYC
expression, proliferation measured by Ki67 affected <5% of
cells. We show a similar relationship in the prostate TCGA
cohort and PCa cell lines, suggesting that while proliferat-
ing cells may harbor MYC activity, MYC alone is not
sufficient for proliferation in PCa. This is generally in
agreement with findings that MYC expression alone is not
reflective of an increased proliferative fraction of PCa
cells [5].

A key finding from our study is the negative relationship
between MYC activity and MEIS1 expression. In the con-
text of MYC’s role as a universal transcriptional amplifier, a
target gene of MYC-mediated repression could simply be
considered a technical anomaly reflecting unequal numbers
of cells used for analysis [26]. However, we show that
transcriptional signatures of MYC activity and MEIS1 are
inversely correlated in two large independent cohorts,
which is largely consistent with the finding that tumors and
PCa cells with increased MEIS1 expression show decreased
enrichment of MYC target gene sets by GSEA [19].
Importantly, we further demonstrate here with ChIP-seq that
the effects on MEIS1 expression are due in part to increased
MYC occupancy at the MEIS1 locus, such that by using

Fig. 4 Decreased MYC expression increased MYC occupancy at
MEIS1 and MEIS1 expression. a IGV depiction of MYC and
H3K27ac binding events in LNCaP MYC knockdown cell lines,
showing increased MYC occupancy at the MEIS1 locus in cells har-
boring MYC knockdown. b IGV depiction of MYC and H3K27ac
binding events in LNCaP MYC knockdown cell lines, showing
decreased MYC occupancy at the PNP locus in cells harboring MYC
knockdown. Graphs to the right of (a, b) depict the area under the
curve (AUC) of read counts for the peaks outlined by the boxes. c The
confidence of identifying known MYC binding motifs as identified by
HOMER are shown for the LNCaP MYC knockdown cell lines,
measured by −log10 P value for enrichment. Q values (adjusting for
false discovery) for these enrichments are zero. d Quantitative reverse-
transcription PCR of GAPD-normalized MEIS1 transcript in LNCaP
MYC knockdown cell lines relative to control, measuring across the
splice boundary of exons 6–7 (left) or exons 10–12 (right). Bars and
whiskers represent the mean ± standard deviation of six independent
experiments conducted in triplicate, plotted individually as open cir-
cles (**P < 0.01; ***P < 0.001; ****P < 0.0001 by Student’s t test).
e, f Correlation of the log2 CPM expression level for MYC with the
log2 CPM expression level for HOXB13 (top) and the 266-gene
ssGSEA AR activity signature score (bottom) in the entire LCM
cohort (N= 69, e) and the entire TCGA PRAD cohort (N= 499, f).
The gray dotted lines represent the 95% confidence intervals for each
correlation. g, h Correlation of the log2 CPM expression level for
MEIS1 with the log2 CPM expression level for HOXB13 (top) and the
266-gene ssGSEA AR activity signature score (bottom) in the entire
LCM cohort (N= 69, g) and the entire TCGA PRAD cohort (N= 499,
h). The gray dotted lines represent the 95% confidence intervals for
each correlation.
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shRNA to lower the level MYC with biological variability
observed in patient samples, it resulted in repositioning of
MYC at specific sites. However, the intensity of MYC
binding at MEIS1, as measured by the peak height in IGV,
is substantially less than the peak heights of known direct
targets of MYC such as PNP, NOLC1 and EIF5A, and the
increased expression of MEIS1 in the context of decreased
MYC expression precludes MYC as a direct transcriptional
activator. Indeed, MEIS1 is a direct target of MIZ-1 [44],
which functions to increase the expression of MEIS1 in the
absence of MYC. Therefore, one possible explanation for
our observations is that a MYC-regulated transcriptional
repressor also sits at theMEIS1 promoter and competes with
MYC for direct binding to MIZ-1 or another positive reg-
ulator ofMEIS1 transcription. In such a model, MYC would
only be bound to MEIS1 indirectly, and the interaction
between MYC/MIZ-1 complexes and other transcriptional
regulators of MEIS1 is of interest for future study.

Previously, Bhanvadia et al. [19]. demonstrated that
tumors with increased MEIS1 are potentially less aggres-
sive, based on studies of LAPC-4 PCa cells expressing
shRNA against MEIS1 and that tumors with lower levels of
MEIS1 were at greater risk of biochemical recurrence and
metastasis. Specifically, they reported a step-wise decrease
in MEIS1 expression during PCa progression, but that
knockdown of both MEIS1 and MEIS2 were necessary to
suppress tumor development in vivo. HOXB13, a home-
odomain transcription factor, has been shown to regulate
AR activity while shRNA against HOXB13 in LAPC4 cells
inhibits their growth [18]. Based on these prior findings, as
HOXB13 physically interacts with MEIS1 [18], tumors
expressing less MEIS1 would be expected to display greater
HOXB13 expression and AR activity. Indeed, we show an
inverse relationship between MEIS1 expression and AR
activity in two independent cohorts, which is consistent
with previous observations of a positive correlation between
MYC expression and AR activity [7]. However, we did not
observe a statistically significant inverse relationship
between MYC and MEIS2 (see Supplementary Table 2).

Our study has an important limitation in that we did not
assess the relationship betweenMYC andMEIS1 in additional
human cell line or mouse model systems. Our focus on
increased MYC activity in locoregional PCa is distinct from
highly amplified MYC in metastatic PCa. The LNCaP model
is the only commercially available PCa cell line that is gen-
omically similar to localized PCa, derived from a regional
lymph node, and is both androgen-dependent and luminal in
origin. Mouse models with robustly overexpressed MYC and
all other PCa cell lines derived from advanced metastases
exhibit a high proliferative index, which does not accurately
model early PCa, which is a slow-growing disease.

In summary, our analysis of MYC-expressing prostate
tumors demonstrates an inverse relationship with MEIS1

expression, which in turn is negatively correlated with
HOXB13 expression and AR activity. Mechanistically, our
data demonstrate that MEIS1 is a directly repressed target of
MYC, and via effects on HOXB13 link MYC activity to AR
activity. The potential clinical significance of the inverse
MYC/MEIS1 relationship warrants further investigation as
AR-directed therapies are introduced earlier in the clinical
course of disease, and MEIS1 levels may indicate potential
sensitivity to treatment.

Materials and methods

Study approval

This research was conducted in accordance with the principles
of the Declaration of Helsinki. All patients provided informed
consent prior to participating in tissue procurement protocols,
and all samples were deidentified as per institutional policies.
The collection of radical prostatectomy specimens was
approved by the Dana Farber/Harvard Cancer Center Insti-
tutional Review Boards, under protocol numbers 11–250,
15–008, and 15–492. The collection of prostate biopsy spe-
cimens was approved by the National Institutes of Health
Institutional Review Board, under protocol number 15-c-
0124. Tissues were fixed in formalin and embedded in par-
affin according to standard procedures.

Pan-cancer analysis

Gene-level normalized FPKM expression values for The
Cancer Genome Atlas (TCGA) RNA-seq data were down-
loaded from the NCI Genomic Data Commons (https://gdc.ca
ncer.gov). Cases were filtered for tumor samples within each
organ type and cases with missing gene expression values
were removed. Single-sample gene set enrichment analysis
(ssGSEA) was performed on the GenePattern server (https://
cloud.genepattern.org) using the ssGSEA Projection module
version 9.1.1 with the following parameters: weighting
exponent: 0.75; combine mode: combine.add; sample nor-
malization method: none. For each TCGA tumor type,
ssGSEA projection values were obtained for a 17-gene MYC-
independent proliferation signature, a 54-gene MYC activity
signature [22], and a prostate cancer-specific gene set gener-
ated by MYC overexpression in LNCaP cells [11]. The genes
used for analysis are given in Supplementary Table 1.

Cell lines and derivatives

RNA knockdown of MYC expression was achieved using the
SMARTvector lentiviral shRNA system (Dharmacon) and a
standard second-generation packaging system. hCMV-Turbo
GFP targeting vectors were MYC 512: V3SH11240-2251
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90433 (GGTCGATGCACTCTGAGGC, targeting ORF); M
YC 627: V3SH11240-226339523 (TTGATCATGCATTTG
AAAC, targeting 3′ UTR); MYC 637: V3SH11240-2264
39183 (GTAGAAATACGGCTGCACC, targeting ORF);
and non-targeting control: VSC11707. Briefly, 293FT cells
(ThermoFisher) were reverse-transfected with a lentiviral
shRNA expression vector in a 10 cm dish, using envelope
(pCMV-VSV-G, #8454, Addgene) and packaging (pCMV-
dR8.2 dvpr, #8455, Addgene) vectors following the Ther-
moFisher ViraPower protocols. Media containing lentivirus
were harvested two days post-transfection, passed through a
0.45 μm filter, aliquoted and frozen. HT-1080 cells (ATCC)
were used for titering virus following the ThermoFisher
ViraPower protocol.

LNCaP cells (clone FGC, catalog number CRL1740)
were purchased from ATCC. Cell line authentication by
STR profiling and mycoplasma testing was performed
every 6 months (Laragen, Inc). LNCaP cells were seeded
in 6-well plates at 1 × 105 cells per well and transduced
with lentivirus at a multiplicity of infection of 1 in
complete media for 24 h. Complete media were then
replaced one day post-transduction, and selection with
puromycin (1 μg/mL, Life Technologies) began 2 days
post-transduction. Transduction was confirmed by visual
confirmation of GFP fluorescence in >90% of cells, and
knockdown was confirmed by qPCR and Western
blotting.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 8
for Mac. Statistical tests used and relevant variables are
indicated in the legend of each figure.

Additional methods including qPCR, western blotting,
bioinformatic analyses, histology and ChIP-seq are pro-
vided in Supplementary Information.

Data availability

Human tissue RNA-seq data has been deposited into the
Database of Genotypes and Phenotypes (https://dbgap.ncbi.
nlm.nih.gov/), accession ID phs001813.v1.p1. Human tis-
sue gene expression data has been deposited into the Gene
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/),
accession ID GSE130046. ChIP-seq data has been
deposited into the Sequence Read Archive (https://www.
ncbi.nlm.nih.gov/sra), accession ID SRP218384 and GEO,
accession ID GSE135942.

Code availability

The code used to perform all analyses is available at https://
github.com/CBIIT/lgcp.
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